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Abstract
The isospin splitting of the Dirac mass obtained using the relativistic Brueckner–Hartree–Fock (RBHF) theory was thor-
oughly investigated. From the perspective in the full Dirac space, the long-standing controversy between the momentum-
independent approximation (MIA) method and the projection method on the isospin splitting of the Dirac mass in asymmetric 
nuclear matter was analyzed in detail. We found that the assumption procedure of the MIA method, which assumes that 
single-particle potentials are momentum independent, is not a sufficient condition that directly leads to the opposite sign of 
the isospin splitting of the Dirac mass, whereas the extraction procedure of the MIA method, which extracts single-particle 
potentials from single-particle potential energy, changes the sign. A formal expression of the Dirac mass was obtained by 
approximately solving a set of equations involved in the extraction procedure. The opposite isospin splitting of the Dirac 
mass was mainly caused by the extraction procedure, which forcibly assumed that the momentum dependence of the single-
particle potential energy was in a quadratic form, in which the strength was solely determined by a constant scalar potential. 
Improved understanding of the isospin splitting of the Dirac mass from ab initio calculations could enhance our knowledge 
of neutron-rich systems, such as exotic nuclei and neutron stars.
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1  Introduction

To understand the properties of nuclear many-body systems 
that start from realistic nucleon–nucleon (NN) interactions 
is still challenging. The repulsive core of realistic NN inter-
actions causes a strong correlation for the many-body wave 
function and requires advanced many-body methods that 
go beyond mean field [1–6]. The Brueckner–Hartree–Fock 
(BHF) theory [7] is one of the representative nuclear many-
body methods, which is characteristic for its capacity to 
soften the realistic NN interaction to an effective G matrix 
in nuclear medium. The BHF theory can be derived as a two-
hole-line truncation to the general Bethe–Brueckner–Gold-
stone expansion theory [1, 8], where the ground-state prop-
erties of the nuclear many-body systems are calculated order 
by order according to the number of independent hole lines 
contained in the expansion diagrams [8]. Since 1960s, it has 
been found that the saturation points of symmetric nuclear 
matter (SNM) calculated using the BHF theory with dif-
ferent two-body interactions are located on a Coester line 
[9], which deviates systematically from empirical values. To 
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address this issue within the nonrelativistic framework is to 
introduce three-body forces [10–15].

In 1980, a major modification of the saturation properties 
of SNM was obtained by including a relativistic description 
of the nucleon motion [16]. Through this pioneering work, 
significant efforts have been made to develop the relativistic 
Brueckner–Hartree–Fock (RBHF) theory [17–20]. Starting 
from the Bonn potential [21], the saturation points of SNM 
obtained using the RBHF theory have been shifted remark-
ably close toward the empirical values, without introducing 
explicit three-body forces. The success of the RBHF theory 
has been understood by the fact that relativistic effects con-
tribute a particular part of the three-body force [12, 14, 22] 
through virtual nucleon–antinucleon excitations in the inter-
mediate states (known as Z diagrams) [23, 24].

An essential point of the RBHF theory is the use of the 
Dirac equation to describe the single-nucleon motion in 
the mean field, that is, the single-particle potential (SPP). 
An SPP operator is generally divided into scalar and vector 
components [25]. They can be obtained from an effective 
G matrix in a self-consistent manner. In principle, the cal-
culations of SPPs and the G matrix should be performed in 
the full Dirac space, where both the positive-energy states 
(PESs) and negative-energy states (NESs) are included. 
However, owing to the complexities of these procedures, 
RBHF calculations are generally performed without NESs 
using approximate methods, such as the momentum-inde-
pendent approximation (MIA) method [22, 26–30] and the 
projection method [20, 31–35], to perform the Hartree–Fock 
calculations.

The MIA method assumes that the SPPs are independent 
of the momentum and extracts the SPPs from single-parti-
cle potential energies calculated at two selected momenta. 
In the projection method, the elements of the G matrix are 
projected onto a complete set of Lorentz invariant ampli-
tudes [19], from which the SPPs are calculated. Because 
the G matrix coupled to the NESs is not considered, the 
SPPs obtained using these two methods are ambiguous [31, 
36, 37].

