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Abstract
A coalescence model was employed to form deuterons (d), tritons (t), and helium-3 ( 3He ) nuclei from a uniformly-distributed 
volume of protons (p) and neutrons (n). We studied the ratio NtNp∕N

2
d
 of light nuclei yields as a function of the neutron 

density fluctuations. We investigated the effect of finite transverse momentum ( pT ) acceptance on the ratio, in particular, the 
“extrapolation factor” (f) for the ratio as a function of the pT spectral shape and the magnitude of neutron density fluctuations. 
The nature of f was found to be monotonic in pT spectra “temperature” parameter and neutron density fluctuation magnitude; 
variations in the latter are relatively small. We also examined f in realistic simulations using the kinematic distributions of 
protons measured from the heavy-ion collision data. The nature of f was found to be smooth and monotonic as a function 
of the beam energy. Therefore, we conclude that extrapolation from limited pT ranges does not create, enhance, or reduce 
the local peak of the NtNp∕N

2
d
 ratio in the beam energy. Our study provides a necessary benchmark for light nuclei ratios 

as a probe for nucleon density fluctuations, an important observation in the search for the critical point of nuclear matter.
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1  Introduction

Matter comprises quarks and gluons, which are the most 
fundamental constituents of nature, together with leptons 
and gauge bosons. The interactions between quarks and 
gluons are governed by quantum chromodynamics (QCD). 
At low temperatures or matter densities, quarks and gluons 
are confined in hadrons, whereas at high temperatures or 
matter densities, they are deconfined in an extended volume 
called the quark–gluon plasma (QGP). The phase transition 
at low temperature and high matter density is first-order, and 
at high temperature and low matter density, it is a smooth 

crossover, as predicted by lattice QCD [1]. It has been con-
jectured that a critical point (CP) exists in the nuclear matter 
phase diagram of temperature versus matter density between 
the first-order phase transition and smooth crossover [2–6]. 
The correlation length increases dramatically near the CP, 
causing large fluctuations in conserved quantities such as the 
net baryon number [7]. Searching for the CP is a subject of 
active research in heavy-ion collisions [8–17].

Light nuclei production is well-modeled by nucleon coa-
lescence [18–25]. The coalescence model predicts that large 
baryon number fluctuations affect the production rate of light 
nuclei [26, 27]. For example, the production of tritons (t) 
is enhanced relative to that of deuterons (d) when there are 
extra fluctuations in the neutron density because a triton con-
tains two neutrons (n), whereas a deuteron contains only 
one. As a result, the compound ratio NtNp∕N

2
d
 involving the 

multiplicities of protons ( Np ), deuterons ( Nd ), and tritons 
( Nt ) was enhanced. Similarly, the production of helium-3 
( he ) and the ratio of NheNn∕N

2
d
 increased with respect to 

extra fluctuations in the proton density.
Following Ref. [26–28], the average deuteron multiplicity 

density in the coalescence model is given by
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where the protons and neutrons are assumed to be in thermal 
equilibrium with an effective temperature Teff  , and 

A =
(

2�

mNTeff

)3∕2

 is the shorthand notation ( mN is the nucleon 
mass). Here n̄ denotes the average density. The neutron den-
sity fluctuations are denoted as

and 𝛼 =
⟨𝛿np𝛿nn⟩
n̄pn̄n

∕Δnn =
n̄n

n̄p

⟨𝛿np𝛿nn⟩
⟨(𝛿nn)2⟩

 denotes the correlations 

between proton and neutron number fluctuations. If the pro-
ton and neutron numbers fluctuate independently, � = 0 ; if 
they fluctuate simultaneously, � = 1 . It is noteworthy that we 
have thus far neglected the details of deuteron formation, 
which is determined by the deuteron wavefunction and is 
often implemented by the Wigner function formalism (see 
below). The fluctuations affecting deuteron formation are 
those within the typical volumes of deuterons. We note this 
in Eq. (1) by the subscript ‘d’ in (�Δnn)d to indicate that it 
is the average �Δnn within the typical deuteron size that is 
relevant.

