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Abstract
In this study, an end-to-end deep learning method is proposed to improve the accuracy of continuum estimation in low-reso-
lution gamma-ray spectra. A novel process for generating the theoretical continuum of a simulated spectrum is established, 
and a convolutional neural network consisting of 51 layers and more than 105 parameters is constructed to directly predict 
the entire continuum from the extracted global spectrum features. For testing, an in-house NaI-type whole-body counter is 
used, and 106 training spectrum samples (20% of which are reserved for testing) are generated using Monte Carlo simula-
tions. In addition, the existing fitting, step-type, and peak erosion methods are selected for comparison. The proposed method 
exhibits excellent performance, as evidenced by its activity error distribution and the smallest mean activity error of 1.5% 
among the evaluated methods. Additionally, a validation experiment is performed using a whole-body counter to analyze a 
human physical phantom containing four radionuclides. The largest activity error of the proposed method is −5.1% , which 
is considerably smaller than those of the comparative methods, confirming the test results. The multiscale feature extraction 
and nonlinear relation modeling in the proposed method establish a novel approach for accurate and convenient continuum 
estimation in a low-resolution gamma-ray spectrum. Thus, the proposed method is promising for accurate quantitative 
radioactivity analysis in practical applications.

Keywords  Gamma-ray spectrum · Continuum estimation · Deep learning · Convolutional neural network · End-to-end 
prediction

1  Introduction

The continuum in a gamma-ray spectrum is typically 
defined as all the energy deposition counts in a detector, 
excluding photoelectric-effect events, and is thus formed by 
gamma-ray scattering [1]. As a baseline in a spectrum, the 
continuum should be estimated to extract the net counts of 
the photoelectric peak, which leads to radionuclide activity 

determination considering the detection efficiency. There-
fore, continuum estimation in gamma-ray spectra is essential 
for quantitative radioactivity analysis [2]. However, accurate 
continuum estimation is often difficult using existing meth-
ods, particularly for low-resolution gamma-ray spectra, in 
which significant peak broadening increases the continuum 
complexity.

Three continuum estimation methods are available. 1) 
The fitting method is widely used in various applications 
[3–6]. It fits the peak region linearly or nonlinearly to a 
function with an added continuum. Given the difficulty 
in obtaining a precise characterization of the peak and 
continuum shapes and stabilizing the multiparameter fit-
ting, deviations are likely for complex continuums. 2) The 
step-type method is adopted in commercial software pack-
ages such as Genie 2000 (Canberra Industries) and Gam-
maVision (Ortec Industries) [7–9]. Because this method 
generates a step-shaped curve within a peak region that 
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declines from left to right, it is suitable for a continuum 
exclusively formed by multiple Compton scattering events 
but not for one containing high background counts. 3) 
The topological method, called the peak erosion method, 
used in this study typically involves an iterative process 
to remove the peaks in convex structures and establish 
a baseline. Although numerous iterative processes have 
been proposed [10–17], the peak erosion method can 
roughly outline the continuum shape but fails to describe 
fine structures.

Overall, the three available methods perform approxi-
mations or have predetermined parameters and can-
not suitably estimate complex continuums, particularly 
from low-resolution gamma-ray spectra. Moreover, they 
involve complicated data processing steps (e.g., fitting 
and erosion), which are inconvenient in practice. To 
improve the accuracy and applicability of continuum esti-
mation, an end-to-end method based on deep learning 
is proposed and a novel approach compared to existing 
methods is established.

The remainder of this paper is organized as follows: 
Sect. 2 presents the proposed method for generating the 
theoretical continuum of a simulated gamma-ray spec-
trum, as well as a convolutional neural network (CNN) 
constructed to relate the primary gamma-ray spectrum 
to its continuum through deep learning. In addition, we 
describe test and validation experiments conducted using 
an in-house whole-body counter (WBC) to evaluate the 
proposed and three existing methods. The experimen-
tal results are reported in Sect. 3, and the limitations of 
existing methods and advantages of the proposed method 
are further discussed in Sect. 4. Finally, conclusions are 
drawn in Sect. 5.

2 � Materials and methods

2.1 � Generation of theoretical continuum

The measured gamma-ray spectrum is broadened owing to 
the statistical fluctuations of either light in the scintillation 
detector or electron–hole pairs in the semiconductor detector 
[18]. However, a spectrum without broadening can be syn-
thesized using Monte Carlo (MC) simulations. When a simu-
lated spectrum without broadening is generated, each peak 
assumes a single channel, thereby simplifying the removal of 
net peak counts. The remaining spectrum can then be manually 
broadened, and the theoretical continuum of the correspond-
ing broadened spectrum can be obtained. The theoretical con-
tinuum is obtained by the procedure illustrated in Fig. 1 and 
is described below.

