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Abstract
The isospin asymmetry and quadrupole deformation value of drip-line nuclei are investigated using the Weizsäcker–Skyrme 
nuclear mass formula. We observe that for heavy nuclei at the neutron drip line, the Coulomb energy heightened by an aug-
mented charge could not be mitigated completely by symmetry energy because of isospin asymmetry saturation but is resisted 
complementally by strong nuclear deformation. The positions of saltation for the difference in proton numbers between two 
neighboring nuclei at the neutron drip line, and the isospin asymmetry of the neutron drip-line nucleus as a function of the 
neutron number distinctly correspond to the known magic numbers, which can serve as a reference to verify the undeter-
mined neutron magic number. Through fitting of the binding energy difference between mirror nuclei (BEDbMN), a set of 
Coulomb energy coefficients with greater accuracy is obtained. A high-precision description of the BEDbMN is useful for 
accurately determining the experimentally unknown mass of the nucleus close to the proton drip line if the mass of its mirror 
nucleus is measured experimentally.
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1  Introduction

The nuclear mass is one of the most fundamental properties 
of the nucleus and is important in many fields of nuclear 
physics [1]. On the one hand, the nuclear mass can provide 
important information on the nuclear structure and reactions, 
such as the nuclear deformation [2], properties of neutron-
rich nuclei [3, 4], structure and decay of superheavy nuclei 
[5–8], shell effect [9–12], nuclear drip line [13], halo nuclei 
[14], and synthesis of superheavy nuclei [15–18]. On the 
other hand, the nuclear mass is a key input to many prob-
lems in nuclear astrophysics. It has a vital influence on the 
composition [19] and cooling rate [20] of a neutron star and 

directly determines the evolution path of the rapid neutron 
capture process in stellar nucleosynthesis [21–23].

The aforementioned research on nuclear physics requires 
a high-precision nuclear mass table. With the rapid devel-
opment of radioactive nuclear beam devices and detec-
tion technology, nuclei with measured masses continue to 
move toward the drip lines. Recently, significant progress 
has been made in the measurement of short-lived isotope 
nuclear masses far from stable regions. Approximately 2500 
nuclear masses have been measured with an accuracy of 
less than hundreds of keV [24–27]. However, owing to a 
series of difficulties in synthesis, separation, and detection 
in experiments, the nuclei involved in the studies of super-
heavy islands, drip-line nuclei, nuclear astrophysics, etc., 
are still significantly beyond the current scope of nuclei with 
measured masses. No significant breakthroughs may occur 
in the foreseeable future, particularly on the neutron-rich 
side. Therefore, a model that can accurately describe known 
masses and accurately predict unknown masses is crucial.

Since Weizsäcker first proposed the liquid-drop 
model nuclear mass formula in 1935 [28], various types 
of nuclear mass formulas have been proposed, includ-
ing the macroscopic model (e.g., Bethe–Weizsäcker 
(BW) models [28–30]), microscopic model (e.g., Skyrme 
Hartree–Fock–Bogoliubov (HFB) models [31–33] 
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and relativistic mean-field (RMF) model [34]), macro-
scopic–microscopic models (e.g., finite-range droplet 
model (FRDM) [35, 36], Weizsäcker–Skyrme (WS) model 
[37–41], Koura–Tachibana–Uno–Yamada (KTUY) model 
[42], Duflo–Zuker model (DZ) [43], etc.), systematic local 
mass Garvey–Kelson relation [44], and Audi–Wapstra 
extrapolation method [26, 27, 45–47]. These nuclear mass 
formulas can reproduce the known nuclear masses with a 
certain accuracy, but their predictions appear to diverge as 
the isospin asymmetry increases, particularly for unknown 
masses. For details on the introduction and comparison of 
these models, refer to [48] and the references therein. There-
fore, a more accurate nuclear mass formula requires more 
accurate experimental data, particularly for extremely neu-
tron-rich nuclei, and a deeper understanding of the nuclear 
force, particularly the isospin symmetry breaking from the-
ory. However, efforts have been made to improve the preci-
sion and extrapolation ability of nuclear mass models using 
machine learning algorithms [49–53].