Similarly, the triton average multiplicity density is given 
by

w h e r e  Δn�
n
= ⟨(𝛿nn)3⟩∕n̄3n  a n d 

𝛽 =
⟨𝛿np(𝛿nn)2⟩

n̄pn̄
2
n

∕Δn�
n
=

n̄n

n̄p

⟨𝛿np(𝛿nn)2⟩
⟨(𝛿nn)3⟩

 . Similar to � in Eq. (1), the 

� parameters denote the three-body correlations. When the 
proton and neutron numbers fluctuate independently, � = 0 , 
and when they fluctuate together, � = 1 . The subscript ‘t’ in 
Eq. (3) indicates that only fluctuations averaged within the 
typical volume of the triton size matter. Note that in Eq. (3), 
we simply write n2

n
 for the neutron pair density; however, for 

an identical particle pair, the multiplicity is N(N − 1) , so the 
pair fluctuations of Eq. (2) should be understood as those 
beyond Poisson fluctuations.

Thus, the compound ratio is given by

If one neglects � and � , then Eq. (4) is reduced to

(1)

n̄d

��
3√
2
A

�
= ⟨(n̄p + 𝛿np)(n̄n + 𝛿nn)⟩

= n̄pn̄n + ⟨𝛿np𝛿nn⟩
= n̄pn̄n(1 + (𝛼Δnn)d) ,

(2)Δnn = ⟨(𝛿nn)2⟩∕n̄2n ,

(3)

n̄t∕

�
3
√
3

4
A2

�
= ⟨(n̄p + 𝛿np)(n̄n + 𝛿nn)

2⟩

= n̄pn̄
2
n
(1 + (Δnn)t + 2(𝛼Δnn)t + (𝛽Δn�

n
)t) ,

(4)
NpNt

N2
d

=
n̄pn̄t

n̄2
d

=
1 + (Δnn)t + 2(𝛼Δnn)t + (𝛽Δn�

n
)t

2
√
3(1 + (𝛼Δnn)d)

2

.

as in Ref. [26, 27]. Note that the factor 1∕2
√
3 originates 

from the thermal equilibrium assumption of nucleon abun-
dances. Therefore, the NtNp∕N

2
d
 may be a good measure of 

neutron density fluctuations, a large value of which can sig-
nal the CP.

A unique signature of the CP is the nonmonotonic behav-
ior of the ratio NtNp∕N

2
d
 in the beam energy, where a peak 

of the ratio in a localized region of beam energy can signal 
large neutron fluctuations and the CP [26, 27]. The STAR 
experiment at RHIC recently observed nonmonotonic behav-
ior of the NtNp∕N

2
d
 ratio in the top 10% of central Au+Au 

collisions as a function of the nucleon–nucleon center-
of-mass energy ( 

√
sNN ) in the Beam Energy Scan (BES) 

data [29].
A nonmonotonic bump was observed in the ratio local-

ized in the energy region 
√
sNN = 20 − 30GeV . It should 

be noted that the local bump is prominent in the NtNp∕N
2
d
 

ratio of the extrapolated yields to all transverse momenta 
( pT ) but not as prominent in the measured fiducial range 
of 0.5 < pT∕A < 1.0 GeV∕c and 0.4 < pT∕A < 1.2 GeV∕c 
(where A is the mass number corresponding to each light 
nucleus in the ratio) [29].

This is illustrated in the left panels of Fig. 1 where the 
STAR-measured NtNp∕N

2
d
 ratios from the total extrapolated 

yields and two measured pT∕A ranges are reproduced. The 
“extrapolation factor” (f), that is, the NtNp∕N

2
d
 ratio of the 

total light nuclei yields extrapolated to the entire pT∕A range 
[0–∞ ) divided by the ratio of those measured within a fidu-
cial pT∕A range, is shown in the right panel of Fig.  1 for 
the two measured pT∕A ranges. It should be noted that the 
integrated yields of protons, deuterons, and tritons over the 
full momentum space in the STAR experiment were extrap-
olated from slightly different ranges of the scaled trans-
verse momentum pT∕A . The aforementioned ratio for the 
measured fiducial range was obtained using particle yields 
within the same pT∕A range as in the STAR experiment. 
The statistical uncertainties between the fiducial yield of a 
given pT spectrum and the extrapolated total yield are cor-
related, as are the systematic uncertainties. Thus, the statis-
tical and systematic uncertainties are considered to be the 
quadratic difference of the corresponding uncertainties in 
the NtNp∕N

