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Abstract
Nuclear �-decay, a typical decay process for unstable nuclei, is a key mechanism for producing heavy elements in the Uni-
verse. In this study, neural networks were employed to predict �-decay half-lives and, for the first time, to identify abnormal 
trends in nuclear �-decay half-lives based on deviations between experimental values and the predictions of neural networks. 
Nuclei exhibiting anomalous increases, abrupt peaks, sharp decreases, abnormal odd-even oscillations, and excessively large 
experimental errors in their �-decay half-lives, which deviate from systematic patterns, were identified through deviations. 
These anomalous phenomena may be associated with shell effects, shape coexistence, or discrepancies in the experimental 
data. The discovery and analysis of these abnormal nuclei provide a valuable reference for further investigations using sophis-
ticated microscopic theories, potentially offering insights into new physics through studies of nuclear �-decay half-lives.
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1  Introduction

“How were the elements from iron to uranium made?” This 
is a highly fascinating question and has been listed in “Con-
necting Quarks with the Cosmos: Eleven Science Questions 
for the New Century” [1]. Rapid neutron capture processes 
(r-process) are responsible for producing approximately 
half of these heavy elements [2, 3] and represent the only 

mechanism for synthesizing elements heavier than bis-
muth [4]. One of the key challenges in studying the r-process 
is obtaining precise nuclear physics inputs, such as nuclear 
masses, �-decay half-lives, neutron-capture cross-sections, 
and fission rates [5]. �-decay, the primary decay mode for 
most nuclei, plays a crucial role in determining the time-
scale of the r-process. Predictions indicate that there are 
9035 bound nuclides with proton numbers between 8 and 
120 [6]. However, only approximately 3,000 nuclides have 
been observed experimentally [7]. In particular, for nuclei 
far from the �-stability line—those most relevant to the 
r-process—current experimental data remain limited. The-
oretical calculations not only guide experimental observa-
tions but also provide explanations for existing experiments, 
thereby advancing a deeper understanding of the essence of 
matter and the laws of nature. Nevertheless, providing a pre-
cise description of the �-decay half-lives of nuclei remains 
a significant challenge owing to the non-perturbative nature 
of nuclear forces and the complexity of quantum many-body 
problems.

Theoretical studies on �-decay half-lives can be broadly 
classified into empirical formulas, gross theories, and micro-
scopic theories. The empirical formula is particularly suitable 
for fitting experimental data and calculating �-decay half-lives 
on a large scale [8, 9]. Compared to empirical formulas, gross 
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theory can handle more complex situations and offers broader 
applicability [10–13]. Microscopic theories include the shell 
model [14–18] and the quasiparticle random phase approxima-
tion (QRPA) model [19–29]. The shell model provides reliable 
predictions for �-decay half-lives, particularly for nuclei in the 
light nuclear region and near magic numbers. However, shell 
model calculations become increasingly challenging as the 
number of valence nucleons increases. QRPA, on the other 
hand, is widely used to calculate the �-decay properties of the 
majority of nuclei on the nuclear chart, with the exception of 
some light nuclei. When experimental data are unavailable, 
researchers frequently rely on QRPA predictions based on the 
finite-range droplet model (FRDM + QRPA) [30–33] to pro-
vide essential inputs for r-process simulations.

In recent years, with rapid advancements in artificial intel-
ligence, machine learning has provided researchers with novel 
approaches. The application of machine learning in the field of 
nuclear physics has become increasingly prominent [34], with 
applications spanning various areas, including nuclear mass 
predictions [35–41], investigations of charge radii [42–47], 
predictions of the distribution of fission fragment yields [48, 
49], studies of giant dipole resonances [50, 51], explorations 
of excited states [52, 53], and other relevant topics [54–63].

