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Abstract
Track reconstruction algorithms are critical for polarization measurements. Convolutional neural networks (CNNs) are 
a promising alternative to traditional moment-based track reconstruction approaches. However, the hexagonal grid track 
images obtained using gas pixel detectors (GPDs) for better anisotropy do not match the classical rectangle-based CNN, and 
converting the track images from hexagonal to square results in a loss of information.
We developed a new hexagonal CNN algorithm for track reconstruction and polarization estimation in X-ray polarimeters, 
which was used to extract the emission angles and absorption points from photoelectron track images and predict the uncer-
tainty of the predicted emission angles. The simulated data from the PolarLight test were used to train and test the hexagonal 
CNN models. For individual energies, the hexagonal CNN algorithm produced 15%–30% improvements in the modulation 
factor compared to the moment analysis method for 100% polarized data, and its performance was comparable to that of 
the rectangle-based CNN algorithm that was recently developed by the Imaging X-ray Polarimetry Explorer team, but at a 
lower computational and storage cost for preprocessing.
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1 Introduction

Astronomical X-ray polarimetry is a powerful tool for prob-
ing the magnetic fields, geometries, and emission physics 
of high-energy astrophysical sources [1, 2]. Astronomical 
X-ray polarization measurements originated in the 1960s 
to detect the soft X-ray polarization of the crab nebula, 

Scorpius X-1, and other objects using Bragg diffraction and 
Thomson scattering polarimeters [3]. However, the limited 
sensitivity of the polarimeter has stalled astronomical X-ray 
polarization measurements for more than 40 years since the 
experiments on the OSO-8 satellite in 1968.

The photoelectric effect dominates light–matter interac-
tions in the energy range of a few kiloelectron volts. The 
differential cross section of photoelectrons is proportional to 
cos2� ; here, � = �e − �0 , where �e is the azimuthal angle 
of the photoelectron and �0 is the electric vector position 
angle (EVPA) of the X-ray [4]. Therefore, the polarization 
fraction and polarization angle, EVPA, of the X-ray source 
can be obtained by measuring the emission angles of numer-
ous photoelectrons. With the development of micropattern 
gas detectors, polarimetry based on the photoelectric effect 
has become possible by measuring the emission angles of 
photoelectrons, which has greatly improved the polariza-
tion sensitivity [5]. The PolarLight CubeSat test [6–8], 
Imaging X-ray Polarimetry Explorer (IXPE) mission [9], 
the enhanced X-ray Timing and Polarimetry (eXTP) mis-
sion [10, 11], and the Cosmic X-ray Polarization Detection 
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(CXPD) [12, 13] all use gas pixel detectors (GPDs) to detect 
polarization.

However, owing to Coulomb scattering, transverse diffu-
sion during drift, and electronic noise, the reconstruction of 
emission angles from photoelectron tracks is complicated. 
The performance of the photoelectron track reconstruction 
algorithm significantly affects the polarimeter sensitivity.

Recently, there have been two types of track reconstruc-
tion methods: traditional algorithms, which include the 
moment analysis method [14], adaptive cut method [15], and 
graph-based method [16], and reconstruction methods based 
on convolutional neural networks (CNNs) [17–19], which 
demonstrate great advantages in track reconstruction owing 
to their powerful image processing capabilities. However, 
major space polarimetry missions use a hexagonal-pixel 
application specific integrated circuit (ASIC) to read track 
images for better isotropy [6–11], resulting in photoelec-
tron track images with a hexagonal-pixel structure (Fig. 1). 
Existing CNN-based methods use classical rectangle-based 
CNNs with an additional step to convert hexagonal-pixel 
track images into approximate square-pixel track images, 
which results in the loss of information in the photoelectron 
image.

Therefore, the development of CNN methods that match 
the hexagonal-pixel track structure is a worthwhile research 
direction with good scientific significance and promising 
performance. Hexagonal CNNs are deep learning models 
based on hexagonal-pixel structures. In hexagonal CNNs, 
hexagonal convolutional kernels are used instead of the rec-
tangular convolutional kernels used in classical CNNs to 
better capture the spatial context information in hexagonal-
pixel images. The use of hexagonal CNNs to process hexag-
onal-pixel photoelectron track images in GPD is expected to 
achieve better polarization reconstruction.