2
d
 between the fiducial pT∕A and total ranges. As 

expected from the STAR results [29], the f values peaked in 
the 

√
sNN = 20–30 GeV range and were nonmonotonic; the 

nonmonotonic effect was of the order of 10%.
In this study, we use a toy model to generate nucleons 

and form d, t, and 3He by using a coalescence model. We 
study the ratios of the light nuclei yields as functions of the 
magnitude of neutron multiplicity fluctuations and examine 

(5)
NpNt

N2
d

≈
1

2
√
3
(1 + (Δnn)t) ,
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the role of pT acceptance in these ratios. First, we confined 
ourselves to a simple toy model to gain insight. We then 
attempted to conduct more realistic simulations mimicking 
STAR BES data to examine what STAR measurements may 
entail.

2 � Coalescence model

The probability of forming a composite particle from par-
ticle 1 at position r⃗1 with momentum p⃗1 and particle 2 at 
position r⃗2 with momentum p⃗2 is estimated using the Wigner 
function:

where

(6)W(r⃗1, p⃗1, r⃗2, p⃗2) = g ⋅ 8 exp

(
−
r2
12

𝜎2
r

−
p2
12

𝜎2
p

)
,

and � =
m1m2

m1+m2

 denote the reduced mass of a two-body sys-
tem. The parameter �r is the characteristic coalescence size 
in the configuration space and �p = 1∕�r (where ℏ = c = 1 ) 
is that in the momentum space.

Based on the Wigner function expressed in Eq. (6), the 
root-mean-square (RMS) radius of the coalesced composite 
particle is calculated as R =

√
3m1m2∕2

m1+m2

�r . Therefore, the coa-
lescence parameter �r can be determined from the particle 
size as follows:

r12 =|r⃗1 − r⃗2|,

p12 =𝜇
|||||

p⃗1

m1

−
p⃗2

m2

|||||
,

(7)�r =
m1 + m2√
3m1m2∕2

R .
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Fig. 1   (Color online) (Left) The NtNp∕N
2
d
 ratio in 0–10% central 

Au+Au collisions as functions of beam energy 
√
sNN measured by 

STAR [29]. The ratio of the extrapolated total yields and those from 
two measured pT∕A ranges are shown. The ratios from the measured 
pT∕A ranges are shifted in the horizontal axis for clarity. (Right) 
The extrapolation factor f, i.e., the NtNp∕N

2
d
 ratio from the extrapo-

lated total yields divided by that from the fiducial yields in a given 
measured pT∕A range, is shown for the two measured pT∕A ranges 
as functions of 

√
sNN . The statistical and systematic uncertainties on 

f are the quadratic difference of the corresponding uncertainties of the 
NtNp∕N

2
d
 ratio between the given measured pT∕A range and the total 

range. The rightmost square is shifted in the horizontal axis for clarity
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Fig. 2   (Color online) (Left) Transverse momentum pT spectra of 
deuteron, 3He and triton calculated by the coalescence model from 
a system of average N̄p = 20 protons and N̄n = 20 neutrons at “tem-
perature” T = 150 MeV (Eq. (9)) randomly distributed within a cyl-
inder of 10 fm radius and 10 fm length. No extra fluctuations are 

included beyond Poisson, i.e., � = 1 . (Right) The same spectra plotted 
as functions of pT∕A (A is the corresponding mass number). Super-
imposed in curves are the products of (dNp∕dpT) × (dNn∕dpT) and 
(dNp∕dpT) × (dNn∕dpT)

2 at the same pT∕A value, arbitrarily scaled to 
compare to the shapes of the deuteron and triton spectra, respectively
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Deuterons coalesce with protons and neutrons. The RMS 
size of the deuteron is Rd = 1.96 fm [30], so for deuteron 
�r =

√
8

3
Rd = 3.20 fm. The triton (helium-3) is formed by 

the coalescence of a deuteron and neutron (proton), follow-
ing the same prescription as Eq. (6). The triton RMS size is 
Rt = 1.59   f m   [ 3 0 ] .  T h e r e fo r e ,  fo r  t r i t o n , 
�r =

√
3Rt = 2.75 fm. For 3He , we also assume �r = 2.75 fm 

to be symmetric.
The gfactor represents the probability of the proper total 

spin of the composite particle.

where S is the spin of the composite particle (1 for d, 1/2 for 
both t and 3He ), and si is the spin of each coalescing particle. 
For the d formed from p and n, the g-factor was 3/4. For t 
( 3He ), formed from d and n (p), it is 1/3.