Let x =
[
x1, x2,… , xn

]
 be a simulated gamma-ray spectrum 

and x� =
[
x�
1
, x�

2
,… , x�

n

]
 be its corresponding spectrum without 

broadening, where n is the number of channels. If a peak exists 
at channel k in x′ , the net peak counts are removed by replacing 
the counts of channel k with the average counts of its adjacent 
left and right channels, as follows:

If x′ has multiple peaks, the above calculation is applied to 
each one. To obtain xb according to the broadening function 
applied in the MC simulation, x′ is manually broadened. 
Consider a common Gaussian broadening function given by
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Fig. 1   Generation of theoretical continuum
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where Ed and Ep are the deposited energies before and after 
broadening during simulation, respectively; � is the stand-
ard deviation of Ed ; and Xf is a Gaussian random number. 
Manual broadening proceeds as follows [19].

where xb
i
 represents the counts of channel i in the broadened 

spectrum xb ; Ej and Ej are the energy values of channels i 
and j, respectively; and w is the channel width expressed in 
terms of energy. The resulting xb corresponds to the theoreti-
cal continuum of the gamma-ray spectrum x.

2.2 � CNN for continuum estimation

CNNs are the most common architecture used in deep learn-
ing [20–24]. Compared to a fully connected network, a CNN 
can extract multiscale features over multiple convolutional 
layers and prevent overfitting through parameter sharing 
when treating high-dimensional data in computer vision 
and other areas [25–27]. Considering a spectrum with hun-
dreds or thousands of channels as the input and a predicted 
continuum over the entire spectral range as the output, high-
dimensional data are involved at both ends. Hence, a CNN 
is preferable to a fully connected network for extracting dis-
tinctive and stable shape features from the spectrum and 
relating them to a continuum. Additionally, the convolution 
operation is highly effective for handling data with localized 
correlations or local information, as has been extensively 
demonstrated in image processing, where 2D local correla-
tions are prevalent. Therefore, we propose the incorporation 
of CNN to harness their inherent ability to exploit the 1D 
local correlations exhibited in the spectra.

The proposed CNN is a modified version of ResNet-50 
[28], the architecture of which is shown in Fig. 2. It con-
sists of an input layer, multiple residual modules, a fully 
connected layer, and an output layer. The input spectrum 
is arranged in 1024 channels, a configuration commonly 
considered for a low-resolution detector. Spectra with dif-
ferent numbers of channels can be matched to the input via 
channel splitting or merging. Residual modules prevent the 
vanishing gradient problem during deep learning by estab-
lishing skip connections from the output of the front layer 
to the subsequent outputs across a convolutional layer [29, 
30]. Two types of residual modules, denoted as R1 and R2, 
are used, and their architectures are shown in Fig. 2a and 
b, respectively. Module R1 is characterized by four param-
eters: R1(Din,Dout,Chin, andChout ), where D represents the 
data dimension, Ch represents the number of convolution 
kernels, and the subscripts in and out indicate the input and 
output, respectively. Module R2 is characterized by two 
parameters: R2(D and Ch), where D and Ch apply to both 

(3)xb
i
=

n�
j=1

x�
j√

2��w
e
−
(Ei−Ej)

2

2�2 ,

input and output data. In Fig. 2a and b, Conv1D(k, s) rep-
resents a 1D convolutional layer with a convolution kernel 
width k and stride s, and Ch1 , Ch2 , and Ch3 represent the 
number of channels of the corresponding convolution ker-
nels. In R1, Ch1 = Ch2 = Chout∕4 and Ch3 = Chout , and in 
R2, Ch1 = Ch2 = Ch∕4 and Ch3 = Ch . BN denotes the batch 
normalization applied to the batch training data, and ReLU 
denotes the rectified linear unit (ReLU) activation in each 
layer. ReLU activation is employed to introduce nonlinearity, 
thereby enhancing the mapping capability of the CNN and 
ensuring non-negativity in each channel of the continuum in 
the final layer. Each module R1 reduces the data dimensions 
by one-fourth and quadruples the number of convolution 
kernel channels (except for the first module), whereas R2 
maintains the two parameters. Through four R1–R2 blocks, 
the spectral features are finally embedded into a 16 × 256 
vector and mapped onto the continuum through the last fully 
connected layer. Because modules R1 and R2 have three 
convolutional layers, the entire CNN contains 51 layers, 
including the input and output layers, and more than 105 
parameters.