The Dirac mass M∗
D
 , a key quantity in relativistic nuclear 

physics, is defined using the scalar component of the nucleon 
self-energy within the Dirac equation. This quantity is crucial 
for describing medium effects in nuclear many-body systems, 
as highlighted in various studies [38–40]. An important aspect 
of the Dirac mass is its isospin splitting M∗

D,n
−M∗

D,p
 , which 

directly reflects the isovector properties of NN interactions [41, 
42]. It is essential to clarify that the Dirac mass should not be 
confused with the nonrelativistic effective mass, which char-
acterizes the momentum and energy dependence of the 
Schrödinger equivalent potential [43, 44]. Theoretical predic-
tions of the Dirac mass based on realistic NN interactions 
mainly rely on the RBHF theory. However, there is a 

controversy regarding the sign of this isospin splitting [33, 45]. 
As pointed in Ref. [46] in 1997, the MIA method leads to 
M∗

D,n
−M∗

D,p
> 0 , whereas the projection method indicates an 

opposite sign M∗
D,n

−M∗
D,p

< 0 . This discrepancy demon-
strates significant differences in the isovector properties of 
asymmetric nuclear matter (ANM) when employing the MIA 
method versus the projection method in RBHF calculations.

Recently, self-consistent RBHF calculations in the full 
Dirac space have been achieved [37, 47, 48], which avoid the 
ambiguities suffered from the RBHF calculations without 
NESs. In ANM, the full solution predicts the sign 
M∗

D,n
−M∗

D,p
< 0 [48] and clarifies the long-standing contro-

versy between the MIA and projection methods on the isospin 
splitting of the Dirac mass. The RBHF theory has also been 
applied in the full Dirac space to study the nonrelativistic 
effective mass in nuclear matter [49], the properties of 208 Pb 
using a liquid droplet model [50], the tensor-force effects on 
nuclear matter [51], and the neutron star properties [52–54]. 
In this work, we aimed to thoroughly study the isospin splitting 
of the Dirac mass obtained using the RBHF calculations, par-
ticularly for the performance of the MIA method, in the full 
Dirac space viewpoint.

2 � Theoretical framework

In the RBHF theory, the single-particle motion of a nucleon 
inside an infinite nuclear matter is described by the following 
Dirac equation:

where � and � are the Dirac matrices, M is the nucleon mass, 
p and Ep,� are the momentum and single-particle energy, 
respectively, s denotes the spin, and � = n, p denotes neu-
tron n and proton p. The symbol u� in Eq. (1) represents the 
positive-energy Dirac spinor, whereas the negative-energy 
Dirac spinor v� is obtained using v� = �5u� . The SPP opera-
tor U�(p) can be decomposed into the scalar potential US,�(p) , 
the timelike and spacelike components of the vector poten-
tial U0,�(p) and UV,�(p) [25], respectively.

where p̂ = p∕|p| = p∕p is the unit vector parallel to the 
momentum p . By calculating the matrix elements of U�(p) as 
expanded by the PESs and NESs, that is, Σ++

�
(p) , Σ−+

�
(p) , and 

Σ−−
�

(p) , the momentum-dependent SPPs can be determined 
uniquely using the following equation [37, 52]: 

(1)
{
� ⋅ p + �

[
M + U�(p)

]}
u�(p, s) = Ep,�u�(p, s).

(2)U�(p) = US,� (p) + �0U0,� (p) + 𝜸 ⋅ p̂UV,�(p).

(3a)US,�(p) =
Σ++
�

(p) − Σ−−
�

(p)

2
,
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 where the plus and minus signs in the superscripts denote 
the PESs and NESs, respectively. The effective quanti-
ties in Eq. (3) are defined as follows: p∗

𝜏
= p + p̂UV ,𝜏 (p) , 

M∗
p,�

= M + US,�(p) , and E∗
p,�

= Ep,� − U0,� (p) . The effective 
mass M∗

p,�
 is also known as the Dirac mass M∗

D,�
.