In this study, we proposed a new X-ray polarization recon-
struction method based on hexagonal CNNs. The remainder 
of this paper is organized as follows. Section 2 briefly intro-
duces hexagonal CNNs and uncertainty quantification in 

deep learning. Section 3 describes the training procedure for 
the hexagonal CNNs for photoelectron track reconstruction. 
Section 4 presents the prediction and reconstruction results 
of the hexagonal CNN method. Finally, Sect. 5 concludes 
the paper and presents prospects for future development.

2  Hexagonal CNNs and uncertainty 
quantification in deep learning

2.1  Hexagonal CNNs

CNNs have received considerable attention in recent years 
owing to their excellent performance in computer vision 
and big data applications [20–24]. With the increase in 
their application fields, classical CNNs based on a Cartesian 
architecture can no longer meet the demands of complex 
problems. Many studies have made significant advances in 
the design of network architectures and convolutional opera-
tions, generalizing CNNs for multi-view applications [25], 
non-Euclidean spaces [26], and other domains.

Typically, images are acquired using square sensor arrays. 
However, square grids are not the best solution for planar 
segmentation. Compared with square grids, hexagonal grids 
have many advantages such as sixfold rotational symmetry, 
a smaller edge-to-area ratio, and equidistant neighbors. Hex-
agonal grids are widely used in cosmological, astrophysical, 
and visual systems.

Hexagonal CNNs are a class of deep learning networks 
based on hexagonal grids, in which a hexagonal convolution 
kernel is used to replace the rectangular convolution kernel 
in classical CNNs. The differences between the two types of 
convolution kernels are illustrated in Fig. 2. Compared with 
classical CNNs, hexagonal CNNs have better symmetry and 
exhibit unique advantages for aerial scenes and geospatial 
information [27].

Despite the abovementioned advantages over classical 
CNNs, hexagonal CNNs have a higher computational com-
plexity and are generally more difficult to train. The existing 
research on hexagonal CNNs involves two main approaches. 

Fig. 1  Typical photoelectron track image in GPD
Fig. 2  (Color online) Rectangular convolution kernel (left) and hex-
agonal convolution (right)
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One is to implement hexagonal convolution by reusing exist-
ing highly optimized rectangle-shaped convolution routines, 
such as HexagDLy [28] and HexagonNet [29], whereas 
other studies have focused on native hexagonal CNN 
architectures that can implement hexagonal convolutional 
operations directly, such as HexCNN [30]. Although native 
hexagonal CNNs have tremendous advantages in terms of 
their training time and memory space cost, they cannot yet 
be implemented on GPUs to exploit their efficient parallel 
computation to accelerate model training and inference [30]. 
HexagDLy is a Python library that performs convolution and 
pooling operations on hexagonal-pixel data. Figure 3 shows 
a convolutional implementation with a hexagonal kernel size 
of 1 in HexagDLy as an example [29]. We constructed a 
hexagonal CNN architecture for track reconstruction using 
HexagDLy, considering its flexibility and user-friendliness. 
The detailed hexagonal CNN architecture for photoelectron 
track reconstruction is discussed in Sect. 3.

2.2  Uncertainty quantification

Deep learning uncertainty estimation is also a popular 
research direction, which allows a neural network to output 
not only prediction ŷ for input x, but also predictive uncer-
tainty �ŷ , greatly expanding the application fields of deep 
learning. Uncertainty estimation is also helpful for X-ray 
polarization reconstruction, as confirmed in [18, 19].

There are two main types of uncertainties in deep learn-
ing: aleatoric uncertainty (also known as data uncertainty) 
and epistemic uncertainty (also known as model uncer-
tainty) [31]. Aleatoric uncertainty is used to assess the data 

uncertainty that arises because of class overlap or inher-
ent noise in the data and cannot be reduced by collecting 
more data. Epistemic uncertainty is used to assess the model 
uncertainty caused by a lack of cognition regarding the dis-
tribution of the data or an inadequate model structure. Theo-
retically, epistemic uncertainty can be reduced using more 
complex models, expanding the data, or using regularization 
techniques [32].