3 � Toy‑model simulation details

A system of nucleons was generated using a toy model. 
The nucleons were assumed to be uniformly distributed in 
a cylinder of 10 fm length and 10 fm radius. The transverse 
momentum spectra of the nucleons were assumed to be

where the “temperature” parameter is set to T = 150 MeV. 
Note that Eq. (9) is not a thermal distribution for massive 
particles; we use the term “temperature” for convenience. 
The azimuthal angle of the momentum vector was uniformly 
distributed between 0 and 2� . The pseudorapidity � was 
assumed to be uniform between −1 and 1. The use of rapid-
ity or pseudorapidity was insignificant.

In this study, we did not use a thermal model to predict 
the average multiplicity; rather, we set the average multi-
plicities of protons and neutrons to N̄p = N̄n = 20 . This is 

(8)g = (2S + 1)∕Π2
i=1

(
2si + 1

)
,

(9)dN∕dpT ∝ pT exp(−pT∕T) ,

simple, because our goal was to study only the effects of 
neutron multiplicity fluctuations. Therefore, the baseline of 
the NtNp∕N

2
d
 ratio is not 1∕2

√
3 but is rather determined by 

the ratio of the degeneracy g factors as 1
3
⋅

3

4
∕
(

3

4

)2

=
4

9
 [31].

We assigned Poisson fluctuations to the number of 
protons and only varied the fluctuation magnitude for the 
number of neutrons (we focused on the compound ratio 
NtNp∕N

2
d
 ). The latter is achieved by using negative binomial 

distributions P(Nn = k) = Ck+r−1
k

(1 − p)kpr , where r and p 
are free parameters.

The mean and variance are N̄n =
r(1−p)

p
 and �2

Nn
=

r(1−p)

p2
 , 

respectively. The fluctuation magnitude is given by 
𝜎2
Nn

= N̄n∕p ≡ 𝜃N̄n (where � ≡ 1∕p ≥ 1 ), which is always 
larger than Poisson fluctuations unless the probability p = 1 
when the negative binomial distribution is reduced to Pois-
son. We used p to control the magnitude of the fluctuations 
in Nn and selected the proper r value to obtain the desired 
average neutron multiplicity, N̄n.

It is worth noting that we utilized fluctuations in the total 
number of neutrons Nn event-by-event to mimic fluctuations 
in the local neutron number density. The purpose of our 
study is to investigate the behavior of NtNp∕N

2
d
 as a function 

of the neutron density fluctuation magnitude but not to sug-
gest that density fluctuations are caused by fluctuations in 
the total multiplicity. In our simulation, given a total Nn in an 
event, the neutrons were randomly distributed in the cylinder 
volume. The fluctuations in Nn determine the magnitude of 
the neutron density fluctuations, which is averaged over the 
entire volume. In other words, Δnn in Eq. (2) can be quanti-
fied by fluctuations in Nn beyond Poisson,

Note that � quantifies the fluctuations in Nn in the unit of 
Poisson fluctuations, and � − 1 quantifies those beyond Pois-
son fluctuations.

(10)Δnn = (𝜎2
Nn
∕N̄n − 1)∕N̄n ≡ (𝜃 − 1)∕N̄n .
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Fig. 3   (Color online) Yield ratios of Nd∕Np and Nt∕Nd (left) and 
NtNp∕N