The quantities Σ++
�

(p) , Σ−+
�

(p) , and Σ−−
�

(p) in Eq. (3) are 
calculated by summing up the effective G matrix elements 
with all the nucleons inside the Fermi sea. 

 where Ḡ is the antisymmetrized G matrix, k�
F
 is the Fermi 

momentum, and W denotes the starting energy. The addi-
tional factors M∗∕E∗ in Eq. (4) are attributed to the nor-
malization of the Dirac spinors, that is, ūu = 1, v̄v = −1 . 
The effective interaction G matrix is the solution of the 
in-medium Thompson equation [26], which describes the 
two-body scattering.

The labels of PESs and NESs are suppressed. In this study, 
the Bonn potential was chosen as the realistic NN interac-
tion V��′ [21]. P =

1

2
(k1 + k2) and k =

1

2
(k1 − k2) are the 

center-of-mass and the relative momenta of the two inter-
acting nucleons with momenta k1 and k2 , respectively. The 
initial, intermediate, and final relative momenta of the two 
nucleons are q, k , and q′ , respectively. The NN scattering 

(3b)U0,� (p) =
E∗
p,�

M∗
p,�

Σ++
�

(p) + Σ−−
�

(p)

2
−

p∗
�

M∗
p,�

Σ−+
�

(p),

(3c)UV,�(p) = −
p∗
�

M∗
p,�

Σ++
�

(p) + Σ−−
�

(p)

2
+

E∗
p,�

M∗
p,�

Σ−+
�

(p).

(4a)
Σ++
𝜏

(p) =
�

s�𝜏�
∫

k𝜏
�

F

0

d3p�

(2𝜋)3

M∗
p�,𝜏�

E∗
p�,𝜏�

⟨ū𝜏(p, 1∕2)ū𝜏� (p�, s�)

�Ḡ++++(W)�u𝜏(p, 1∕2)u𝜏� (p�, s�)⟩,

(4b)
Σ−+
𝜏

(p) =
�

s�𝜏�
∫

k𝜏
�

F

0

d3p�

(2𝜋)3

M∗
p�,𝜏�

E∗
p�,𝜏�

⟨v̄𝜏(p, 1∕2)ū𝜏� (p�, s�)

�Ḡ−+++(W)�u𝜏(p, 1∕2)u𝜏� (p�, s�)⟩,

(4c)
Σ−−
𝜏

(p) =
�

s�𝜏�
∫

k𝜏
�

F

0

d3p�

(2𝜋)3

M∗
p�,𝜏�

E∗
p�,𝜏�

⟨v̄𝜏(p, 1∕2)ū𝜏� (p�, s�)

�Ḡ−+−+(W)�v𝜏(p, 1∕2)u𝜏� (p�, s�)⟩.

(5)

G��� (q
�, q|P,W) = V��� (q

�, q|P)

+ ∫
d3k

(2�)3
V��� (q

�, k|P)

Q��� (k,P)

W − EP+k,� − EP−k,��
G��� (k, q|P,W).

in the nuclear medium is restricted with the Pauli operator 
Q��� (k,P).

Equations (1), (3), (4), and (5) constitute a coupled sys-
tem that must be solved in a self-consistent manner. After 
the convergence of SPPs, the single-particle and bulk prop-
erties of nuclear matter can be calculated straightforwardly 
[29, 32, 55].