The aleatoric uncertainty can be modeled by augmenting 
the loss function. For example, assuming that the noise of 
the data obeys a Gaussian distribution (i.e., � ∼ N(0, �2) ), 
the predicted output distribution of the model for a given 
input, x, is N (̂y, �2) . The loss function that predicts aleatoric 
uncertainty �a can be obtained by minimizing the negative 
log-likelihood (NLL) loss function for all the training data 
(as seen in Eq. 1).

Epistemic uncertainty is significantly more difficult to 
quantify than aleatoric uncertainty, although many meth-
ods to do so have been proposed, including Bayesian neu-
ral networks (BNNs), deep ensembles, and evidential deep 
regression (EDR).

BNNs introduce priori assumptions to model epistemic 
uncertainty by setting a prior distribution, ω , upon the 
weight parameters of a neural network and using dataset D 
to derive the posterior distribution, P(�|D) , of � . However, 
BNNs are difficult to apply in practice because posterior 

(1)L
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yi|xi

)
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log
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�̂�2
a
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xi
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(
xi
)‖‖‖

2

2

2�̂�2
a

(
xi
)

Fig. 3  (Color online) Example of hexagonal convolution with a kernel size of 1 in HexagDLy
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distribution P(�|D) is usually intractable. Approximation 
algorithms for BNNs have been proposed to estimate the 
epistemic uncertainty, such as variational inference and 
Monte Carlo dropouts.

Deep ensembles are another powerful approach for mod-
eling epistemic uncertainty and have been widely used in 
many applications. A deep ensemble uses several base mod-
els and can generate multiple predictions, 

{
ŷj
}M

j=1
 , for the 

same input, x , where M is the number of models in the deep 
ensemble. The variance in the predictions can be used as the 
epistemic uncertainty. Deep ensembles are easy to imple-
ment and can achieve as good or better uncertainty estima-
tion than BNN approximation algorithms.

Furthermore, EDR directly learns the higher-order distri-
bution of the neural network output. It uses a deterministic 
network to learn both the aleatoric and epistemic uncer-
tainties by placing evidential priors over the original loss 
function that predicts the aleatoric uncertainty. EDR has 
achieved satisfactory results in many applications. However, 
a recent study found that EDR has theoretical shortcomings 
in terms of its mathematical foundations [33].

Taking all these considerations into account, we chose 
to estimate the aleatoric uncertainty by augmenting the loss 
function and estimate the epistemic uncertainty using deep 
ensembles, which are more stable and easier to implement.

3  Hexagonal CNN model training 
for photoelectron track reconstruction

X-ray polarization reconstruction algorithms are typically 
divided into two steps. First, the track features are extracted 
from individual photoelectron track images (also called track 
reconstruction), which typically include the photoelectron 
emission angles (�) , absorption points (x, y) , and photoelec-
tron energies (E) . Subsequently, the polarization parameters 
(polarization fraction and EVPA) of the X-ray source are 
estimated based on the emission angles extracted from a 
large number of photoelectrons. Among these, the extraction 
of track features from blurred photoelectron track images is 
the key to polarization reconstruction. The following sec-
tion describes the implementation of the hexagonal CNN-
based photoelectron track feature reconstruction algorithm 
in detail.

3.1  Dataset

Supervised learning was used for the photoelectron track 
reconstruction. Because the true emission angle, � , in the 
experimental data is unknown following a distribution of 
cos2� , the dataset used for track reconstruction had to be 
generated by simulation.

PolarLight is a small X-ray GPD onboard a CubeSat 
that performs on-orbit scientific observations. An ASIC 
designed by the INFN-Pisa group with a pixel matrix of 
352 × 300 (105 k pixels) and hexagonal pixel with a pitch 
of 50 μm is used for track readout in PolarLight [34]. 
The PolarLight test utilized a Monte Carlo Geant4/Gar-
field simulation, and the consistency was validated using 
experimental data. A simulation algorithm was used to 
generate the photoelectron track dataset.