The use of machine learning to study �-decay half-lives 
has also garnered significant attention in recent years, 
with predictive accuracy continually improving [64–68]. 
Recent studies demonstrated that machine learning pre-
dictions for �-decay half-lives deviate from experimental 
values by only 2.24 times for nuclei with half-lives shorter 
than 106 seconds [67]. In this study, we propose a novel 
application of neural networks to identify nuclei exhibit-
ing deviations from systematic behavior in �-decay half-
lives. For these nuclei, machine learning fails to accurately 
describe the �-decay half-lives. Furthermore, theoretical 
models such as FRDM+QRPA [32, 33], relativistic Har-
tree–Bogoliubov + quasiparticle random phase approxi-
mation (RHB+QRPA)  [26], gross theory based on the 
WS4 mass model (WS4+GT)  [13], and Skyrme–Har-
tree–Fock–Bogoliubov with the finite amplitude method 
(SHFB+FAM) [69] also encounter difficulties in describ-
ing these specific nuclei. After predicting �-decay half-lives 
and selecting these anomalous nuclei based on deviations 
between experimental values and neural network predic-
tions, we analyzed the challenges faced by the neural net-
work in describing these nuclei and explored the potential 
underlying physics.

2 � Neural network model

In this study, the neural network employed (Z, N, Q� ) as 
inputs to predict �-decay half-lives and identify abnormal 
nuclei based on deviations between experimental values 

and neural network predictions. Here, Z, N, and Q� rep-
resent the proton number, neutron number, and �-decay 
energy, respectively. The Q� values were calculated using 
nuclear masses obtained from the Bayesian machine learn-
ing (BML) model [37], which achieves a root-mean-square 
error (RMSE) of only 84 keV compared to experimental 
values. The neural network output corresponds to the loga-
rithm of the �-decay half-life ( log10 T1∕2).

A total of 1,072 nuclei from the NUBASE2020 data-
base [7] were selected based on the following criteria: 
Z ≥ 8 , N ≥ 8 , �-decay half-lives shorter than 106 seconds, 
and �-decay branching ratios greater than 10% . Conse-
quently, the predicted �-decay half-lives from the neural 
network were all less than 106 seconds. The experimental 
values for most of these 1072 nuclei were highly precise; 
for instance, the RMSE between the upper limits of experi-
mental values and their means was calculated to be only 
0.056 orders of magnitude, which is significantly lower 
than the deviations observed in both the neural network 
and theoretical models. This indicates that the larger devi-
ations occur in isolated cases, primarily in a few specific 
nuclei, and highlights the need for more precise measure-
ments in future experiments. To validate the model, a pro-
cess akin to fivefold cross-validation was employed. The 
dataset was randomly shuffled and divided into five parts, 
containing 214, 214, 214, 214, and 216 nuclei, respec-
tively. In each iteration, one part served as the validation 
set, while the remaining four parts constituted the training 
set. This process was iteratively repeated, which ensured 
that each nucleus was represented equally in both train-
ing and validation sets. This methodology differs from 
the neural networks employed in [67]. Five datasets were 
generated in this manner. Each dataset was trained for 
20,000 iterations, selecting the best 20 models per dataset, 
resulting in 100 models. During training, different weight 
matrices were initialized from a truncated normal distri-
bution N(0,

√

2∕(hin + hout)) , where hin and hout represent 
the number of neurons at the input and output ends of 
the weight matrix, respectively [70]. Each training ses-
sion utilized a different initial weight matrix and ran for 
50,000 iterations. The uncertainties in the neural network 
predictions arise from variations in these initial weight 
matrices. The mean of the predictions from the 100 mod-
els was taken as the result of ANN1, while the standard 
deviation represented the uncertainty in the neural net-
work predictions. Additionally, a Bayesian neural network 
(BNN) approach could be employed to provide unequally 
weighted uncertainties, yielding only slight differences 
from the uncertainties obtained in this study. These dif-
ferences did not affect the primary conclusions. The root-
mean-square uncertainty �rms(log10 T1∕2) for ANN1 was 
calculated across various half-life intervals.
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To identify abnormal nuclei in the neural network, nuclei 
with different orders of magnitude of �-decay half-lives were 
analyzed. Abnormal nuclei were defined as those where 
the neural network predictions deviated from experimen-
tal values by more than 1.96 times the root-mean-square 
uncertainty �rms(log10 T1∕2) , corresponding to a 95% confi-
dence interval. Using this criterion, 70 abnormal nuclei were 
identified. These nuclei were subsequently excluded from 
the dataset, and the remaining 1002 nuclei underwent the 
same fivefold cross-validation procedure as that employed 
for ANN1, resulting in the predictions for ANN2.