3 � Results and discussion

In SNM, the Dirac masses for the nucleons calculated using 
the MIA and projection methods were both quantitatively 
close to the results obtained in the full Dirac space [48]. 
However, the situation changed dramatically in ANM. Fig-
ure  1 shows the isospin splitting of the Dirac mass 
(M∗

D,n
−M∗

D,p
)∕M calculated using the RBHF theory as a 

function of the asymmetry parameter � = (�n − �p)∕� . The 
projection method finds that in ANM there is 
M∗

D,n
−M∗

D,p
< 0 , whereas the MIA method resulted in an 

opposite sign M∗
D,n

−M∗
D,p

> 0 . The density shown in Fig. 1 
is the empirical saturation density � = 0.16 fm−3 , and the 
opposite sign persisted at higher densities. This contradic-
tion, which is well known since 1997 [46], has been clarified 

Fig. 1   (Color online) The isospin splittings of Dirac masses 
(M∗

D,n
−M

∗
D,p

)∕M as functions of the asymmetry parameter � 
obtained using the RBHF theory in the full Dirac space (red solid), 
the projection method (olive dashed), and the MIA method (blue 
dotted). The density was fixed at the normal nuclear saturation den-
sity of � = 0.16 fm−3 . The NN interaction Bonn A was used. The 
results for pure neutron matter with � = 1 were obtained using linear 
extrapolations
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recently in Ref. [48] by considering the PESs and NESs 
simultaneously. Comparing to the RBHF results calculated 
in the full Dirac space, as shown in Fig. 1, the projection 
method obtained a qualitatively consistent isospin depend-
ence of the Dirac mass with overestimated amplitudes, 
whereas the MIA method resulted in an opposite sign.

It is still unclear why the MIA method succeeded in SNM 
but failed in ANM. To reach the answer, we notice that this 
method has two essential procedures. The first procedure is 
known as the assumption procedure, which assumes that 
the scalar potential and the timelike component of the vec-
tor potential are momentum independent and the spacelike 
component of the vector potential is negligible, that is,

The second procedure is known as the extraction procedure, 
which extracts the two constants US,� and U0,� from the sin-
gle-particle potential energy U�(k) at two momenta (k�

1
, k�

2
) . 

 The quantity U�(k) in Eq.  (7) is calculated as 
(M∗

�
∕E∗

k,�
)Σ++

�
(k).

The RBHF calculations in the full Dirac space provided 
an opportunity to analyze in detail the isospin splitting of 
the Dirac mass. In the following, we try to study further by 
testing separately the two procedures of the MIA method 
from the perspective in the full Dirac space.

First, we applied the assumption procedure (6) in the full 
Dirac space, that is, the quantities US,�(p) in Eq. (3a) and 
U0,�(p) in Eq. (3b) were assumed to be momentum independ-
ent and were calculated at the Fermi momentum k�

F
 , whereas 

UV,�(p) in Eq. (3c) was set to zero. The newly obtained quan-
tities US,� and U0,� were used to update the Dirac spinors 
and G matrix for the next iterations. When SPPs converged, 
we calculated the binding energies per nucleon for SNM 
and pure neutron matter (PNM). Figure 2 shows that the 
E/A values for SNM and PNM were nearly similar to those 
obtained using the RBHF theory in the full Dirac space. This 
indicates that the assumption procedure is reasonable for 
describing the bulk properties of nuclear matter.

Figure 3b shows the Dirac masses of the neutron and pro-
ton obtained in the full Dirac space using the assumption 
procedure. The density was fixed at � = 0.16 fm−3 . The rela-
tionship M∗

D,n
−M∗

D,p
< 0 was obtained, which was consist-

ent with the result obtained using the RBHF theory in the 
full Dirac space, as shown in Fig. 3a. This indicates that the 

(6)US,�(p) ≈ US,� , U0,�(p) ≈ U0,� , UV,�(p) ≈ 0.

(7a)U�(k
�
1
) =

M + US,�
√

(k�
1
)2 + (M + US,�)

2

US,� + U0,� ,

(7b)U�(k
�
2
) =

M + US,�
√

(k�
2
)2 + (M + US,�)

2

US,� + U0,� .

assumption procedure is not sufficient to obtain an opposite 
sign when the isospin splitting of the Dirac mass in ANM is 
calculated.