2
d
 (right) as functions of Δnn of Eq.  (10), the magnitude of 

neutron multiplicity fluctuations beyond Poisson. Numbers inside the 

parentheses indicate the uncertainty to the corresponding last digit. 
The light nuclei are formed by coalescence from a system of average 
N̄p = 20 protons and N̄n = 20 neutrons at T = 150 MeV (Eq. (9)) ran-
domly distributed within a cylinder of 10 fm radius and 10 fm length
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In total, 1.6 × 108 events were simulated. Deuterons, tritons, 
and helium-3 were formed by coalescence. For each event, the 
deuteron formation via double loops over protons and neutrons 
was considered. For each deuteron, the formation of t and 3He 
was implemented by looping over the remaining nucleons. The 
nucleons were randomly reordered such that the probabilities of 
forming t and 3He were unbiased. A random number uniformly 
distributed between 0 and 1 was used to determine whether the 
two particles coalesced into a light nucleus. If the random num-
ber is smaller than the Wigner function value in consideration, 
the corresponding light nucleus is formed. Once a light nucleus 
formed, the coalescing particles were removed from further 
consideration.

4 � Toy‑model simulation results 
and discussions

Figure 2 shows the pT spectra of the generated neutrons and 
the coalesced d, t, and 3He in the left panel, and the right 
panel those spectra in the scaled pT∕A . No extra fluctuations 
are included beyond Poisson in this figure (i.e., � = 1 ); there-
fore, the proton spectrum is identical to that of neutrons. In 
the right panel, the product of the proton and neutron spectra 
and the product of the proton and squared neutron spectra 
are shown as smooth histograms. These products are the 
corresponding d and t spectra if the coalescence parameters 
�p = 0 and �r = ∞ in Eq. (6). The coalesced d and t spectra 
are steeper than those of the products because of the finite 
�p and �r implemented in our coalescence model.

Figure 3 shows in the left panel the yield ratios of Nd∕Np 
and Nt∕Nd as functions of the neutron fluctuation magni-
tude Δnn in Eq. (10). The Nt∕Nd ratio increases with Δnn , 
which is consistent with the expected stronger effect of the 
neutron density fluctuations on t than on d production. The 
Nd∕Np ratio decreases slightly, but is statistically significant. 
This is counterintuitive, as one would expect no dependence 

because N̄n is the same for all values of Δnn ; events with 
more neutrons would be balanced out by those with fewer 
neutrons in terms of deuteron production. However, N̄p = 20 
is fixed, and the fluctuations in Np are treated as uncorrelated 
with those in Nn in our study. The production of deuterons 
will be “saturated” in events with large Nn—those neutrons 
would not get “equal” share of protons to form deuterons. 
Consequently, Nd∕Np is smaller for a larger Δnn.

The right panel of Fig. 3 shows the NtNp∕N
2
d
 ratio as a 

function of Δnn . The NtNp∕N
2
d
 clearly increases with Δnn . 

The slope was approximately 0.477, significantly non-
zero, and the intercept was approximately 0.439. These 
values are approximately equal to the expected degeneracy 
factor of 4/9. The slight deviations may be due to the dif-
ferent size parameters of the deuterons and triton as the 
Wigner function parameters differ.

As previously mentioned, the measured nonmonotonic 
feature of the NtNp∕N

2
d
 ratio as a function of the beam energy √

sNN by STAR appears to depend on the considered pT∕A 
range [29], which is stronger for the extrapolated yield ratio 
than for those with limited pT∕A acceptance. Therefore, it is 
important to investigate whether a nonmonotonic extrapolation 
factor can result from trivial physics, such as nucleon spectral 
shape changes as a function of the beam energy. To this end, 
we first examined the NtNp∕N

2
d
 as a function of pT∕A in our 

toy-model simulation. This is shown in Fig. 4 left panel shows 
the various � values. In the extreme case of coalescence with an 
identical momentum, the NtNp∕N

2
d
 was independent of pT . The 

falling and rising characteristics of the shape are determined 
by the pT-distribution in Eq. (9) and the coalescence param-
eters of the light nuclei. The shapes are similar for various fluc-
tuation magnitudes, and the overall ratio increases with � as 
expected. The right panel of Fig. 4 shows extrapolation factor f 
as a function of Δnn . (Note that the total yields in simulation are 
known of course, not from extrapolation, but we keep use of the 
term “extrapolation factor.”) Two fiducial ranges are depicted: 
pT∕A = 0.1 −0.2 and 0.3−0.4 GeV∕c . The extrapolation factor 
f varies with Δnn ; however, the variation is relatively small, less 
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Fig. 4   (Color online) (Left) The NtNp∕N
2
d
 ratio as functions of pT∕A . 