In this study, a double-hidden-layer neural network was 
used, which is described by the following formula:

Here, x represents the inputs, � and b denote the weight 
matrix and bias term, respectively, and h indicates the 
hidden layer matrix. The parameters H1 = 29 and H2 = 2 
specify the number of neurons in the first and second hid-
den layers, respectively, while y represents the output. To 
ensure consistency with the FRDM+QRPA, RHB+QRPA, 
SHFB+FAM, and WS4+GT models, which predicted half-
lives greater than 10−4 s for almost all nuclei, the predictive 
range of the neural network was extended to include �-decay 
half-lives greater than 10−6 s.

After calculating the output value y for each input, the 
loss function Loss is determined as follows:

where yExp represents the experimental value from 
NUBASE2020, while yPre denotes the predictions of the neu-
ral network. The parameters of the neural network, including 
the weight matrix � and bias term b , are collectively rep-
resented by � . The variable m specifies the number of data 
points in the training set, and � is the hyperparameter for 
L2 regularization (Tikhonov regularization [71, 72]). This 
regularization term helps to prevent the neural network from 
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overfitting, marking an improvement over the methodology 
used in [67].

3 � Results and discussion

Figure 1 presents the RMSE values for the predictions of the 
ANN1 and ANN2 models across various half-life ranges. To 
facilitate a clearer comparison between ANN1 and ANN2, 
the RMSE values for ANN1, excluding the abnormal nuclei, 
are also shown. The results indicate that in most cases, the 
performance differences between the two neural networks on 
both the training and validation sets are minimal, suggest-
ing that neither model suffers from overfitting. Furthermore, 
Fig. 1 demonstrates that the predictive accuracy of the neural 
network generally improves as nuclear half-lives decrease, 
except for nuclei with half-lives in the ranges of 10−2 ∼ 10−1 
to 10−3 ∼ 10−2 s. For a clearer comparison of the ANN1 
and ANN2 predictions, the RMSE values for ANN1, with 
abnormal nuclei excluded, are presented. Notably, ANN1, 
when the selected 70 abnormal nuclei are excluded, achieves 
prediction accuracy comparable to that of ANN2. This con-
sistency suggests that the selected abnormal nuclei exhibit 
behavior distinct from that of other nuclei.

Figure 2 illustrates typical abnormal nuclei identified 
by the neural networks. The predicted �-decay half-lives 
for nuclei in isotopic chains exhibit a generally smooth 
decrease as they move further from the �-stability line, 
consistent with experimental data. To improve predictions 
of �-decay half-lives, additional physical parameters were 
introduced alongside the inputs (Z, N, Q� ). These included 
the odd-even information � ( � = (−1)Z∕2 + (−1)N∕2) , the 
deformation parameter �2 , and a variable related to magic 
numbers P ( P = �p�n∕(�p + �n) where �p and �n are the 
differences between Z, N and their nearest magic num-
bers). However, incorporating these parameters did not 
significantly improve predictions for the abnormal nuclei, 
and extrapolations were less accurate than the results pre-
sented. Figure 2 demonstrates that the identified nuclei 
exhibit various anomalous behaviors. For example, (1) 
Anomalous increases: with the neutron number increases, 
certain nuclear half-lives show a notable rise, such as 
nuclei ranging from 32 Al to 36Al. (2) Sharp decreases: 
compared to surrounding nuclei, some nuclei exhibit a 
marked decrease in half-lives compared to their neighbors, 
such as 64 Co and 98Zr. (3) Excessively large experimental 
errors: for some nuclei, experimental measurements of 
their half-lives come with relatively large uncertainties, 
such as 36 Al and 74Fe. (4) Abnormal odd-even oscillations: 
for specific nuclei, their �-decay half-lives exhibit odd-
even oscillations distinct from typical patterns, such as 
104Tc. (5) Abrupt peaks: some nuclei demonstrate sudden 
peaks in their half-lives, making them stand out, such as 
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70 Co and 36Al. The ANN1 predictions for nuclei such as 
28Al, 106Tc, and 47 Ca also showed significant deviations 
due to the higher RMSE of ANN1 for nuclei with longer 
half-lives. However, these deviations remained within 1.96 
times the RMSE for their intervals, meaning these nuclei 
were not classified as abnormal.