The macroscopic–microscopic mass model can systemati-
cally and quickly calculate the mass of nuclei on the entire 
nuclide chart with a high accuracy and good prediction 
ability. In this paper, the properties of drip-line nuclei are 
studied using the WS nuclear mass formula (WS3.3) [38], 
and the nuclear Coulomb energy is studied using the mass 
relations of mirror nuclei. The remainder of this paper is 
structured as follows: Sect. 2 briefly introduces the WS3.3 
nuclear mass formula. The properties of drip-line nuclei 
based on the WS3.3 formula and the Coulomb energy 
based on the mass relations of mirror nuclei are presented 
in Sect. 3 and 4, respectively. Finally, a summary is given 
in Sect. 5.

2 � WS3.3 nuclear mass formula

The WS nuclear mass formula is based on the 
Bathe–Weizsäcker liquid-drop model [30] and Skyrme 
energy density functional theory. The evolution of the model 
and a detailed introduction are presented in [37–41]. The 
WS3.3 version is adopted in this paper. In the WS nuclear 
mass formula, the macroscopic part of the binding energy 
of the nucleus considers the correction of the deformation 
based on the liquid-drop model, and the microscopic part 
is the shell-correction energy. Considering the deformed 
liquid-drop and shell-correction energies, the total energy 
of the nucleus can be expressed as follows:

where ELD(A,Z) represents the conventional spherical 
nuclear liquid-drop energy as stipulated by the modified 

(1)E(A,Z, �) = ELD(A,Z)
∏
k⩾2

(1 + bk�
2
k
) + ΔE(A,Z, �),

Bath–Bethe–Weizsäcker mass formula, and bk reflects 
the correction of the liquid-drop energy owing to nuclear 
deformation. The spherical nuclear liquid-drop energy is 
predominantly composed of five components: volume, sur-
face, Coulomb, symmetry, and pairing energies.

with an isospin asymmetry of I = N−Z

A
 . The Coulomb energy 

term is expressed as

The Coulomb exchange energy, surface dispersion effect, 
and self-energy are all represented by the Z−2∕3 term. Addi-
tionally, based on the traditional liquid-drop model, the 
surface symmetry energy term of the finite nucleus and 
an isospin correction term are introduced to describe the 
Wigner effect of nuclei [35, 54]:

The correction of this term for the nuclear binding energy is

�np can be expressed as [55]

In WS3.3, the macroscopic energy of deformed nuclei is 
obtained by correcting the nuclear deformation on the mac-
roscopic binding energy of spherical nuclei. The terms with 
bk in Eq. (1) describe the contribution of nuclear deforma-
tion (including �2 , �4 , and �6 ) to ELD . The mass dependence 
of the curvature bk is expressed as [37]

according to the Skyrme energy density functional calcula-
tion, which significantly reduces the computation time for 
calculations for deformed nuclei [37].

The microscopic shell correction of the binding energy 
is obtained using the traditional Strutinsky shell-correc-
tion method [56]:

(2)
ELD(A,Z) = avA + asA

2∕3 + Ec + asymI
2A + apairA

−1∕3�np,

(3)Ec = ac
Z2

A1∕3
(1 − Z−2∕3).

(4)asym = csym

[
1 −

�

A1∕3
+

2 − |A|
2 + |I|A

]
.

(5)Ew = csymI
2A

[
2 − |A|
2 + |I|A

]
≈ 2csym|I| − csym|I|2 +⋯ .

(6)𝛿np =

⎧
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Here c1 represents the scale factor used to adjust the propor-
tions of the macroscopic and microscopic shell-correction 
parts to the total binding energy. Esh and E′

sh
 denote the shell-

correction energy of a nucleus and its corresponding mir-
ror nucleus, respectively. The term |I|E′

sh
 is introduced to 

account for the mirror constraint from isospin symmetry, 
resulting in a 10% reduction in the root-mean-square (RMS) 
deviation of the nuclear mass calculations.

The calculation of the single-particle energy levels of 
a nucleus based on the deformed Woods–Saxon potential, 
combined with microscopic shell correction, requires four 
parameters: the potential well depth parameter V0 , radius 
parameter r0 , surface dispersion parameter a, and spin-orbit 
coupling parameter �0 . With nine parameters in the macro-
scopic part, the WS3.3 model has a total of 13 parameters. 
The parameters in the  model shown in Table 1 are deter-
mined by fitting the experimental data from 2149 nuclei 
with N and Z ⩾ 8 in AME2003. With this set of improved 
WS3.3 parameters, the RMS deviation of the nuclear mass 
calculated for 2149 nuclei is 0.441 MeV. Additionally, the 
RMS deviations of the neutron separation energies for 1988 
nuclei and 46 superheavy nuclei are 0.332 and 0.263 MeV, 
respectively.