(Right) The NtNp∕N
2
d
 extrapolation factor f from pT∕A = 0.1 −

0.2 GeV∕c and 0.3−0.4 GeV∕c as a function of Δnn . The light nuclei 

are formed by coalescence from a system of average N̄p = 20 protons 
and N̄n = 20 neutrons at T = 150 MeV (Eq. (9)) randomly distributed 
within a cylinder of 10 fm radius and 10 fm length
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than 1% for the pT∕A = 0.3 −0.4 GeV∕c range for � = 2 , which 
is the fluctuation magnitude of a factor of 2 of that of Poisson. 
This implies that even when there are enhanced fluctuations in 
a local region in the beam energy 

√
sNN , the extrapolation factor 

remains approximately the same and does not cause a change 
in the shape of the NtNp∕N

2
d
 ratio vs. 

√
sNN from the limited 

pT range to the extrapolated full pT range. However, we exam-
ined only relatively narrow pT∕A ranges at small pT∕A values 
because of statistical considerations. The fiducial pT∕A ranges 
in the STAR analysis are relatively large and wide. Therefore, 
no direct comparisons can be made between our study and the 
STAR results thus far.

5 � More realistic simulations

In heavy-ion collisions, pT distributions can be signifi-
cantly altered by the collective radial flow. The shape of 
the pT distribution affects the NtNp∕N

2
d
 ratio as a function 

of pT∕A . To investigate the effect of the nucleon pT spectral 
shape on the extrapolation factor of the NtNp∕N

2
d
 ratio, we 

first vary the temperature parameter T in Eq. (9). Figure 5 
shows the T-dependence of the extrapolation factotr f for 
pT∕A = 0.3 −0.4 GeV∕c , with a given neutron fluctuation 
of Δnn = 0.1 (i.e., � = 3 ). As expected, the f value varies 
with T as expected, and the variation is monotonic. Thus, the 
T-dependent pT spectral shape does not cause an artificial 
nonmonotonic NtNp∕N

2
d
 enhancement from limited to full pT 

acceptance in any given localized T range and, correspond-
ingly, the beam energy range.

The collective radial flow in heavy-ion collisions cre-
ates a correlation between the momentum of a particle 
and its freeze-out radial position. This correlation is not 

present in the above simulations, but can be important 
for coalescence. To fully comprehend the implications of 
STAR data [29], we performed simulations using more 
realistic kinematic distributions. We obtained freeze-out 
information from the measured data [32, 33] as described 
below. The other simulation details are the same as those 
described in Sect. 3.

The charged hadron mulitplicity Nch , the inclusive pro-
ton multiplicity density dNp∕dy , the chemical freeze-out 
temperature Tchem and volume ( Vchem ≡

4�

3
R3
sphere

 ), the kin-
ematic freeze-out temperature Tkin , and the average collec-
tive radial flow velocity ⟨�⟩ in the blast wave parameteriza-
tion have been reported for the STAR experiment using 
various beam energies [32, 33]. We concentrate only on 
the central 0–5% collisions and parameterize the freeze-
out quantities as functions of Nch . The parameters have fit 
uncertainties; however, because we were only interested 
in the input values in our simulation to study light nuclei 
coalescence, we simply used the parameterized values.

•	 The measured dNp∕dy is shown in Fig. 6 (upper left) 
as a function of Nch . The measured protons originate 
from two sources: transport protons whose abundance 
decreases with energy, and produced protons whose 
abundance increases with energy. We thus parameterize 
dNp∕dy by combination of two functions, one decreasing 
and the other increasing with Nch . The parameterization 
is given by dNp∕dy = 318e−Nch∕148 + 68N1.4

ch
 , as superim-

posed.
•	 The chemical freeze-out temperature Tchem is shown 

in Fig. 6 (upper right) as a function of Nch . The Tchem 
increases with Nch and then saturates, so we parameterize 
it by Tchem = 167(1 − e−Nch∕144) MeV.

•	 The effective sphere radius for the chemical freeze-out 
volume appears linear in N1∕3

ch
 , so we parameterize it as 

Rsphere = 3.1 + 0.42N
1∕3

ch
 . We allow the intercept to be a 

free parameter because the fit is otherwise not as good.
•	 The kinetic freeze-out temperature Tkin is shown in Fig. 6 

(lower left) as a function of Nch . It is found to decrease 
with Nch and parameterized by Tkin = 142e−Nch∕1827 MeV.