Second, we tested the influence of the extraction proce-
dure (7) from the perspective in the full Dirac space. Starting 
from the converged U�(p) obtained using the RBHF theory 
in the full Dirac space, we extracted the two constants US,� 
and U0,� using Eq. (7) with two selected momenta (0.7k�

F
, k�

F
) 

and subsequently calculated the Dirac mass. The resulting 
isospin splitting of the Dirac mass is shown in Fig. 3c. It can 
be observed that M∗

D,n
−M∗

D,p
> 0 was obtained for the entire 

region of the asymmetry parameter � , which is opposite to 
results obtained in the full Dirac space (Fig. 3a). This indi-
cates that the extraction procedure (7) resulted in the oppo-
site sign of the isospin splitting of the Dirac mass.

To further investigate how the opposite isospin depend-
ence of the Dirac mass resulted from the extraction pro-
cedure, Eq. (7) is solved to obtain a formal expression of 
the Dirac mass. We start from the case of SNM and sup-
press the isospin indexes for moment. When M ≃ 1000 
MeV, US ≃ −400 MeV, and kF = 1.34 fm−1 , k1 = 0.7kF 
and k2 = kF  resul ted in 

[
k1∕(M + US)

]2
≃ 0.1 ≪ 1 , [

k2∕(M + US)
]2

≃ 0.2 ≪ 1 . This allowed the square root in 
Eq. (7) to be expanded to first order,

(8)U(k) = US −
1

2

US

(M + US)
2
k2 + U0,

Fig. 2   (Color online) Binding energies per nucleon E/A of SNM and 
PNM as functions of the nucleon density � calculated in the full Dirac 
space using the assumption procedure. For comparison, the self-con-
sistent results obtained using the RBHF theory in the full Dirac space 
are also shown
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which indicates a quadratic form of the single-particle poten-
tial energy U(k). Using Eq. (8), the difference between U(k2) 
and U(k1) was obtained directly, as follows:

For simplicity, we considered the limit that the two momenta 
k1 and k2 were extremely close and thus were denoted as k. 
In this case, Eq. (9) can be written as a quadratic equation 
for M∗

D
∕M.

where the dimensionless function f(k) is defined as:

(9)U(k2) − U(k1) = −
1

2

US

(M + US)
2

(
k2
2
− k2

1

)
.

(10)f (k)(M∗
D
∕M)2 +M∗

D
∕M − 1 = 0,

The derivative U�(k) describes the momentum dependence 
of the single-particle potential energy U(k).

In Fig. 4a, the single-particle potential energy U�(k) , which 
was obtained in the full Dirac space for SNM and ANM with 
� = 0.5 and � = 0.16 fm−3 , is shown as a function of momen-
tum k. It was found that U�(k) was a monotonic function of 
k. Therefore, the function f(k) was positive definite, and the 
solution of Eq. (10) is as follows:

(11)
f (k) ≡ lim

k2 → k

k1 → k

2M
U(k2) − U(k1)

k2
2
− k2

1

= M
U�(k)

k
.

Fig. 3   (Color online) Dirac 
masses for neutron (solid lines) 
and proton (dashed lines) 
as functions of the asym-
metric parameter � at density 
� = 0.16 fm−3 calculated using 
the RBHF theory a in the 
full Dirac space, b using the 
assumption procedure, and c 
using the extraction procedure. 
Details can be found in the text

Fig. 4   (Color online) a Single-particle potential energy U� (k) 
obtained in the full Dirac space as a function of momentum k. The 
cases for SNM and ANM with � = 0.5 and � = 0.16 fm−3 are shown. 
The momenta 0.7k�

F
 and k�

F
 are highlighted with empty dots and solid 

squares, respectively. b Dirac mass M∗
D
∕M as a function of dimen-

sionless quantity f in Eq.  (12). c Dimensionless function f (11) 
obtained in the full Dirac space as a function of momentum k. The 
notations for lines and symbols are the same as in panel (a)
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Figure 4(b) shows that the Dirac mass M∗
D
∕M decreased with 

increasing f. Therefore, the sign of M∗
D,n

−M∗
D,p

 was opposite 
to that of fn(kn) − fp(kp) , that is,

Figure 4c shows the function f�(k) for nucleon � obtained 
in the full Dirac space. It was observed that f�(k) decreased 
with increasing k. Generally, there was fn(k) < fp(k) for 
k < k

p

F
 . This indicates that the momentum dependence of 

Un(k) was weaker than that of Up(k).
In practice, one usually chooses k�

1
= 0.7k�

F
 and k�

2
= k�

F
 

[29, 48]. For ANM with 𝛼 > 0 , the Fermi momentum for 
neutron kn

F
 was larger than that for proton, that is, kn

F
> k

p

F
 . 