For these nuclei, the predictions from the machine 
learning models exhibited significant discrepancies when 
compared with the experimental data. However, accurately 
describing these isotopes remains a challenge even when 
employing other theoretical models. For the Al isotopes, 
the FRDM+QRPA model can accurately predict the �-
decay half-lives of 31 Al and 32 Al but shows a significant 
deviation in predicting the �-decay half-lives of 33 Al to 
36 Al compared to the experimental data. On the other 
hand, RHB+QRPA offers more accurate predictions for 
the �-decay half-lives of 34 Al to 36 Al but shows notable 
discrepancies when predicting the �-decay half-lives of 
other nuclei in the isotopic chain. Both models fail to 
reproduce the observed trend of anomalous increases in 
�-decay half-lives from 32 Al to 36Al. For the Co isotopes, 
RHB+QRPA provides better predictions for the �-decay 
half-life of 70 Co when compared to the neural network, 
although, for other nuclei in this isotopic chain, its predic-
tive accuracy is lower than that of the neural networks. The 
FRDM+QRPA model shows better agreement with the 
experimental data for nuclei lighter than 66 Co compared 

to the neural networks; however, for nuclei heavier than 
67Co, its predictions are less accurate than those of the 
neural networks. Moreover, predicting the �-decay half-
life of 70 Co using FRDM+QRPA remains particularly 
challenging. Both models also struggle to reliably pre-
dict the �-decay half-lives of all the nuclei in the Co iso-
topes. For the other isotopes selected in Fig. 2, neither the 
FRDM+QRPA nor the RHB+QRPA models are able to 
accurately reproduce the �-decay half-lives of the abnor-
mal nuclei or their neighboring nuclei.

In Fig. 3, the extrapolation results of two models are 
presented, accompanied by the 1 � (68% confidence inter-
val) error bands. From Fig. 3, for nuclei with measured 
half-lives, the error bands of the neural network are small, 
indicating good agreement with the experimental data. 
For the nuclei selected by the neural network based on 
deviations between the experimental values and the pre-
dictions, both neural network models provide consistent 
results. Benefiting from training on an abnormal dataset, 
ANN1 achieved slightly improved predictive perfor-
mance. However, neither model can precisely describe 
these abnormal nuclei. For nuclei without experimental 
values, ANN1 exhibits larger error bands. For all nuclei, 
the RMS between the means/upper bound/lower bound of 
ANN1 and ANN2 were 0.115, 0.196, and 0.162 orders of 
magnitude, respectively, which are very close, with the 
predictions of ANN1 being slightly shorter than those of 
ANN2 in some cases.