•	 The average radial flow velocity is shown in Fig. 6 (lower 
right) as a function of Nch . It increases with Nch and 
appears to saturate at large Nch , so we parameterize it as 
⟨�⟩ = 0.6(1 − e−Nch∕241).

The information on the nucleons to be input into the coa-
lescence model is that of kinetic freeze-out. The kinetic 
freeze-out volume Vkin is obtained by assuming the system 
expands adiabatically, so Vkin∕Vchem = (Tchem∕Tkin)

3∕2 . In our 
simulation, we assumed that the collision zone was a cyl-
inder with a radius R = 7 fm, and the length of the cylinder 
was determined by Vkin∕(�R

2) . Protons and neutrons were 
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Fig. 5   (Color online) The NtNp∕N
2
d
 “extrapolation factor” for the 

pT∕A = 0.3 −0.4 GeV∕c acceptance as a function of T, with � = 3 or 
Δnn = 0.1 . The light nuclei are formed by coalescence from a system 
of average N̄p = 20 protons and N̄n = 20 neutrons randomly distrib-
uted within a cylinder of 10 fm radius and 10 fm length
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positioned uniformly and randomly inside the cylinder. The 
mean numbers of protons and neutrons were assumed to 
be N̄p = N̄n = 2 × dNp∕dy over two units of speed. Protons 
and neutrons were first generated according to the thermal 
distribution at Tkin.

The generated protons and neutrons are boosted radially 
with a boost velocity dependent on the radial position of the 
nucleon (r) within the cylinder:

(11)dN∕dpT ∝ pTmTe
−mT∕T .

where the surface velocity is �s = (1 + n∕2)⟨�⟩ . In this study, 
the parameter n for all the collision energies was set to 1.

Figure 7 shows the calculated pT∕A spectra of triton as 
an example for selected beam energies for � = 1 and � = 10 . 
The pT∕A spectra had the same shape for � = 1 and � = 10 
for a given beam energy. The right panel shows the yield 
fractions of the protons (red), deuterons (blue), and triton 
(green) in the limited pT range of 0.5 < pT∕A < 1.0 GeV∕c . 
It is interesting to note that while the proton fiducial yield 
fraction steadily decreases with the beam energy, as expected 

(12)� = �s(r∕R)
n ,
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Fig. 6   (Color online) The measured proton multiplicity density 
dNp∕dy (upper left), the chemical freeze-out temperature Tchem (upper 
right), the kinetic freeze-out temperature Tkin (lower left), and the 

average radial velocity ⟨�⟩ (lower right) as functions of the charged 
hadron multiplicity density dNch∕dy  [32, 33]. The parameterizations 
to the data are superimposed and used as inputs to our simulations
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from the flattening of the proton pT spectra, the deuteron and 
triton fiducial yield fractions first increase with the energy 
and then decrease. This is because the yields in the low 
pT∕A < 0.5 GeV∕c region are disproportionately more domi-
nant at lower energies for the coalesced light nuclei, and 
more so for triton. However, no differences were observed 
in the yield fractions for � = 1 and � = 10 . This implies that 
the yield extrapolations are the same for different fluctuation 
magnitudes. This, in turn, suggests that the effect of extrapo-
lation on the NtNp∕N

2
d
 ratio is the same, independent of the 

fluctuation magnitude, as illustrated below.
Figure 8 left panel shows the NtNp∕N

2
d
 calculated using 

our coalescence model as a function of 
√
sNN . The ratios 

are shown for the entire pT range and for the two limited 
pT∕A ranges measured by STAR: 0.4 < pT∕A < 1.2 GeV∕c 
and 0.5 < pT∕A < 1.0 GeV∕c . The results for two values 
of � are depicted: � = 1 corresponds to Poisson fluctua-
tions in the neutron multiplicity, and � = 10 corresponds to 
enhanced fluctuations with a magnitude corresponding to ∼
10% increase in the measured NtNp∕N

2
d
 ratio by STAR (cf 

Eq. (10), where a typical N̄n ∼ 60–100, as shown in Fig.  6). 
Similar to the STAR measurements  [29], the calculated 
NtNp∕N

2
d
 ratios show weak energy dependence. The calcu-

lated NtNp∕N
2
d
 values were lower than the measured values.