The photoelectron track features included the emission 
angles, absorption points, and photoelectron energies. 
Because the reconstruction of photoelectron energies is 
relatively simple and can be done well using non-CNN 
algorithms, we only reconstructed ( �, x, y ) in this study.

The dataset used for CNN model training should be uni-
formly distributed; otherwise, the model may suffer from 
overfitting, low prediction accuracy, or biased prediction 
results. Hence, the parameters of the incident X-rays in the 
simulation algorithms were set as follows.

1) To ensure a uniform distribution of emission angles, 
the polarization of the incident X-rays was set to zero. In 
other words, the incident X-rays were unpolarized.

2) To ensure that the hexagonal CNN model performed 
well in the tracking feature extraction for the entire detec-
tor plane, the coordinates (x, y) of the incident X-rays were 
uniformly distributed.

3) Because the effective energy range of PolarLight is 
2–8 keV, the incident X-rays were uniformly distributed 
in the range of 2–9 keV to ensure that the hexagonal CNN 
model was adequately trained for the data at the edge 
of the energy interval. Because low-energy photoelec-
tron track images are noisy, and it is difficult to extract 
track features from them, the dataset was not expanded to 
include lower energies.

We simulated 870,050 photoelectron tracks with uni-
form distributions of emission angles, absorption points, 
and energies and then split them into a training set (90%), 
validation set (5%), and test set (5%).

It is important to note that photoelectron tracks are gen-
erated not only by photons interacting with the gas in the 
GPD, but also by photons interacting with the detector 
components outside the gas volume (e.g., the beryllium 
window and gas electron multiplier (GEM)), in which 
case the photoelectrons lose some of their energy and 
produce a low-energy tail in the energy histogram [18, 
19]. It is often difficult to recover emission angles from 
these tracks. Our study focused on reconstructing the pho-
toelectron tracks generated within the GPD gas volume; 
therefore, tail tracks were removed from the dataset. In 
addition, photoelectron tracks, particularly those of high-
energy photoelectrons, may pass through the detector 
without completely depositing their energy. These tracks 
were removed.
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Because the HexagDLy used in this study was imple-
mented based on a rectangle-shaped convolution, image pre-
processing was required to convert the hexagonal grid tracks 
into square grid images. Figure 4 shows an example of the 
image preprocessing. In order to take full advantage of the 
sixfold rotational symmetry of the hexagonal grid images, 
each photoelectron track image was converted into three 
input images, including those that were unrotated, rotated 
by + 60°, and rotated by − 60°. Furthermore, considering 
the photoelectron track length and pixel size of the readout 
ASIC, we set the photoelectron track image size to 64 × 64.

3.2  Loss function

Because track reconstruction is a multitasking problem, it 
was necessary to separately establish loss functions for the 
emission angles and absorption points.

The emission angles of photoelectrons are periodic and 
their distribution is more consistent with a von Mises (VM) 
distribution, which is a continuous probability distribution 
with a range of 0–2π and is the circular analog of the normal 
distribution on a line. To predict the epistemic uncertainty, 
the NLL of the von Mises distribution is a better choice than 
the Gaussian NLL described in Sect. 2.2. The loss function 
of the emission angles based on the von Mises distribution 
of a single hexagonal CNN model is given by Eq. (2), with 
a detailed description in [19]:

where I0 is a modified Bessel function of the first kind with 
order 0, v2 = (cos2�, sin2�) considering that the X-ray 
polarization is associated with 2� , and non-negative �̂a is the 
predicted aleatoric VM uncertainty parameter of the emis-
sion angle. The circular variance of the VM distribution can 

(2)L�(v|x) = −�̂a
(
v̂2 ⋅ v2

)
+ logI0

(
�̂a
)

be derived from �̂a using Eq. (3), where I1 is a modified Bes-
sel function of the first kind on the order of one.