Fig. 1   (Color online) The 
root-mean-square deviation, 
�rms(log10 T1∕2) , was calculated 
across different half-life magni-
tudes to compare the predicted �
-decay half-lives with experi-
mental values. These results 
were evaluated for both the 
training set (a) and validation 
set (b). Each bar in the com-
parison represents the outcomes 
for three cases: ANN1 applied 
to the entire dataset, ANN2 
applied to the dataset exclud-
ing abnormal data, and ANN1 
applied to the dataset excluding 
abnormal data
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Figure 4 compares the �-decay half-lives of isotones pre-
dicted by ANN2 and other theoretical models. For nuclei 
with experimental data, the predictions of the neural net-
work show better agreement with the experimental results 
than those of other theoretical models. For the selected data-
set of 1072 nuclei, the RMSE between the predictions of 
ANN1 and the experimental values was 0.437, while the 
FRDM+QRPA model shows an RMSE of 0.806. Since the 
predictions of RHB+QRPA for some of the 1072 nuclei 
were stable, the RMSE for RHB+QRPA predictions for 
nuclei with half-lives shorter than 106 s was 1.025 for a 

subset of 920 nuclei. Compared to these theoretical models, 
the neural network demonstrates higher predictive accuracy 
for �-decay half-lives. The neural network predicts shorter 
half-lives than those predicted by other theoretical models 
in the neutron-rich region of N = 50 isotones. However, in 
the neutron-rich regions of N = 82 and 126 isotones, the 
predictions from the neural network align more closely 
with those from the other theoretical models, showing less 
disagreement.

Figure 5 shows the logarithmic differences between the �
-decay half-lives predicted by ANN1 and the experimental 

a

b

Fig. 2   (Color online) The nuclear �-decay half-lives predicted by the 
neural network ANN1 are shown for the odd isotopes Al, Co, and Tc, 
as well as the even isotopes Ca, Fe, and Zr, along with their corre-
sponding 68% confidence interval error bars. The red points represent 

the abnormal nuclei identified by ANN1. For comparison, theoretical 
predictions from the RHB + QRPA and FRDM + QRPA models are 
also included
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values from NUBASE2020 for the 1072 nuclei selected in 
the dataset. The figure indicates that nuclei with significant 
deviations between the predictions of ANN1 and experi-
mental values are concentrated near the �-stability line. For 
most nuclei (75.2% ), the deviation between the predictions 
of ANN1 and the experimental values was within 0.4 orders 
of magnitude. Among the 1072 �-decay half-lives, 548 
(51.1%) were overestimated, and 524 (48.9% ) were under-
estimated by ANN1. ANN1 exhibited alternating blocks 
of overestimation and underestimation in predicting the �

-decay half-lives of the nuclei, accompanied by a certain 
degree of randomness. Neural networks tend to underesti-
mate the �-decay half-life of nuclei with magic numbers. 
For nuclei with magic numbers of protons or neutrons, 52 
(58.4% ) were underestimated, and 37 (41.6% ) were overes-
timated by ANN1. This suggests that the greater stability 
of magic nuclei presents additional challenges for neural 
networks in predicting their �-decay half-lives.

In Fig. 6, a concise analysis is provided to explain why 
the neural network faces challenges in predicting certain 

Fig. 3   (Color online) Nuclear �-decay half-lives predicted by neural 
networks ANN1 and ANN2 for the Ca, Sn, and Pb isotopes are pre-
sented along with the corresponding 68% confidence interval error 

bars. The abnormal nuclei identified by the networks are highlighted 
by red points. Experimental �-decay half-lives from NUBASE2020 
are also included for comparison

Fig. 4   (Color online) �-decay half-lives of isotones predicted by ANN2 in comparison with the FRDM+QRPA, RHB+QRPA, SHFB+FAM, and 
WS4+GT results
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nuclei. For 52Ca, both the predictions from the WS4 model 
and the experimental values reveal a significant Δ2n value 
( Δ2n = S2n(Z,N) − S2n(Z,N + 2) , where S2n is the two-neu-
tron separation energy), indicating the presence of shell 
effects. A recent study also identified N = 32 as a new 
magicity [74]. However, our neural network model does 
not incorporate this information, which leads to reduced 
predictive accuracy for nuclei in this region. For 112Zr, the 
experimental half-life measurements have relatively large 
uncertainties, resulting in different outcomes depending on 
how the error bars are treated. For instance, NUBASE2020 
reports a half-life of 43 ± 21 ms using symmetric error 
bars, while the original measurement of the �-decay half-
life for this nucleus was 30+20