3 � Properties of the drip‑line nucleus

The drip-line nucleus is a nucleus whose separation energy 
of the last neutron or proton is less than zero. The drip line 
can be obtained by marking these nuclei in the nuclide chart, 
and it serves as the boundary for the existence of nuclei in 
the nuclide chart. When the drip line is crossed, the binding 
energy of the nucleus is insufficient to bind the last nucleon. 
Consequently, the near-drip-line nucleus exhibits extremely 
weak binding, resulting in a significantly more important 
proportion of coupling between nucleus-bound states and 
the continuum spectrum. This phenomenon causes many 
peculiarities among the nuclei near the drip line, such as 
the neutron skin and neutron halo [57, 58], cluster structure 

(8)ΔE = c1Esh + |I|E�
sh
. [59], and the emergence and disappearance of traditional 

magic numbers [60, 61]. Owing to their very low separa-
tion energies, the accurate prediction of drip-line positions 
requires high accuracy in nuclear mass formulas. Note that 
the differences in the nuclear masses given by the various 
models increase as the deviation from the �-stable valley 
increases. Therefore, the properties related to the drip line 
and drip-line nuclei serve as important standards for testing 
nuclear mass formulas.

First, the masses of the nuclei are calculated, and the drip, 
�-stable, and most bound nucleus (MBN) lines are deter-
mined using the WS3.3 nuclear mass formula, as shown 
in Fig. 1. The MBN is identified as the nucleus with the 
maximum specific binding energy in each isotope chain, 
whereas the �-stable nucleus has the maximum specific 
binding energy in each isobar chain. Nuclei with known 
experimental masses and mirror nuclei are obtained from 
the AME2020 mass table.

The isospin asymmetry of the �-stable nucleus, drip-line 
nucleus, and MBN as functions of the neutron number given 
by the WS3.3 model is shown in Fig. 2. Separate represen-
tations of odd and even charges are provided for the drip-
line nuclei to mitigate the influence of the symmetry effect. 
These results show that in the light nucleus region, both �
-stable nuclei and MBN exhibit essentially similar isospin 
asymmetry, which increase as the neutron number increases 
because the Coulomb repulsion must be offset by excess 
neutrons. Furthermore, the isospin asymmetry of most �
-stable nuclei progressively exceed those of the MBN. In 
light nuclear regions, the isospin asymmetry of the proton 
drip-line nucleus tends to be smaller than zero, indicating 
a proton-rich state. However, this tendency shifts toward 
increasing values, aligning more closely with those exhibited 
by the MBN as the neutron number increases. Conversely, as 
a natural consequence, the isospin asymmetry displayed by 
neutron drip-line nuclei significantly surpass those observed 
in �-stable nuclei, MBNs, and proton drip-line nuclei. As 
the nucleus size increases, the isospin asymmetry of the 

Table 1   Parameters of the WS3.3 mass model

Parameter Value Parameter Value

av (MeV) −15.6223 V0 (MeV) −46.8784

as (MeV) 18.0571 r0 (fm) 1.3840
ac (MeV) 0.7194 a (fm) 0.7842
csym (MeV) 29.1563 �0 26.3163
� 1.3484 g1 0.00895
apair(MeV) −5.4423 g2 −0.46324

c1 0.62966
Fig. 1   (Color online) Nuclide chart with the �-stable, MBN, proton 
drip, and neutron drip lines predicted using the WS3.3 model and the 
nuclei from the AME2020 mass table
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neutron drip-line nucleus tends to decrease, eventually sat-
urating at approximately 0.38 in the heavy nuclei region. 
Some nuclear mass models, such as HFB27 [33], RMF [34], 
FRDM12 [36], KTUY [42], DZ31 [43], and Bhagwat [62] 
also predict the same tendency, as shown by the pink block 
in Fig. 2. This suggests that the increased Coulomb energy 
of the heavy drip-line nucleus, resulting from the increased 
number of protons, is not simply offset by a further increase 
in the neutron number.