Assuming that the epistemic VM uncertainty, �e , also 
follows a von Mises distribution, VM(0, �e ), �̂e can be 
estimated from the emission angles of a deep ensemble of 
M hexagonal CNN models [19].

The total uncertainty variance, �2 , of emission angle � 
can be obtained by summing aleatoric uncertainty vari-
ance �2

a
 and epistemic uncertainty variance �2

e
 . The total 

error, �i , of emission angle prediction �i for track xi is then 
given by Eq. (6):

where a factor of 1/2 is used to transform the errors from 
2�i to �i.

The loss function of the absorption points is the L2 loss 
function (Eq. 7), which is commonly used in CNNs. The 
uncertainty in the absorption points is not the focus of this 
study and can be obtained using Eq. (1) combined with a 
deep ensemble if needed.
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+
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)
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Fig. 4  Track image preproc-
essing: a original track image 
generated by the simulation 
algorithms; b–d input images of 
hexagonal CNN after preproc-
essing, including images that 
were unrotated (left), rotated 
by + 60° (middle), and rotated 
by − 60° (right)
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The total loss function of a single hexagonal CNN model 
for track reconstruction is found as follows:

where ‖v1 − v̂1‖
2

2
 is added to allow the hexagonal CNN 

model to predict emission angles in a range of 2π, and the 
last term, �‖�‖2 , is used to prevent training overfitting.

These individual loss functions are connected by three 
hyperparameter weights: �, �, � . An individual hexago-
nal CNN model will predict a five-dimensional vector 
( cos�, sin�, �, x, y ) for a given track image input, x.

3.3  Hexagonal CNN architecture

The reconstruction of the emission angles and absorption 
points is complex, and a simple architecture with three or 
four convolution layers cannot satisfy the demand for track 
reconstruction. Considering the photoelectron track features, 
we built hexagonal CNNs for track reconstruction based on 
the ResNet-18 architecture [35].

A residual block is the basic unit of a residual network. 
The hexagonal residual block (Fig. 5) used in this study 
was constructed using the hexagonal convolution operation 
provided by HexagDLy. It has a hexagonal convolution 
layer with a kernel size of one defined by HexagDLy, a 
batch normalization layer, and an ReLU activation func-
tion, followed by another hexagonal convolution layer 

(7)Lxy
�
x0, y0�x

�
=

1

2
‖
�
x0, y0

�
− (̂x(x), ŷ(x))‖2

2

(8)L = L� + �‖v1 − v̂1‖
2

2
+ �Lxy + �‖�‖2,

with a kernel size of one and a batch normalization layer. 
Subsequently, the skip connection skips these layers and 
directly adds a rectified linear unit (ReLU) activation 
function. These hexagonal residual blocks are repeated 
to form a complete hexagonal CNN architecture for track 
reconstruction.

In this hexagonal CNN architecture (Table 1), the conv1 
layer used a hexagonal convolution layer (kernel size = 1) 
and hexagonal maximum pooling layer (kernel size = 1, 
stride = 2) to extract track features. Then, the conv2–conv5 
layers formed by the hexagonal residual blocks were used 
to extract deeper track features. Finally, feature maps gen-
erated by conv5 were converted into a five-dimensional 
vector ( cos�, sin�, �, x, y ) using an average pooling layer 
and a fully connected layer.

3.4  Training

A standardization operation was applied to the training 
data before training to prevent vanishing and exploding 
gradients and to accelerate convergence:

where � is the pixel mean and � is the pixel standard devia-
tion calculated over the entire training set of track images.

The hexagonal CNN model was optimized using sto-
chastic gradient descent with momentum (SGD), which 
is a typical optimization algorithm used in deep learning. 
The learning rate was decreased in steps starting at 0.005. 
The model parameters were randomly initialized before 
training to provide a different start for training and to gen-
erate five different initialized hexagonal CNN models for 
deep ensembles. Considering the memory consumption of 
the hexagonal CNN model, batch sizes of 512 and 1024 
were selected. The hexagonal CNN model training lasted 
for 150 epochs, and the hyperparameters in the loss func-
tion were � = 0.3, � = 0.2, � = 5 × 10−5.