−10
 ms [75]. Future experimental 

measurements with smaller error bars would help resolve 
this issue. For 97Zr, 98Zr, and 104Tc, the �2 data provided by 
the FRDM+QRPA and WS4 models [76] for nuclei in their 
vicinity show notable discrepancies, suggesting possible 
shape coexistence in these nuclei. This may explain the 
difficulties encountered by our neural network in predict-
ing nuclei in this region. The �-decay half-lives of these 
abnormal nuclei, which deviate from systematic patterns, 
may be better understood through future in-depth inves-
tigations using more sophisticated models. Such studies 
could uncover new physics, thereby advancing our under-
standing of nuclear �-decay.

The selected nuclei are listed in Table 1 along with their 
experimental half-lives and predictions from ANN1 and 
ANN2. The abnormal nuclei include 32 odd-odd nuclei, 26 
odd-A nuclei, and 12 even-even nuclei. Owing to the pres-
ence of unpaired nucleons in odd nuclei, these exhibit com-
plex energy-level structures, vibrational modes, and other 
properties, making theoretical descriptions more challeng-
ing. While neural networks outperform traditional nuclear 
models in their representation capabilities, their performance 
is somewhat worse when dealing with odd nuclei compared 
to even nuclei. This highlights the vital role of physics in 
enhancing the performance of machine learning algorithms.

4 � Summary and outlook

In this study, a neural network was employed to predict 
�-decay half-lives and to identify nuclei whose �-decay 
half-lives deviated from systematic patterns, based on the 
differences between experimental values and the neural 
network predictions. After excluding these anomalous data 
points, the models were retrained. Both neural network 
models exhibited similar �rms(log10 T1∕2) values, with the 
model trained on the original dataset showing slightly 
larger error bands when extrapolated into the region of 
lighter nuclei. A brief analysis was also conducted to 

Fig. 5   (Color online) The logarithmic difference distribution of �-decay half-lives between the predictions by ANN1 and experimental values on 
the nuclear chart is shown, with black squares representing stable nuclei
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investigate the factors contributing to the challenges in 
predicting the half-lives of the selected nuclei. These chal-
lenges were found to be linked to the structural charac-
teristics of the nuclei, which the neural network did not 
account for. In the future, more sophisticated microscopic 
theoretical studies could provide a deeper understanding 
of these abnormal nuclei, further advancing our compre-
hension of �-decay. Incorporating more relevant input 
parameters into the neural network could enhance its capa-
bility to predict �-decay half-lives more effectively. Fur-
thermore, it may be beneficial to sample the experimental 
values using a probability distribution function from the 
training dataset. While this method was not employed in 
this study owing to the high precision of the experimen-
tal �-decay half-lives, we believe it could be valuable in 
future nuclear physics research. Neural networks were 

used to directly learn from experimental values of nuclear 
�-decay half-lives, taking known variables related to �-
decay half-lives (Z, N, and Q� ) as inputs. This approach 
achieved high prediction accuracy for �-decay half-lives 
without considering other theoretical factors. The anoma-
lies in �-decay half-lives identified through the neural net-
work method represent currently unexplained phenomena, 
which may provide insights for discovering new physics in 
the future. Additionally, other machine learning methods, 
such as density-based spatial clustering of applications 
with noise (DBSCAN), K-nearest neighbors (KNN), and 
other algorithms, can also be applied to identify abnormal 
nuclei, potentially offering new perspectives on anomalous 
phenomena in nuclear �-decay half-lives. We hope that 