To elucidate the mechanism for equilibrating the bind-
ing energy of heavy drip-line nuclei, we analyze the quad-
rupole deformation and deformation energy of the nucleus 
as a function of the neutron number, as presented in Fig. 3. 
The deformation energy is defined as the difference 

between the energies of the deformed and conventional 
spherical nuclei [6]:

where �2 , �4 , and �6 are considered in the calcu-
lations. Taking 238U as an example, for a spheri-
cal nucleus, E(0) = −1790.958 MeV for a deformed 
nucleus with �2 = 0.213 , �4 = 0.069 , and �6 = −0.003 , 
E(�2) = −1799.423  ,  E(�2,4) = −1801.964  ,  a n d 
E(�2,4,6) = −1801.972 MeV, respectively. Edef = 11.014 
MeV.

We can observe that the �2 distribution of the pro-
ton drip-line nucleus closely resembles that of �-stable 
nuclei throughout the nuclear region, ranging from −0.3 
to 0.3. Similarly, the �2 distribution of the neutron drip-
line nucleus is relatively uniform in the regions where 
N < 200 . This implies that these nuclei can counterbal-
ance the increased Coulomb repulsion owing to charge 
enhancement through symmetry energy by enriched neu-
trons and deformation energy by suitable deformation. 
Conversely, in the region where N > 200 for the neutron 
drip-line nucleus, no nucleus has a small deformation 
( �2 ∈ [−0.1, 0.1] ). The strong deformation results in a large 
deformation energy for the heavy nuclei on the neutron 
drip line, as shown in the right-hand panel of Fig. 3. A 
comparison of the results shown in Fig. 2 reveals that, 
for heavy nucleus at the neutron drip line, heightened 
Coulomb energy owing to augmented charge cannot be 
mitigated completely by symmetry energy with insufficient 
neutrons but is resisted complementally by strong nuclear 
deformations.

Furthermore, a clear correlation between isospin asym-
metry of nucleus at the neutron drip line and magic num-
ber is observed in Fig. 2. In Fig. 2, the blue dotted lines 
denote the positions of traditional magic numbers: 28, 34, 
50, 82, and 126, which precisely correspond to locations 
where saltation occurs simultaneously in isospin asym-
metry of the MBN and that of neutron drip-line nucleus 
with odd Z and even Z. This correlation is not apparent in 
the proton drip-line nucleus. Nevertheless, no confirmed 
magic number corresponds to some saltation positions 
in the heavy nuclei region. This implies that the neutron 
numbers corresponding to these positions, i.e., 162 (164), 
184, 212, and 236 (238), denoted by magenta lines, might 
also be neutron magic numbers. To obtain a more dis-
tinct perspective on the correlation between the isospin 
asymmetry of the neutron drip-line nucleus and the magic 
number, Fig. 4 presents the differences in proton numbers 
between two neighboring nuclei at the neutron drip line 
ΔZ as a function of the neutron number. We can imagine 
that, without the shell effect, the proton number should 
change smoothly with the neutron number. However, 

(9)Edef = E(0) − E(�gs),

Fig. 2   (Color online) Isospin asymmetry of the �-stable nucleus, 
neutron drip-line nucleus, and MBN as a function of neutron num-
ber given by the WS3.3 model. The blue dashed lines denote the 
locations of traditional magic numbers: 28, 34, 50, 82, and 126. The 
magenta solid lines denote the locations where the isospin asym-
metries of the neutron drip-line nucleus saltation of 162 (164), 184, 
212, and 236 (238). The pink block area denotes the isospin asym-
metry of the neutron drip-line nucleus given by some nuclear mass 
models

Fig. 3   (Color online) Quadrupole deformation values (left) and defor-
mation energies (right) of �-stable and drip-line nuclei as a function 
of the neutron number using the WS3.3 model
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Fig. 4 shows that for some nuclei, with the addition of 
two neutrons, the proton number increases by −2 , 4, 6, 
even 8. This indicates a shell effect.