2.3 � Test setup

First, a laboratory test experiment was conducted using 
available equipment. The setup involved an in-house NaI-
type WBC to measure the radioactivity from the human 
body. WBC is commonly used in occupational radiation 
monitoring in nuclear facilities (e.g., nuclear power plants) 
to determine the category and activity of radionuclides 
inside an exposed human body by detecting the emitted 
gamma-ray spectrum [31, 32].

This setup is suitable for evaluating the continuum esti-
mation for the following reasons: First, owing to the limited 
energy resolution of the NaI detector, the peaks in its spec-
trum are strongly broadened, leading to a wide continuum 
that is more difficult to estimate accurately than narrow con-
tinuums. Second, the NaI detector used in the WBC is larger 
than that used in other devices. Specifically, the size of the 
WBC used in this study was 7.6 cm × 12.7 cm × 40.6 cm , 
which resulted in multiple Compton scattering events inside 
the detector and a much higher continuum within the peak 
region than that obtained from a small detector. Clearly, a 
higher continuum requires better estimation to obtain accu-
rate peak net counts. Third, the human body with radio-
nuclides is a large volumetric radioactive source, and the 
emitted gamma rays are considerably scattered before detec-
tion. Consequently, more continuum counts are recorded in 
the low- and middle-energy regions of the spectrum. Mean-
while, the detector in a WBC is usually well-shielded by 
thick stainless steel and lead, causing severe backscattering 
of gamma rays. Combining the two abovementioned scat-
tering mechanisms, the continuum differs completely from 
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that observed when measuring a simple point source without 
shielding. Fourth, radionuclides in the human body have low 
activity; thus, the peak-to-continuum count ratios are lower 
than those formed by a strong source. This increases the 
importance of accurate continuum estimation.

2.4 � Dataset construction

The digital model of the setup described in Sect. 2.3 was 
constructed using a human body represented by a human 

phantom (see Fig. 3c). Accordingly, an MC simulation was 
conducted to generate a dataset for training and testing the 
CNN using the GEANT4 code [33–35].

Nine common radionuclides used in routine internal expo-
sure monitoring in nuclear power plants were selected to simu-
late the spectra, as detailed in Table 1. Per simulation run, a 
random selection of one to five radionuclides was made from 
a given set. The activity of each radionuclide was then ran-
domly assigned a value ranging from hundreds to thousands of 
becquerels, based on realistic activity levels. Simulated source 
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Fig. 2   Architectures of residual modules a R1, b R2, and c proposed CNN
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particles were then included with energies equal to the gamma-
ray theoretical energies and quantities equal to the radionu-
clide activities multiplied by the gamma-ray branching ratios 
for 5 min, which is a typical acquisition time in practice. In 
addition, the source particles were uniformly distributed in the 
phantom, which is consistent with real conditions. The real 
spectrum-broadening function in Eq. (4) was used during the 
simulation, and the gamma-ray energies shifted slightly from 
their theoretical values (as presented in Eq. (5)) to mimic the 
temperature shifts that occur in NaI detectors.

where � and Ed are both expressed in keV according to the 
definitions provided in Eq. (2).

where E� and Es
�
 are the gamma-ray energies before and 

after shifting, respectively; � is a random number between 

(4)� = −3.46 + 0.98
√
Ed

(5)Es
�
= E� + 0.022E��,

−1 and 1; and the value of 0.022 is also determined through 
measurements.

We obtained a training set with 106 spectrum samples, 
20% of which were reserved as test samples. The corre-
sponding continuums were generated using the method 
described in Sect. 2.1.

2.5 � Evaluation measures

Instead of directly assessing the error in the estimated 
continuum counts, the proposed method was evaluated 
more intuitively by comparing the deduced radionuclide 
activity values with the theoretical values defined dur-
ing the simulation. The activity relative error (AcE) and 
mean AcE (MAcE) obtained from the test set were used 
for evaluation.

Consider a peak region that includes n channels: The 
activities of the radionuclides were determined as follows:

where S is the sum of the peak net counts; Yi and Ci are the 
total counts and estimated continuum counts in channel i, 
respectively; n is the number of channels in the peak region; 
� is the photoelectric efficiency determined by the MC simu-
lation; T is the acquisition time (5 min for a test spectrum); 
and � is the branch ratio. For a multiplet, S is determined 
per peak using nonlinear least-squares fitting, similar to the 
fitting method for continuum estimation. When multiple 
peaks are involved for one radionuclide, its activity is given 
by the weighted average of the activity across the peaks, as 
demonstrated below.

where Ap and �2
Ap

 are the activity and its uncertainty esti-
mated based on peak p, respectively, and P is the total num-
ber of peaks of this radionuclide.