(9)xnorm =
x − �

�
,

Fig. 5  Residual block structure based on hexagonal convolutional lay-
ers

Table 1  Hexagonal CNN for photoelectron track reconstruction

Layer name Layer Output size Feature map

conv1 hexconv 1 32 × 32 64

hexMaxPool2d
conv2 Residual block × 2 16 × 16 64

conv3 Residual block × 2 8 × 8 128

conv4 Residual block × 2 4 × 4 256

conv5 Residual block × 2 2 × 2 512

avgpool Average pooling 1 × 1 512

fc Fully connected 5
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4  Results

This section reports the performance of the hexagonal CNN 
method for track and polarization reconstruction using simu-
lated PolarLight track images.

4.1  Emission angle reconstruction and uncertainty 
estimation

The reconstruction of photoelectron emission angles is the 
basis of X-ray polarization reconstruction. More accurate 
emission angle reconstruction can significantly improve the 
performance of a polarization reconstruction algorithm.

The hexagonal CNN method reported here used 
(cos�, sin�) to predict emission angle � . As described in 
Sect. 3, image-rotation augmentation was used to convert the 
track image into three input images. Therefore, each hexagonal 
CNN model output three sets of predicted vectors for each 
track image. Because a deep ensemble method was used to 
obtain the epistemic uncertainty by estimating the predictions 
of M (M = 5 in this study) hexagonal CNN models, there were 
3 M predictions for each track image. The emission angle for 
a single track predicted using the hexagonal CNN method is 
calculated using Eq. 10:

(10)�i = arctan2

(
1

3M

3M∑

j

sin�ij,
1

3M

3M∑

j

cos�ij

)
.

Figure 6 shows the results of the emission angle reconstruc-
tions using the moment analysis and hexagonal CNN methods 
with photoelectron energies of 3 and 9 keV. Because of the 
inability to accurately distinguish between the beginning and 
end of a photoelectron track, especially at lower energies, there 
was a 180° confusion in the emission angle reconstruction, 
as shown by the two sub-bright lines parallel to the central 
bright line in Fig. 6. Notably, this 180° confusion did not affect 
the polarization reconstruction, where the EVPA ranged from 
−π∕2 to + π∕2 . It can be seen that compared to the moment 
analysis method, the hexagonal CNN method distinguished the 
beginning and end of the track with higher accuracy and had a 
higher emission angle reconstruction accuracy.

The root-mean-square error (RMSE) is calculated using 
Eq. 11 to evaluate the accuracy of the emission angle recon-
struction. Figure 7 shows the RMSE of the emission angles as 
a function of the incident X-ray energy for both the moment 
analysis and hexagonal CNN methods on an unpolarized 
PolarLight dataset:

where �̂ − � is collapsed into the range − 1

2π
∼

1

2π
 because the 

polarization reconstruction only depends on 2�.
The hexagonal CNN method did not significantly 

improve the reconstruction accuracy of the emission angles 

(11)RMSE =

√√√√ 1

N

N∑

i

(
�̂�i − 𝜑i

)2
,

Fig. 6  (Color online) Emission angle reconstruction using the 
moment analysis (left) and hexagonal CNN methods (middle), along 
with histograms (right) of the differences between predicted emission 

angle �̂ and true emission angle � for the moment analysis (Mom., 
black) and hexagonal CNN methods (H-CNN, red) with photoelec-
trons energies of 3 keV (top) and 9 keV (bottom)
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compared to the moment analysis method for low-energy 
photoelectrons with short and noisy tracks. As the X-ray 
energy increased, the photoelectron tracks became longer, 
with clearer initial segments. Both reconstruction algorithms 
provided high accuracy for emission angle reconstruction, 
but the hexagonal CNN method was significantly better than 
the moment analysis method for these complex tracks.

Another important prediction for the emission angle is 
the predicted error, �i , which can be calculated using out-
put κ of the hexagonal CNN method (Eq. 6). The predicted 
uncertainty in the emission angle can help screen out events 
with poor emission angle reconstruction, thus improving the 
effectiveness of X-ray polarization estimation. Because it 
was difficult to quantitatively determine whether the pre-
dicted error of the hexagonal CNN method was correct, we 
performed a basic validation of its reasonableness by com-
paring the predicted error with the factors that influence the 
effectiveness of the emission angle reconstruction.