The positions where ΔZ of the neutron drip-line nucleus 
with odd Z and even Z simultaneously undergo saltation 
nearby are 28, 34, 50, 82, 126, 184, and 236 (238). They 
reproduce known magic numbers (28, 34, 50, 82, and 126) 
quite well. The neutron numbers 184 and 236 (238) may be 
new magic numbers. Using shell model calculations, 184 
[63–74] and 238 [63, 66] are also predicted as new neutron 
magic numbers. In addition, 162 [63, 69, 70, 73] and 164 
[63, 69] are predicted as new neutron numbers, which are 
predicted using isospin asymmetry saltation but not by the 
charge number saltation in this paper. This indicates that the 
saltations in the isospin asymmetry of the neutron drip-line 
nucleus and in the difference in proton numbers between two 
neighboring nuclei at the neutron drip line can be used as 
criteria to verify the prospective magic number.

4 � Mass relation of mirror nuclei

A pair of nuclei with the same mass number A and, 
exchanged proton number Z and neutron number N are called 
mirror nuclei. With symmetric properties, mirror nuclei are 
widely used to study nuclear structures [75–78] and reac-
tions [79–82].

Based on the isospin symmetry of nuclear interactions, 
the binding energy difference between mirror nuclei (BED-
bMN) results from the Coulomb energy and small mass dif-
ference between the neutron and proton [83, 84]. Precise 
measurement of the masses of mirror nuclei enables the 
study of isospin symmetry and the charge independence of 
the nuclear force and can be employed to test nuclear struc-
ture models. It is an effective approach for enhancing the 
precision of nuclear mass formulas by utilizing the mass 
relations of mirror nuclei to investigate the nuclear mass 
formula, particularly the reasonable correction of the Cou-
lomb term [38, 85–93].

By subtracting the Coulomb energy, the nuclear force-
dependent part in the BEDbMN can be considered approxi-
mately equal, i.e.,

where EB represents the total energy of the nucleus, EC rep-
resents the Coulomb energy of the nucleus, and E′

B
 and E′

C
 

represent the correlation values of the corresponding mirror 
nuclei. By combining the macroscopic–microscopic mass 
formula with the equation above, we can obtain the con-
straint between the shell corrections of mirror nuclei,

This implies that the difference in the shell-correction ener-
gies between one pair of mirror nuclei should be small. Con-
sidering the |I|E′

sh
 term in Eq. (8), we can obtain

The |I|E′
sh

 term is useful for restoring the isospin symmetry 
in the mirror nuclei and can effectively reduce the shell-
correction deviation |ΔE − ΔE�| in pairs of mirror nuclei, 
which is required by the constraint in Eq. (10). With the 
(c1 − |I|) term, |ΔE − ΔE�| is generally less than 2 MeV in 
WS3.3 [38]. We can imagine that although Esh ≠ E′

sh
 by the 

shell correction using the Strutinsky method, |ΔE − ΔE�| 
can be closer to zero to satisfy the constraint in Eq. (11) with 
more isospin symmetry in the mirror nuclei being restored.

Because the nuclear force is independent of the charge 
of the nucleus, the BEDbMN is only reflected in the Cou-
lomb energy terms. Therefore, the Coulomb term coefficient 
can be determined using the BEDbMN. Considering the 
Coulomb exchange effect, the Coulomb term in (3) can be 
expressed as follows:

When c = 1.0 , this indicates the WS3.3 parameter. With Eq. 
(13), the BEDbMN can be presented as

Tian et al. specified ac and c by fitting a BEDbMN with 
11 ≤ A ≤ 75 in the AME2016 mass table [94]. In this 
paper, ac and c are determined by fitting the BEDbMN with 
Z,N ≥ 6 in the AME2003 mass table. The following results 
are calculated for nuclei with Z,N ≥ 6 unless otherwise 
stated. The three sets of Coulomb term coefficients and RMS 
deviations of the theoretical BEDbMN from the experimen-
tal data are listed in Table 2. A comparison between the 
theoretical BEDbMN and experimental data is presented in 
Fig. 5. The results show that the Coulomb term coefficient 

(10)EB − EC ≈ E�
B
− E�

C
,

(11)|ΔE − ΔE�| ≈ 0.

(12)|ΔE − ΔE�| = (c1 − |I|)|Esh − E�
sh
|.

(13)Ec =
acZ

2

A1∕3
(1 − cZ−2∕3).