�2
Ap

 is determined by the error propagation based on 
Eq. (7). Because of the challenge of accurately evaluating 
the relative error of Ci , the Poisson distribution was utilized 
as an approximation to simplify the distribution of Ci . Con-
sequently, �2

Ap
 can be expressed as follows:

Based on the activity of each radionuclide, the AcEj and 
MAcE are defined as follows:

(6)A =
S

�T�
=

∑n

i=1

�
Yi − Ci

�
�T�

,

(7)Ā =

∑P

p=1

Ap

𝜎2
Ap∑P

p=1

1

𝜎2
Ap

(8)�2
Ap

=

∑n

i=1

�
Yi + Ci

�
�T�

.

Table 1   Nine common radionuclides in occupational internal expo-
sure monitoring of nuclear facilities and their radiation information

a 563.2 keV (8.4%) and 569.3 keV (15.4%) gamma rays are merged 
into 567.0  keV (23.8%) owing to their similar energy. Likewise, 
795.8  keV (85.4%) and 801.9  keV (8.7%) gamma rays are merged 
into 797.0 keV (94.1%)

Radionuclide Energy (keV) (branch ratio %)

60Co 1173.2 (100.0), 1332.5 (100.0)
137Cs 661.7 (85.1)
134Cs 567.0 (23.8), 604.7 (97.6), 797.0 (94.1)a

57Co 122.1 (85.5)
59Fe 1099.2 (56.5) 1292.6 (43.2)
54Mn 834.8 (100.0)
51Cr 320.1 (9.8)
65Zn 1115.5 (50.8)
95Nb 765.8 (99.8)

Fig. 3   In-house a WBC, b human physical phantom, and c corre-
sponding digital model constructed in GEANT4
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where Âj and Aj are the estimated and theoretical activity 
values of radionuclide j, respectively; and m is the number 
of radionuclides in the test spectrum samples.

2.6 � Comparison methods

To demonstrate the high performance of the proposed method, 
we compared it with three existing continuum estimation 
methods—the fitting, step-type, and peak erosion methods—
on the same training and test sets.

The fitting and step-type methods are only applicable to 
the peak regions. Thus, performance evaluation was limited 
to the peak regions of each spectrum. The peak region was 
defined as the range from left to right of the peak centroid with 
a full width at half maximum of 1.5. Overlapping peak regions 
formed by adjacent peaks were treated as a single region.

Details of the comparison methods can be found in cor-
responding studies, and we provide brief descriptions for 
convenience.

2.6.1 � Fitting method

Datapoints in the peak region can be fitted by the peak function 
P added to the continuum function C. To this end, weighted 
nonlinear least-squares fitting was applied to determine the 
minimum value of the following function:

where Yi , Pi , and Ci are the total counts, peak net counts, and 
continuum counts in channel i, respectively; wi is the channel 
weight, which is set to 1∕Yi assuming a Poisson distribution; 
and � is the parameter to be optimized.

Considering the spectrum acquired by the NaI detector, the 
following Gaussian function for a singlet can be used:

where HP is the peak amplitude, i is the channel index, c is 
the peak centroid, and � is a parameter related to the peak 
width, which is given by

(9)AcEj =
Âj − Aj

Aj

,

(10)MAcE =

m∑
j=1

|||Âj − Aj
|||

mAj

,

(11)L� =
∑
i

wi

(
Yi − Pi − Ci

)2
,

(12)Pi = HPe
−

(i−c)2

2�2 ,

(13)� =
FWHM

2.355
,

where FWHM is the full width at half maximum. For a mul-
tiplet, the sum of singlet functions should be applied.

The continuum function C has several representations. 
Theoretically, the complementary error function, that is, 
the convolution of a Gaussian function with a negative step 
function centered at the peak centroid, allows correct estima-
tion of multiple Compton scattering counts in the continuum 
[36, 37], and extra background counts can be accounted for 
by adding a linear term. Thus, an ideal C is given by

where HC is the function amplitude; i is the channel index; 
c is the peak centroid; � is a parameter related to the peak 
width; a and b are linear parameters; and erfc is the follow-
ing complementary error function:

Therefore, � embeds HP , HC , c, � , a, and b.
Several experiments have shown that C given by Eq. (14) 

is highly complex, and unsupervised fitting easily fails for 
multiplets in a low-resolution spectrum, thereby providing 
meaningless results. To ensure a suitable solution, we con-
sidered C as a simple cubic polynomial given by

In addition, we used the Levenberg-Marquardt algorithm 
[38] to optimize Eq. (11).