The right panel of Fig. 8 shows the extrapolation factors 
f of the NtNp∕N

2
d
 from pT∕A = 0.4 −1.2 GeV∕c and 0.5−

1.0 GeV∕c , respectively. The extrapolation increases monotoni-
cally with an increase 

√
sNN and is smooth. For a given pT∕A 

range, the f values were almost identical for the two � values; 
thus, we is so for all � values we have simulated. The chosen 
� = 10 corresponds to Δnn = 0.1 for N̄n = 90 only, which 
corresponds to different values of Δnn at various beam ener-
gies. We checked our results for f using a fixed Δnn = 0.1 value 
at all beam energies studied. No qualitative differences were 
observed between groups. Our results suggest that pT-extrapo-
lation alone does not create, enhance, or reduce a local peak in 

the NtNp∕N
2
d
 ratio as a function of 

√
sNN . In other words, the 

fluctuation increase in the 
√
sNN ∼ 20–30 GeV region implied 

by the STAR-extrapolated NtNp∕N
2
d
 ratio [29] (such as a jump 

from the hollow red points to the solid red points at 
√
sNN = 20

–30 GeV in our simulation) should also be present in the ratios 
in the limited fiducial pT∕A regions (a jump from the hollow 
blue/green points to the solid blue/green points). Therefore, we 
postulate that the local peak in the extrapolated NtNp∕N

2
d
 in the 

STAR measurements [29] is unlikely to be caused by the physics 
of coalescence.

6 � Summary

We simulated light nuclei production from a system of 
nucleons with varying magnitudes of neutron multiplicity 
fluctuations, Δnn . It was found that the light nuclei yield 
ratio NtNp∕N

2
d
 increased linearly with Δnn , confirming the 

findings of Ref. [26, 27]. We have further investigated the 
effect of finite acceptance by studying the “extrapolation 
factor” f for the NtNp∕N

2
d
 ratio as a function of Δnn and the 

pT spectra parameter T. The f value is found to be monotonic 
as a function of T and Δnn ; the variations in the latter were 
relatively small.

We also conducted a coalescence model study with real-
istic kinematic distributions of nucleons using measured 
freeze-out parameters, kinetic freeze-out temperature, and 
collective radial flow velocity. The NtNp∕N

2
d
 ratio was cal-

culated using the coalescence model as a function of beam 
energy, and a weak beam energy dependence was found, 
similar to the experimental data. The extrapolation factor f 
was found to be smooth and monotonic in beam energy and 
independent of the magnitude of the neutron density fluc-
tuations. We conclude that the extrapolation of the NtNp∕N

2
d
 

ratio in pT does not create, enhance, or reduce a local peak in 
the ratio of the beam energy. Therefore, our study suggests 
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Fig. 8   (Color online) (Left panel) The NtNp∕N
2
d
 ratio as functions of √

sNN for the entire pT range (red) and for two limited pT∕A ranges 
(blue and green). Two values of � are shown: � = 1 for Poisson (hol-
low markers) and � = 10 for enhanced neutron fluctuations (filled 
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2
d
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pT∕A = 0.4 −1.2 GeV∕c (blue) and 0.5−1.0 GeV∕c (green) accept-
ance as functions of 

√
sNN , with � = 1 (hollow markers) and 10 (solid 
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that the measured enhancement of the pT-extrapolated 
NtNp∕N

2
d
  [29] is unlikely to be caused by coalescence.

Our study provides a necessary benchmark for light 
nuclei ratios as a probe for nucleon fluctuations, an 
important observation in the search for the critical point 
of nuclear matter. In the present study, we assumed that 
the fluctuations in the number of protons and neutrons 
were independent. One may implement varying degrees 
of correlation between these fluctuations and study their 
effects on NtNp∕N

2
d
 . In addition, the effects of clustering 

or clumping [34–36], out-of-equilibrium effects [34], and 
feedback from excited states [37, 38] have not been con-
sidered. We leave these studies for future work.
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