(14)ΔE =
ac

A1∕3
(Z2

1
− Z2

2
) +

c ⋅ ac

A1∕3
(Z

4∕3

2
− Z

4∕3

1
).

�

Fig. 4   (Color online) Differences in proton numbers between two 
neighboring nuclei at the neutron drip line
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in this paper yields the smallest RMS deviation for the cal-
culated BEDbMN from the experimental data. Even with 
21 pairs of newly added mirror nuclei and some nuclear 
masses corrected in the AME2020 mass table, compared 
with AME2003, the RMS deviation in this study is minimal. 
Figure 5 shows that the BEDbMN as a function of charge 
number is divided into several groups. If the second term in 
the expression for the BEDbMN pair Eq. (14) is disregarded, 
it can be represented as

From Z1 = A − N1 = A − Z2 = N2 , we obtain

Thus, ΔE is grouped by N − Z and is proportional to A2∕3 
with a slope of ac(N − Z) and an intercept of O(N, Z) . By fit-
ting the BEDbMN pair by group, we can express the empiri-
cal expressions for N − Z = 1, 2, 3, 4 as

(15)ΔE =
ac

A1∕3
(Z2

1
− Z2

2
) +O(Z1, Z2).

(16)ΔE = ac (N − Z)A2∕3 +O(N, Z).

The BEDbMNs newly added to AME2020 also fall within 
the results provided by the empirical formula. This suggests 
that the empirical formula can be employed to estimate 
the unmeasured mass of the nucleus with high precision 
if the mass of its mirror pair has already been measured 
experimentally.

Because only one pair of mirror nuclei has N − Z = 5 
( 19 Mg and 19 N) in the AME2003 mass table, a linear fit is not 
feasible. The empirical curve for N − Z = 5 shown in Fig. 6 
is an extrapolation of expression (17). An apparent varia-
tion in the experimental value for mirror nulei pair of 19 Mg 
and 19 N between AME2003 and AME2020 can be observed. 
This is because a correction of 1.2 MeV is applied to the 
binding energy of 19Mg. With this correction and one new 
mirror nuclei pair ( 17 C and 17Na) added to AME2020, the 
extrapolated result for N − Z = 5 corresponds with the data 
of AME2020.

Compared with AME2003, the masses of 21 new mirror 
nuclei pairs are included in the AME2020 mass table, which 
can be utilized to verify the accuracy of the mirror nuclei 
binding energy difference formula. The RMS deviations 
between the experimental and theoretical masses for the 21 
newly added mirror nuclei pairs in this work and the WS3.3 
model are shown in Table 3. Considering the mass relations 
of the mirror nuclei, the mass formula generates a lower 
RMS deviation. Currently, proton-rich nuclei whose masses 
have been measured are considerably close to the proton drip 
line; however, some nuclei remain to be synthesized and 

(17)

ΔE = E0 + bA2∕3,

b = 0.76428(N − Z) − 0.04435,

E0 = −0.63154(N − Z) − 0.21727(N − Z)2.

Table 2   Three sets of the Coulomb term coefficient and RMS devia-
tions for the BEDbMN calculated from the experimental data

ac (MeV) c � (MeV) � (MeV)
(AME2003) (AME2020)

This work 0.73 1.49 0.312 0.334
Tian 0.69 1.19 0.418 0.453
WS3.3 0.71 1.0 0.684 0.816
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Fig. 5   (Color online) Comparison of the experimental data and BED-
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measured. More accurate predictions of the experimentally 
unmeasured masses of mirror nuclei toward the proton drip 
line by employing the mass relation of the mirror nuclei 
would be beneficial.

The study of the BEDbMN reveals that a more precise 
Coulomb term, particularly the Coulomb exchange term 
coefficient, can be acquired from a BEDbMN. In addition, 
the nuclear mass formula has a better physical basis. There-
fore, we attempt to utilize three schemes in the nuclear mass 
formula to refit the AME2003 mass table and investigate the 
effect of the Coulomb exchange term on the accuracy of the 
nuclear mass formula. 

A.	 The Coulomb term coefficients ac and c are fixed by 
taking the values determined from the mass relations of 
mirror nuclei. The other 12 parameters are determined 
via the optimization method.

B.	 The Coulomb exchange term coefficient c assumes dif-
ferent values, the other 13 parameters, including ac , are 
determined using the optimization method. Specifically, 
the WS3.3 parameter is obtained when c = 1.0.