2.6.2 � Step‑type method

The step-type method implementations in Genie 2000 and 
GammaVision differ but provide similar results [8, 9]. The 
implementation of Genie 2000 is based on a direct and brief 
formula that is simpler and clearer than the iterative process 
used in GammaVision. Thus, we selected the implementa-
tion in Genie 2000, which is formulated as follows:

where G is the total sum of counts (gross) in the peak region; 
n is the number of continuum channels on each side of the 
region; C1 and C2 are the sums of counts in the continuum 
region to the left and right of the peak, respectively; and Yj 
is the total count in channel j. In Eq. (17), the first derivative 
(i.e., first discrete difference) of the continuum in a channel 
is assumed to be inversely proportional to its total count 
[39, 40]. Hence, the estimated continuum declines from left 
to right across the peak region and exhibits an obvious step 

(14)Ci = HCerfc

�
i − c√
2�

�
+ ai + b,

(15)erfc(x) =
2√
� ∫

+∞

x

e−t
2

dt.

(16)Ci = a1i
3
+ a2i

2
+ a3i + a4.

(17)Ci =
C1

n
+

C2 − C1

nG

i∑
j=1

Yj,
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shape near the peak centroid, which explains the name of 
this method.

2.6.3 � Peak erosion method

Although various iterative erosion methods have been pro-
posed, we used its simplest version [10, 15], which can be 
described by pseudocode as follows:

Here, M is the number of iterations; N is the number of 
channels; YL and YR are the counts in the channels to the 
left and right of channel i for 1.5 of the full width at half 
maximum, respectively; and min is the minimum function. 
After erosion, Y is a continuum across the entire spectrum. 
We selected M = 8 as the optimal value.

2.7 � Validation experiment

After testing, a validation experiment was conducted by 
measuring a human physical phantom using WBC (Fig. 3). 
The in-house phantom contained uniformly distributed 134
Cs, 137Cs, 57Co, and 60 Co with the known activity listed in 
Table 2. We performed 100 repeated measurements, and 
the average activity of each radionuclide estimated by the 
proposed method was validated by comparing it with the 
true value and the results of the three comparison methods. 
The required detection efficiency for each gamma ray was 
determined in the same manner as in the test step.

3 � Results

3.1 � Test

The AcE distribution and MAcE of each method are shown in 
Fig. 4 and Table 3. The AcE of the proposed method is within 
±3% for all test samples, leading to the smallest MAcE of 
1.5%. The fitting method provides a relatively small AcE of 

For j = 1 ∶ M

For i = 1 ∶ N

Yi = min

(
Yi,

YL + YR

2

)

End

End

−6 to 10% under most conditions but shows some outliers up 
to −40 to 60%, resulting in an MAcE of 5.5%. The step-type 
method provided an AcE within ±8%, achieving the second-
best results among all the methods with an MAcE of 3.1%. 
The peak erosion method had the worst performance, with 
its AcE ranging from −20% to 90%, resulting in the largest 
MAcE of 18.2%.

3.2 � Typical test scenarios

During testing, the performance of the compared methods was 
evaluated for three typical scenarios (see Fig. 5).

3.2.1 � Singlet without interference

The singlet of 137 Cs and its continuum estimated using each 
method are shown in Fig. 5a and b. The primary spectrum 
(Spec), theoretical continuum (TC), and results of the pro-
posed CNN-based (CNN), fitting (Fit), step-type (Step), and 
peak erosion (Erosion) methods are demonstrated. Moreover, 
the goodness of fit was evaluated using the coefficient of deter-
mination, R2 , by constructing datapoints ( Ci , Ĉi ) in the coor-
dinates of the theoretical (C) and estimated ( ̂C ) continuum 
counts (see Fig. 5c). The coefficient R2 is calculated as

(18)R2
= 1 −

∑n

i=1

�
Ci − Ĉi

�2
∑n

i=1

�
Ci − C̄

�2 ,

Table 2   Radionuclides and their activities inside human physical 
phantom

Radionuclide 57Co 134Cs 137Cs 60Co

Activity (Bq) 5498.2 3849.6 2879.5 4023.1

Table 3   MAcE of evaluated methods

Proposed CNN Fit Step Erosion

MAcE (%) 1.5 5.5 3.1 18.2
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Fig. 4   AcE distribution of proposed (CNN), fitting (Fit), step-type 
(Step), and peak erosion (Erosion) methods



	 R. Zhao et al.23  Page 8 of 13

where n is the number of continuum channels and C̄ is the 
mean theoretical continuum count. We use R2 because it 
can completely describe the closeness between the estimated 
and theoretical continuums while avoiding division by zero.

Other quantities are more intuitive and direct but are not 
suitable for evaluation. For instance, the relative error of the 
continuum counts per channel is defined as

In addition, the mean count error is defined as

However, the relative error is highly sensitive to small Ci val-
ues owing to its denominator, which consequently skews the 
assessment. Similarly, the mean count error tends to make 
small Ci dominant. Moreover, if Ci approaches zero, these 
values will reach infinity.