The symbols in panels (a) and (c) in Fig. 4 indicate that this 
selection resulted in kn > kp and fn(kn) < fp(kp) . Specifically, 
starting from the self-consistent U�(k) obtained in the full 
Dirac space, the choices (0.7kn

F
, kn

F
) for neutron and (0.7kp

F
, k

p

F
) 

for proton resulted in fn(kn) ≈ 0.6 and fp(kp) ≈ 0.8 . Based 
on the analysis in Eq. (13), the isospin splitting of the Dirac 
mass M∗

D,n
−M∗

D,p
> 0 emerged. This explains the reason 

why the MIA method resulted in an opposite isospin split-
ting of the Dirac mass in ANM.

In Eq. (8), the extraction procedure forcibly assumes that 
the momentum dependence of the single-particle potential 
energy is in a quadratic form, where the strength − 1

2

US

(M+US)
2
 

is solely determined by the scalar potential US . In ANM, the 
momentum dependence of Un(k) was generally weaker than 
that of Up(k) , as shown in Fig. 4c. This resulted in US,n > US,p 
and the opposite sign of the isospin splitting of the Dirac 
mass M∗

D,n
−M∗

D,p
> 0.

Based on the aforementioned analysis of the MIA method, 
the RBHF theory provides a robust understanding of the 
isospin splitting of the Dirac mass derived from realistic NN 
interactions. This framework effectively establishes ab ini-
tio predictions for the momentum dependence of nuclear 
mean fields and the isovector properties of in-medium NN 
interactions. Moreover, it potentially provides constraints 
on the relativistic energy density functional [56], enhances 
our understanding of pseudospin and spin-orbit splittings 
observed in exotic nuclei [57–59], and promotes the study of 
neutron-rich systems such as neutron stars [40, 60].

(12)M∗
D
∕M =

√
1 + 4f (k) − 1

2f (k)
.

(13)

{
M∗

D,n
−M∗

D,p
< 0, if fn(kn) > fp(kp),

M∗
D,n

−M∗
D,p

> 0, if fn(kn) < fp(kp).

4 � Summary

In summary, the relativistic Brueckner–Hartree–Fock 
(RBHF) theory plays an important role in deriving nuclear 
many-body properties from realistic nucleon–nucleon inter-
actions. In comparison with the results obtained self-consist-
ently in the full Dirac space, the momentum-independent 
approximation (MIA) method leads to opposite isospin split-
ting of the Dirac mass in asymmetric nuclear matter (ANM). 
The performance of this method was explored in detail in the 
full Dirac space viewpoint. The assumption procedure of the 
MIA method, which assumes that single-particle potentials 
are momentum independent, is not a sufficient condition that 
directly leads to the opposite sign of the isospin splitting 
of the Dirac mass, whereas the extraction procedure of the 
MIA method, which extracts single-particle potentials from 
single-particle potential energy, is found to be responsible 
for the opposite isospin splitting of the Dirac mass. A for-
mal expression of the Dirac mass was obtained by solving 
approximately a set of equations involved in the extraction 
procedure. With the typical choice of momenta adopted in 
practical MIA calculations, the opposite isospin splitting of 
the Dirac mass was found. We conclude that the opposite 
isospin splitting of the Dirac mass emerges from the fact 
that the extraction procedure forcibly assumes the momen-
tum dependence of the single-particle potential energy to 
be a quadratic form where the strength is solely determined 
by the constant scalar potential. This study substantially 
improves our understanding on the isospin splitting of the 
Dirac mass using the RBHF theory.
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