C.	 The Coulomb term coefficients ac and c and the other 
14 parameters are determined using the optimization 
method.

The values of the Coulomb term coefficients for the three 
schemes and their mass RMS deviations are listed in 
Table 4. Although Scheme A provided the most accurate 
description of the binding energy difference for 71 pairs of 
mirror nuclei, the RMS deviation of the mass of 2149 nuclei 
is larger than that provided by the WS3.3 parameter set. As 
shown in Scheme B, the Coulomb exchange term coeffi-
cient ranges from 0 to 2.0, and the Coulomb direct term 
coefficient ac varies only slightly. This result indicates that 
the Coulomb direct term coefficient is robust against the 
Coulomb exchange term coefficient. The mass RMS devia-
tion as a function of the Coulombic exchange coefficient is 
shown in Fig. 7. The RMS deviation is the smallest when 
c ≃ 1 . This precisely matches the exchange term coefficient 
adopted in WS3.3. Additionally, the results of Scheme C 

show that the optimal Coulomb coefficients given by the 
nuclear mass formula with the addition of one adjustable 
parameter are nearly indistinguishable from the results of 
WS3.3, and virtually no improvement occurs in accuracy.

The preceding discussion reveals that the accuracy of the 
nuclear mass formula is not enhanced but rather diminishes 
when directly using the Coulomb term coefficients deter-
mined by the mass relations of mirror nuclei pairs. A pos-
sible reason for this is that 71 pairs of mirror nuclei consti-
tute a relatively small proportion of the 2149 nuclei, and no 
mirror nuclei exist in the heavy nuclei region. The Coulomb 
term coefficient determined by the mirror nuclei in the light 
nuclei region based on the local mass relation is less precise 
when extrapolated to the heavy nuclei region. As a test, the 
above three schemes are employed to calculate the masses of 

Table 3   RMS deviations of BEDbMNs between experimental and 
theoretical values for 21 newly added mirror nuclei pairs in this work, 
the WS3.3 model, and some other models

ac (MeV) c � (MeV)

This work 0.73 1.49 0.378
WS3.3 [38] 0.71 1.0 0.825
HFB27 [33] 0.446
RMF [34] 0.618
FRDM12 [36] 0.441
KTUY [42] 0.395

Table 4   Values of the Coulomb term coefficient using various 
schemes and their mass RMS deviations

Scheme c ac (MeV) � (MeV)

A 1.49 0.730 0.489
1.00 0.719 0.440

B 2.00 0.730 0.571
1.49 0.724 0.474
1.20 0.721 0.445
1.00 0.719 0.440
0.90 0.718 0.443
0.80 0.717 0.448
0.50 0.714 0.481
0.00 0.712 0.600

C 1.02 0.720 0.440
HFB27 [33] 0.533
RMF [34] 2.0675
FRDM12 [36] 0.5812
KTUY [42] 0.653

Fig. 7   Mass RMS deviation as a function of the Coulomb exchange 
coefficient
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71 pairs of mirror nuclei, and the obtained RMS deviations 
are presented in Table 5.

Similar to the results based on the 2149 nuclei optimiza-
tion parameters, the RMS deviation obtained by the method 
in this paper remains higher than that of WS3.3 parameters, 
although the disparity in RMS deviations between the two 
methods is not significant. The accuracy of the result for 
c = 1.0 is still higher than that for c = 1.49 . Although the 
accuracy of Scheme C is slightly improved, the Coulomb 
coefficient determined by mirror nuclei masses differs sig-
nificantly from that determined by the 2149 nuclear masses, 
and the experimental data of the 2149 nuclear masses can-
not be well represented using the coefficients in Scheme C. 
These observations suggest a systematic correlation among 
the terms of the nuclear mass formula. An improvement in 
the accuracy of a single term in the formula, such as the 
Coulomb term, may not enhance the accuracy of the entire 
nuclear mass formula.