The proposed method achieved a coefficient R2 of 
0.9998, indicating a nearly ideal estimation, followed 

(19)REi =

(
Ĉi − Ci

)2
Ci

.

(20)MCE =

n∑
i=1

(
Ĉi − Ci

)2
nCi

.

closely by the step-type method with R2 of 0.9992, the 
fitting method with a smaller R2 of 0.9704, and the peak 
erosion method with the lowest R2 of 0.8994, showing an 
obvious deviation in the estimation.

3.2.2 � Singlet on high background counts

A singlet with a high background count was used to estab-
lish different scenarios. In Fig. 5d, a 661.7 keV gamma 
ray of 137 Cs and 1099.2 keV and 1292.6 keV gamma rays 
of 59 Fe increase the counts in the low-energy spectrum 
region, thus changing the continuum shape under the sin-
glet of 57Co. The proposed method exhibited the highest 
performance with R2 of 0.9992, followed by the fitting 
method with R2 of 0.9952, whereas the step-type method 
demonstrated a low performance with R2 of 0.9753. The 
results of the peak erosion method are not shown in Fig. 5f 
because its error is excessively high, providing an opposite 
trend with an R2 value of −0.9201.
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Fig. 5   Estimation results of each method on singlet of 137 Cs (a full 
estimation, b magnified view, c theoretical vs. estimated counts), on 
singlet of 57 Co (d full estimation, e magnified view, f theoretical vs. 

estimated counts), and on multiplet of 134 Cs and 137 Cs (g full estima-
tion, h magnified view, i theoretical vs. estimated counts)
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3.2.3 � Overlapping multiplet

A more complex scenario is illustrated in Fig. 5g. Three 
peaks of 134 Cs and the peak of 137 Cs highly overlap, result-
ing in a more complex continuum compared to the scenarios 
reported in Sects. 3.2.1 and 3.2.2. The R2 value of the pro-
posed method was 0.9964, outperforming the step-type, fit-
ting, and peak erosion methods with R2 values of 0.9890, 
0.9720, and 0.8755, respectively.

3.3 � Validation

The results obtained from the measurements listed in 
Table 4 show the largest AcE of −5.1% , −55.1% , −8.3% , 
and ∼ 99.1% for the proposed, fitting, step-type, and peak 
erosion methods, respectively. Similar to testing results, the 
proposed method provides the best estimation, whereas the 
step-type method yields the second-best results with AcE 
of less than 10% for the four radionuclides, and the fitting 
method provides the third-best results with good estimation 
for radionuclides 134Cs, 137Cs, and 60 Co but poor estimation 
for 57Co. Additionally, the peak erosion method again yields 
the worst results with its high AcE of 99.1% for 57Co.

4 � Discussion

4.1 � Test results

The AcE distributions and MAcE values reported in 
Sect. 3.2 can be explained by the limitations of existing 
methods and the advantages of the proposed method.

The fitting method involves multiparameter optimiza-
tion, which is highly nonlinear, nonconvex, and sensitive to 
parameter initialization. Hence, this method can easily fail 
for a wide and complex continuum when performed auto-
matically without manual adjustments, resulting in consid-
erable errors as shown in Fig. 4. In addition, the estimation 
is determined by a fitting function that limits the represent-
able continuums. Overall, the fitting method is unstable for 
continuum estimation in low-resolution gamma-ray spec-
tra because its unpredictable results may be suitable under 
simple conditions but unacceptable for high and complex 
continuums.

The step-type method can describe continuum counts 
within a peak region formed by multiple Compton scatter-
ing events of the concerned gamma ray but cannot determine 
the background counts. The detailed theory of this method 
can be found in existing literature [40, 41]. This method can 
only provide a continuum decline from left to right across 
the peak region and correct results when the background 
counts are negligible. However, it deviates when the con-
tinuum shape changes significantly from the ideal step curve 
for low-energy singlets or complex multiplets.

The peak erosion method considers the convexity of the 
peak structure and generates a relatively flat curve across the 
entire spectrum. However, when the continuum is convex, 
a large estimation error is observed. Moreover, the gener-
ated curve exhibits a random shape and cannot represent 
the details of a real continuum. Consequently, this method 
exhibits the worst performance in most scenarios.