Fig. 6   (Color online) The predictions of ANN1 and the experimental 
values of log10 T1∕2 for the Ca, Zr, and Tc isotopes, including abnor-
mal nuclei, are shown, along with the quadrupole deformation param-

eter �2 from the FRDM and WS4 models. Additionally, the two-neu-
tron shell gap values, Δ2n , from the FRDM and WS4 predictions, as 
well as the experimental values from AME [73], are provided
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Table 1   The selected nuclei 
exhibiting abnormal trends 
in nuclear �-decay half-lives, 
as identified by the neural 
network, are listed along with 
their experimental �-decay 
half-lives and the corresponding 
predictions from ANN1 and 
ANN2

Z N log10(T
Exp

1∕2
) log10(T

ANN1
1∕2

) log10(T
ANN2
1∕2

) Z N log10(T
Exp

1∕2
) log10(T

ANN1
1∕2

) log10(T
ANN2
1∕2

)

9 13 0.626 −0.094 −0.467 33 48 1.522 2.272 2.384
9 15 −0.416 −1.200 −1.379 35 45 3.063 4.390 4.757
10 16 −0.706 −0.193 0.063 35 50 2.241 3.269 3.242
10 17 −1.510 −1.132 −1.105 40 57 4.780 2.983 2.936
10 18 −1.726 −1.198 −1.127 40 58 1.487 2.460 2.387
11 13 4.731 1.972 1.446 40 72 −1.367 −1.713 −1.687
11 16 −0.521 −0.042 0.040 41 57 0.456 1.456 1.699
11 17 −1.480 −1.121 −1.122 41 58 1.176 1.964 2.390
12 18 −0.499 0.051 0.445 42 63 1.560 0.820 0.752
12 20 −1.095 −0.743 −0.565 43 57 1.189 2.036 2.407
12 21 −1.036 −1.472 −1.338 43 61 3.041 1.261 0.922
13 18 −0.191 0.388 0.690 43 66 −0.043 0.432 0.388
13 19 −1.487 −0.686 −0.458 45 64 1.907 2.655 2.857
13 20 −1.382 −0.758 −0.517 45 65 0.525 1.411 1.153
13 23 −1.046 −1.509 −1.502 45 66 1.041 1.819 1.871
14 20 0.442 1.075 1.508 47 65 4.052 2.101 1.386
15 19 1.094 2.117 2.145 47 67 0.663 1.507 0.982
19 35 −2.000 −1.543 −1.508 47 69 2.361 1.090 0.861
20 29 2.719 1.678 1.537 50 75 5.920 4.046 3.512
20 32 0.663 0.060 0.000 51 83 −0.171 0.439 0.544
20 36 −1.959 −1.593 −1.555 52 77 3.621 5.005 5.330
21 35 −1.585 −1.101 −1.058 53 75 3.207 5.067 5.702
23 33 −0.666 −0.140 0.132 59 85 3.016 4.331 4.721
25 37 −1.036 −0.649 −0.473 75 119 0.699 1.315 1.420
26 35 2.555 1.461 1.399 77 119 1.716 2.451 2.769
26 46 −1.770 −1.414 −1.373 77 121 0.940 1.761 1.982
26 48 −2.301 −1.727 −1.671 77 122 0.845 1.742 1.914
27 37 −0.523 0.335 0.640 78 124 5.200 2.528 2.509
27 38 0.064 0.704 0.757 79 123 1.453 2.338 2.618
27 39 −0.712 −0.176 0.082 79 124 1.778 2.509 2.642
27 43 −0.294 −0.737 −0.658 81 125 2.402 3.485 3.697
28 37 3.957 2.658 2.211 81 126 2.457 3.525 3.648
29 39 1.490 2.287 2.436 87 146 −0.046 1.115 1.128
32 45 4.606 2.889 2.754 91 148 3.812 2.348 2.151
33 47 1.182 2.168 2.505 94 153 5.293 2.939 2.625
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future work will explore more appropriate machine learn-
ing techniques for identifying abnormal nuclei.
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