The difficulty in reconstructing the emission angle of 
the photoelectron track is related to the degree of trans-
verse electron diffusion during drift, degree of track short-
ening due to the projection of the 3D photoelectron track 
onto a 2D readout plane, and photoelectron energy. To 
facilitate this discussion, a coordinate system was estab-
lished for the effective sensitive volume of the PolarLight 
GPD. The effective sensitive volume of PolarLight is 
15 mm × 15 mm × 10 mm . We defined the x–y plane as the 
plane of the readout, the z-axis direction as the direction 
of the electric field, and the coordinates of the center point 
of the effective sensitive volume as (0,0,0).

The distributions of predicted error �i given by the hexag-
onal CNN as functions of these factors are shown in Fig. 8. 
Figure 8a shows the distribution of the predicted error as 
a function of drift distance d, which is defined as the dis-
tance between the absorption point of the photon and the 
GEM in the GPD for photoelectrons of 7 keV. The degree 
of transversal electron diffusion during drift is related to 
d, with standard deviation �drift = �f

√
d , where �f is the 

diffusion coefficient of the GPD gas. As the drift distance 
increased, the transverse diffusion became more severe and 
the predicted error of the emission angles increased. Fig-
ure 8b shows the distribution of the predicted error as a func-
tion of photoelectron scattering angle θ, which is defined 
as the angle between the directions of the incident X-rays 
and photoelectrons, for photoelectrons of 3 keV. When the 
photoelectron direction was more parallel to the readout 
plane, the track projected onto the readout plane was longer, 
resulting in a smaller predicted error in the emission angle. 
Figure 8c shows the distribution of the predicted error as a 
function of the photoelectron energy. As the photoelectron 
energy increased, the photoelectron track became longer, 
with clearer beginning segments, and the predicted error of 
the emission angle decreased.

Taken together, the predicted error of the emission 
angle obtained using the hexagonal CNN method was 

Fig. 7  RMSE of emission angle reconstruction for both the moment 
analysis (black) and hexagonal CNN methods (red)

Fig. 8  (Color online) Distributions of predicted error as functions of the drift distance (left), photoelectron scattering angle (middle), and photo-
electron energy (right)
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reasonable, reflecting the degree of blurring of the pho-
toelectron tracks and the difficulty in reconstructing the 
emission angle.

Furthermore, the relationship between the real emission 
angle reconstruction error, |�̂ − �| , and predicted error is 
shown in Fig. 9. It can be seen that, as expected, a larger 
real emission angle reconstruction error led to greater uncer-
tainty in the predicted emission angle.

4.2  Absorption point reconstruction

The reconstruction of the absorption points is important 
for improving the spatial resolution of a polarimeter. The 
absorption point accuracy can be evaluated using the half-
power diameter (HPD), which is a commonly used parameter 
in X-ray imaging that is defined as the diameter of a circle 
that can cover exactly 50% of the reconstructed absorption 
point, taking the true absorption point as the center of the 
circle. Therefore, a larger HPD indicates a worse reconstruc-
tion of the photoelectric absorption point. Figure 10 com-
pares the absorption point accuracies of the moment analysis 
and hexagonal CNN methods at different energies. The hex-
agonal CNN method was superior to the moment analysis 
method, particularly for highly complex photoelectron tracks 
at high energies.

4.3  Polarization estimation

The polarization reconstruction performance of a polariza-
tion estimation algorithm directly affects the sensitivity of 
the polarimeter. We analyzed the polarization reconstruction 
performance of the hexagonal CNN method and compared 

it with those of the moment analysis method and rectangle-
based CNN method developed by the IXPE team.

Polarized and unpolarized simulation tracks were gener-
ated using PolarLight simulation algorithms for the polari-
zation reconstruction analysis. Similar to the training data, 
the photoelectric tracks from incomplete energy deposition 
in the gas of the GPD or from interactions with the detector 
components outside the gas volume were removed.