Unlike existing methods, the proposed method estimates 
the continuum using global spectrum features extracted by a 
CNN, which provides small-scale count variance and other 
statistical characteristics, as well as large-scale count cor-
relation and shape characteristics over the entire spectrum. 
Thus, it outperforms the fitting and step-type methods, 
which use limited local counts within peak regions, and the 
peak erosion method, which uses counts on each side of 
the concerned channel within 1.5 times the full width at 
half maximum. In fact, over a spectrum, the continuum of a 
local region is highly related to the counts in other regions; 
however, this relationship is too complex and nonlinear to 
be modeled by conventional methods. In contrast, a high-
performance CNN is suitable for complex nonlinear map-
ping. By linking the primary spectrum to its continuum via 
multiple convolutional layers, the photoelectric peak, Comp-
ton scattering content, background radiation, backscattering 
counts, and other components are integrated by the CNN for 
prediction, establishing an end-to-end continuum estimation 
without any explicit regression or additional data processing. 
Therefore, the proposed method is convenient and accurate.

4.2 � Analysis of selected scenarios

The limitations of the existing methods and the advantages 
of the proposed method can be further demonstrated by con-
sidering the scenarios detailed in Sect. 3.2.

Table 4   Activity estimation of 
evaluated methods on measured 
spectrum

Nuclide 57Co 134Cs 137Cs 60Co

CNN (Bq) (error (%)) 5718.1 (4.0) 3726.4 (−3.2) 2732.6 ( −5.1) 4180 (3.9)
Fit (Bq) (error (%)) 2468.7 (−55.1) 4049.8 (5.2) 3032.1 (5.3) 3821.9 ( −5.0)
Step (Bq) (error (%)) 5866.6 (6.7) 3661 ( −4.9) 2640.5 ( −8.3) 3721.4 ( −7.5)
Erosion (Bq) (error (%)) 10946.9 (99.1) 3568.6 ( −7.3) 2703.9 ( −6.1) 3765.6 ( −6.4)
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4.2.1 � Singlet of 137 Cs without interference

For a singlet without interference from other high-energy 
rays, if the environmental background counts are subtracted, 
the continuum in the singlet is exclusively formed by Comp-
ton scattering of the concerned gamma ray and shows an 
ideal step shape. Thus, the step-type method provides high 
accuracy in this scenario, with an R2 of 0.9992. However, 
this value is still lower than that of the proposed method, 
demonstrating the advantage of global spectrum feature 
extraction over local continuum estimation. The bias of the 
fitting method is also relatively small, indicating a suitable 
step-shape estimation using a cubic polynomial. Neverthe-
less, owing to the inherent shape of a cubic polynomial and 
the lack of non-negative control during fitting, the continuum 
counts estimated by the fitting method are negative in the 
region exceeding 700 keV, leading to meaningless results. 
Nevertheless, this estimation can be applied to calculate 
subsequent peak net counts. Despite its simple continuum 
shape, the peak erosion method achieves the lowest R2 value 
because of its estimation irregularity. Interestingly, the sum 
of the estimated continuum counts may exhibit less deviation 
than the continuum shape, as shown in Fig. 5b, where the 
continuum is first underestimated and then overestimated.

4.2.2 � Singlet of 57 Co on high‑energy background

The simulated spectrum for the scenario reported in 
Sect. 3.2.2 without 57 Co is shown in Fig. 6a and b. The 

counts from the scattered gamma rays of 661.7  keV, 
1099.2 keV, and 1292.6 keV form the background of the 
peak of 57 Co at 85.3 − 158.7 keV . When added to the origi-
nal step-type continuum formed by multiple Compton scat-
terings of a 122.1 keV gamma ray, the additional background 
counts substantially change the final continuum shape. In 
Fig. 6b, the background curve fluctuates at 85.3 − 120 keV 
and drops sharply afterward. Thus, the continuum of 57 Co 
initially experiences a slower decline than expected, fol-
lowed by a rapid decline. This indicates poor performance 
of the step-type method, as shown in Fig. 5f, which first 
underestimates and then overestimates the continuum.

Owing to least-squares optimization, the fitting method 
can adjust its shape more flexibly than the step-type method 
and thus displays a better result under this scenario when the 
correct fitting is obtained. However, a large error in the peak 
erosion method is evident.

Existing methods fail to predict the background of 57 Co 
contributed by 137 Cs and 59Fe, thereby limiting their perfor-
mance when multiple radionuclides are involved. In contrast, 
the proposed method bridges the counts in different energy 
regions through deep learning by relying on training samples 
and can implicitly estimate the background curve based on 
the peaks of 137 Cs and 59Fe, as well as other spectrum char-
acteristics, resulting in the best estimation.