Finaly, let us consider the Coulomb exchange coefficient 
c = 1.49 obtained by fitting the BEDbMN in this study. The 
well-known Fermi gas model yields a considerably smaller 

result of 0.76 (that is, 5
4

(
3

2�

)2∕3

 ), which is only half the value 
herein. This can be explained by the simplified Coulomb 
energy term, i.e., Eq. (13), adopted in this work. A more 
sophisticated Coulomb energy form is [91, 95]

the first term Ed
c
 is the direct term, the second term Ee

c
 is 

called the exchange term in the Fermi gas model, and the 
third term Es

c
 is called the self-energy term and equals the 

total Coulomb energy of Z protons moving individually in a 
sphere which has the same size as the nucleus in considera-
tion. If the self-energy effect is considered as a correlation 

(18)
Ef
c
= Ed

c
+ Ee

c
+ Es

c

=
3

5

e2

r0

Z2

A1∕3

[
1 −

5

4

(
3

2�

)2∕3

Z−2∕3 − Z−1

]
,

of the exchange term, the Coulomb energy can be expressed 
as shown in Eq. (13), which is the form adopted in this work.

The Coulomb energies of the �-stable nuclei, calculated 
using various Coulomb energy forms, are presented in 
Fig. 8. As shown in the figure, Ec with c = 0.76 can repro-
duce Ef

c
 with the direct and exchange terms, and Ec with 

c = 1.0 can reproduce Ef
c
 using the direct, exchange, and 

self-energy terms. If surface dispersion is considered, the 
Coulomb energy should be further suppressed with ΔEsd

c
 ; 

here ΔEsd
c

 is the difference in the Coulomb energy between 
nuclei with and without surface dispersion. The nuclear 
density distribution was determined by the restricted den-
sity variational method using the Skyrme energy density 
functional. We observe that Ec with c = 1.49 can com-
pletely reproduce the Coulomb energy, including the direct, 
exchange, and self-energy terms, with surface dispersion 
effects being considered.

5 � Summary

The properties of the drip-line nucleus and mass relation 
of mirror nuclei are studied based on the WS3.3 nuclear 
mass formula. We observe that the isospin asymmetry of 
heavy nuclei on the neutron drip line tends toward a satu-
ration value of 0.38. An analysis of the nuclear quadru-
pole deformation value �2 and the deformation energy as a 
function of the neutron number suggests that in the heavy 
nuclei region, the strong Coulomb energy caused by the 
augmented proton is resisted by enormous deformation but 
not by the further addition of neutrons because of isospin 
asymmetry saturation. Additionally, the conventional 
magic number has a distinct correspondence with the sal-
tation position of the isospin asymmetries of the MBN, 
the difference in proton numbers between two neighboring 

Table 5   Values of the Coulomb term coefficient and RMS deviations 
of masses obtained by fitting mirror nuclei mass in AME2003 with 
different schemes

Scheme c ac (MeV) � (MeV) Comment

A 1.49 0.730 0.629 This work
1.00 0.719 0.620 WS3.3

B 1.49 0.763 0.657
1.00 0.730 0.625

C 0.312 0.663 0.588
HFB27 [33] 0.871
RMF [34] 1.577
FRDM12 [36] 1.110
KTUY [42] 0.728

�

Fig. 8   (Color online) Coulomb energies for the �-stable nucleus with 
various Coulomb energy forms
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nuclei at the neutron drip line, and isospin asymmetry 
degree at the neutron drip-line nucleus as a function of 
the neutron number. Therefore, saltation without a known 
corresponding magic number can serve as a reference to 
verify the undetermined neutron magic number.

By considering the mass relation of mirror nuclei, i.e., 
BEDbMN, a Coulomb term with a stronger physical founda-
tion and greater accuracy is obtained. However, the accuracy 
of the mass formula with the BEDbMN considered is lower 
than that without the BEDbMN considered. A reason for 
this is that the Coulomb term coefficients are determined 
based on insufficient experimental data of mirror nuclei with 
A < 75 , which are insufficient to describe the entire mass 
table globally. The other reason is that a systematic relation-
ship exists between the coefficients in the mass formula; 
we should not expect it to improve accuracy by improving 
some of the coefficients independently. However, the rela-
tion of the BEDbMN can be used to accurately determine 
the mass of one of the mirror nuclei, which is experimentally 
unknown, by another whose mass is known. This is par-
ticularly useful for predicting the mass of isotopes that are 
difficult to synthesize or measure experimentally toward a 
proton drip line for N < 50 where a mirror nuclei pair exists.
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