The binned modulation curves created using the predicted 
emission angles for the unpolarized and 100% polarized 
simulated data are shown in Fig. 11. The residual system-
atic modulation curve of the hexagonal CNN method was 
as flat as that of the moment analysis method, indicating 
that the hexagonal CNN method did not introduce redundant 
systematic errors. In addition, the hexagonal CNN method 
recovered significantly more of the modulation of the polar-
ized data compared with the moment analysis method. An 
unbinned polarization estimation algorithm based on the 
Stokes parameters was used to estimate the polarization 
fraction and EVPA from a set of predicted track angles. 
Figure 12 shows the recovered modulation response on 
the simulated PolarLight dataset for the moment analysis 
method, the rectangle-based CNN method developed by the 
IXPE team, and our hexagonal CNN method. It can be seen 
that our hexagonal CNN method performed better than the 
moment analysis method, with 15%–30% improvements in 
the modulation factor for individual energies.

Compared to the CNN method developed by the IXPE 
team based on classical rectangular convolution, our hex-
agonal CNN method had a similar performance in polari-
zation reconstruction, although the hexagonal convolu-
tional structure of the hexagonal CNN was better matched 
with hexagonal grid tracks. This may be because the 

Fig. 9  (Color online) Relationship between the real emission angle 
reconstruction error, |�̂ − �| , and predicted error

Fig. 10  Absorption point reconstruction with the moment analysis 
(black) and hexagonal CNN methods (red)
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double-channel input track images of the rectangle-based 
CNN method compensated for the loss during the conver-
sion from hexagonal images to square images, or because 
the existing neural network method is already close to the 
upper limit of polarization reconstruction owing to the 
blurring of the photoelectron tracks, which is difficult to 
improve with a better CNN architecture.

Our hexagonal CNN method takes a step toward a 
more straightforward implementation of hexagonal grid 
track processing. The hexagonal CNN method halves the 
amount of input data and has lower computational and 
storage costs during preprocessing because each track 
image is converted into three single-channel input images 
for prediction, whereas the rectangle-based CNN method 
developed by the IXPE team converts an image into three 
double-channel input images. However, the existing hex-
agonal convolution is mainly implemented based on rec-
tangular convolution; therefore, the memory consumption 

of the hexagonal CNN is high, which can be improved 
using native hexagonal CNN architectures.

5  Conclusion

We developed a track reconstruction and polarization 
estimation algorithm based on hexagonal CNNs to match 
the hexagonal grid tracks in a GPD for X-ray polarization 
measurements. The emission angles, absorption points, 
and uncertainties in the emission angles of X-ray photo-
electron tracks were predicted using the hexagonal CNN 
method developed in this study. The predicted absorp-
tion points were used for image reconstruction, and the 
predicted emission angles and uncertainties were used to 
estimate the polarization of the X-ray source. We tested 
the proposed hexagonal CNN method using simulated 
PolarLight data. The results showed that the performance 

Fig. 11  Track angle reconstruction for unpolarized (left column) and polarized (right column) simulated data for 3 keV (top) and 7 keV (bottom) 
with moment analysis method (black) and hexagonal CNN method (red)
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of the absorption point reconstruction in an HPD using 
the hexagonal CNN method was better than that of the 
moment analysis method, and the modulation factor of 
the hexagonal CNN method produced improvements of 
15%–30% compared to the moment analysis method. The 
performance of our hexagonal CNN method is compara-
ble to that of the CNN method developed by the IXPE 
team based on classical rectangular convolution, but it has 
lower computational and storage costs for preprocessing. 

Our hexagonal CNN method also provides a good research 
basis for the development of polarization reconstruction 
algorithms for eXTP missions.
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Fig. 12  Modulation responses of the moment analysis method 
(black), rectangle-based CNN method developed by the IXPE team 
(S-CNN, green), and our hexagonal CNN method (red). a Response 

for 100% polarized data. b Response for unpolarized data. (c) Recov-
ered EVPA for 100% polarized data
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