4.2.3 � Overlapping multiplet of 137 Cs and 134Cs

The complexity of the continuum in the overlapping mul-
tiplet region from 487.9 keV to 888.6 keV clearly shows in 

Fig. 6   Simulated spectrum of 
Fig. 5d without 57Co: (a full and 
b magnified views) of Fig. 5g 
with broadening and (c full and 
d magnified views) without 
broadening
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the corresponding spectrum without broadening in Fig. 6c. 
The Compton edges of the 604 keV, 661 keV, and 795 keV 
gamma rays accumulate in the multiplet region, leading to 
the multistep continuum shown in Fig. 6d, which declines 
more slowly than the normal step shape in the region below 
approximately 600 keV but faster in 600 − 800 keV . This 
trend agrees with the error of the step-type method under 
the same circumstances. Moreover, the estimated continuum 
of the step-type method is above the spectrum around the 
minimum spectrum value between the peaks at 661.7 keV 
and 797.0 keV, resulting in negative peak net counts in that 
region. However, the fitting method also fails to reflect the 
multistep shape (Fig. 5i) through a cubic polynomial, and 
negative continuum counts are again observed in the region 
around 800 keV in Fig. 5h. By contrast, the proposed method 
provides a higher estimation performance owing to the use 
of the CNN, even for the considered complex multiplet.

4.3 � Validation results

Figure 7 shows the continuum estimated by each method 
for the singlet of 57 Co ( 102.1 − 151.9 keV ), multiplet of 
134 Cs and 137 Cs ( 502.6 − 873.3 keV ), and multiplet of 60 Co 
( 1080.4 − 1430.7 keV ). The theoretical continuum is not 
shown in Fig. 7 because it is not visible in the measured 
spectrum, as explained in Sect. 2.1.

For the singlet, the performances of the proposed, step-
type, and peak erosion methods are similar to those reported 
in Sect. 3.2.2. However, the fitting method performs signifi-
cantly worse (Fig. 7c), possibly due to incorrect fitting, lead-
ing to a 55.1% underestimation of the activity of 57Co. More-
over, the AcE of the proposed method (Table 4) is slightly 

higher than its MAcE (Table 3) because of the additional 
error induced by the difference between the simulated detec-
tion efficiency and the true value, as in the step-type method.

The results for the two multiplets agree with those 
reported in Sect. 3.2.3. The overestimation of the step-type 
method near the minima between the two overlapping peaks 
(approximately 725keV and 1250keV) in Fig. 7b and d and 
the negative estimation of the fitting method above 1350 keV 
in Fig. 7d are also observed.

5 � Conclusion

Continuum estimation of the gamma-ray spectra is essential 
for assessing radionuclide activity. However, the invisibility 
and complexity of the continuum hinder accurate estima-
tions, particularly for low-resolution spectra. Existing meth-
ods, including fitting, step-type, and peak erosion methods, 
have inherent limitations in terms of accuracy and applica-
bility owing to their processing steps. To improve continuum 
estimation, an end-to-end method based on deep learning 
was proposed in this study. The theoretical continuums of 
simulated spectra were generated as the ground truth for 
learning, and a CNN architecture with four R1-R2 blocks 
was used to determine the relationship between the primary 
spectrum and its corresponding continuum through train-
ing. The trained CNN directly predicts the entire continuum 
across all channels. To test this method, a laboratory experi-
ment was performed using an in-house WBC and 106 train-
ing spectrum samples generated through MC simulation. 
The test results showcased the superior performance of the 
proposed method, as indicated by its best AcE distribution 

Fig. 7   Estimation results of 
each method on measured 
spectrum. a Full estimation and 
magnified views for b multiplet 
of 134 Cs and 137Cs, c singlet of 57
Co, and d multiplet of 60Co
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and the smallest MAcE of 1.5% among the evaluated meth-
ods. Three typical testing scenarios were selected for further 
analysis. The proposed method performed global feature 
extraction for local continuum prediction, achieving an R2 
value that is closest to one across all scenarios. By contrast, 
the fitting method showed deviations for a complex contin-
uum, whereas the step-type method initially underestimated 
and then overestimated the continuum for singlets contain-
ing high background counts, and reversed its performance 
for multiplets. The peak erosion method exhibited the worst 
performance owing to its rough estimation. Moreover, nega-
tive continuum counts occurred for the fitting and step-type 
methods. The results of a validation experiment using in-
house WBC to measure a human phantom containing four 
types of radionuclides were consistent with the test results.

As an added benefit, the proposed method facilitated 
peak identification, particularly for weak and overlapping 
peaks. This was achieved by estimating a baseline across 
the entire spectrum, unlike the fitting and step-type meth-
ods that required local peak identification, thus enhancing 
applicability.

Overall, the proposed method provided accurate and con-
venient continuum estimation in a low-resolution gamma-ray 
spectrum, which can potentially enhance the accuracy of 
quantitative radioactivity analysis.
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