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Abstract
The first 2+ excited states of the nucleus directly reflect the interaction between the shell structure and the nucleus, providing 
insights into the validity of the shell model and nuclear structure characteristics. Although the features of the first 2+ excited 
states can be measured for stable nuclei and calculated using nuclear models, significant uncertainty remains. This study 
employs a machine learning model based on a light gradient boosting machine (LightGBM) to investigate the first 2+ excited 
states. Specifically, the training of the LightGBM algorithm and the prediction of the first 2 + properties of 642 nuclei are 
presented. Furthermore, detailed comparisons of the LightGBM predictions were performed with available experimental 
data, shell model calculations, and Bayesian neural network predictions. The results revealed that the average difference 
between the LightGBM predictions and the experimental data was 18 times smaller than that obtained by the shell model 
and only 70% of the BNN prediction results. Considering Mg, Ca, Kr, Sm, and Pb isotopes as examples, it was also observed 
that LightGBM can effectively reproduce the magic number mutation caused by shell effects, with the energy being as low as 
0.04 MeV due to shape coexistence. Therefore, we believe that leveraging LightGBM-based machine learning can profoundly 
enhance our insights into nuclear structures and provide new avenues for nuclear physics research.
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1  Introduction

The study of excited states in atomic nuclei is a signifi-
cant area of research in nuclear physics, aimed at elucidat-
ing the internal structure and interactions of nuclei. The 
energy level scheme of nuclear states is crucial for under-
standing nuclear structures and explaining nuclear reaction 
processes [1, 2]. It also provides essential insights into 
nuclear synthesis processes in celestial environments [3, 
4]. Particularly for the first 2 + states of even-even nuclei, 
these nuclear properties yield valuable information regard-
ing the evolution of nuclear characteristics and shell mod-
els. Accurate knowledge of these properties is vital for 
the continued advancement of nuclear model calculations 
and for the theoretical understanding of many intriguing 
phenomena in the quantum realm. However, the study 
of excited states presents a series of challenges. Exper-
imentally, the scarcity of certain nuclear states and the 
complexities associated with experimental measurements 
necessitate overcoming technical limitations and enhanc-
ing measurement accuracy. Additionally, careful control 
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over data processing and analysis is essential to ensure 
the reliability of the experimental results. Theoretically, 
the accurate modeling and calculation of multibody inter-
actions remain a complex issue that requires balancing 
simulation accuracy with computational efficiency. Thus 
far, various models have been developed to investigate the 
excited-state properties of atomic nuclei, considering dif-
ferent physical factors, such as the Shell Model (SM) [5, 
6], Collective Model (CM) [7–10], Collective Shell Model 
[11], and Density Functional Theory (DFT) [12, 13], and 
the Interaction Shell Model (ISM) [14]. Although these 
models offer various perspectives for understanding the 
excited-state properties of atomic nuclei, each model has 
its limitations under different conditions. Consequently, 
exploring the energy of the first 2+ states of atomic nuclei 
on a large scale remains a significant challenge.

Machine learning can extract valuable features and pat-
terns from diverse types of data and has been widely applied 
across various fields. As important branches of machine 
learning, neural networks and decision trees have long 
played crucial roles in predictive modeling, providing effec-
tive solutions for numerous tasks. In the domain of nuclear 
physics, machine learning holds significant potential for 
addressing both theoretical and experimental challenges 
[15–19]. For instance, these methods have been successfully 
utilized to predict nuclear mass [20–30], binding energies 
[31], particle physics [32], phase transitions [33], neutron 
star observables [34], fission fragments [35–38], half-life 
[39–42], ground state energy [43, 44], charge radius [45–47], 
giant resonance parameters [48], and reaction cross sections 
[49, 50].

In fact, studying the first 2+ states using machine learning 
algorithms is not a new topic. In 2020, Akkoyun et al.  [51] 
employed neural networks and found that their trained 
models achieved slightly more accurate energy values than 
those obtained from the shell model (SM). In 2022, Wang 
et al. [52] utilized a Bayesian neural network (BNN) to 
derive a more precise low excitation energy over a broad 
energy range, successfully reproducing experimental data 
within approximately 1.12 times that range. With the rapid 
advancements in computer science and artificial intelligence, 
a variety of sophisticated machine learning algorithms have 
emerged. Among these, LightGBM [53], developed by 
Microsoft in 2016, is an efficient gradient boosting frame-
work based on decision tree algorithms. It has been widely 
adopted in various machine learning tasks, demonstrating 
strong performance. Its advantages include: (1) rapid train-
ing speed, (2) improved accuracy in capturing nonlinear 
relationships in the data, (3) enhanced handling of large-
scale datasets, and (4) a significant reduction in memory 
usage. Based on the findings of Gao et al. [20], who used 
LightGBM to enhance the theoretical atomic nuclei mass 
model, investigating the application of LightGBM to predict 

the energy of the first 2 + states presents a promising area of 
research.

This study investigates the reasonable prediction of the 
first 2+ states of nuclei using LightGBM-based machine 
learning. In Sect. 2, we describe the construction of the 
LightGBM algorithm and its functionality. Section 3 pre-
sents the training process of the LightGBM algorithm and 
its predictions regarding the first 2+ properties of 642 nuclei. 
Additionally, we conducted a detailed comparison of the 
LightGBM predictions with available experimental data and 
shell model calculations, validating both the robustness of 
the LightGBM algorithm and its predictive accuracy. A sum-
mary and outlook are provided in Sect. 4.

2 � Methodology

In this section, we discuss the working principle of the 
LightGBM algorithm and how it can be utilized to construct 
a model for predicting the first 2+ states.

LightGBM is an efficient gradient boosting framework 
based on a decision tree algorithm that uses a gradient boost-
ing decision tree (GBDT) as the basic model, gradually con-
structs multiple decision trees, and combines their prediction 
results to improve the overall performance of the model. The 
specific architecture of LightGBM is illustrated in Fig. 1. 
Once the organized training data is input, features from dif-
ferent groups are separated, recombined, and bundled for 
training to create GBDT histograms. Following data paral-
lelism and number-theory iterations under defined hyperpa-
rameter settings, the final model is evaluated by verifying its 
root mean square error.

For the dataset, the energies of the first 2 + states of 642 
atomic nuclei, ranging from 4 He to 256Rf, as reported in Ref. 
[54] (see Fig. 2), were used for training and testing Light-
GBM to identify the functional patterns between energy 
and various nuclear characteristics. For each nucleus, we 

Fig. 1   The architecture of the LightGBM
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selected five physical quantities (see Table 1) as input fea-
tures. Given the relationship between excitation energy and 
nuclear shell structure, |Z − m| and |N − m| are considered, 
representing the distances between the number of protons 
and neutrons, respectively, and the nearest magic number. 
The parameter �2 describes the quadrupole deformation of 
a nucleus, indicating the extent to which the nucleus transi-
tions from a spherical to an ellipsoidal shape. The specific 
formula [54] is:

where B(E2) is the reduced rate of electric quadrupole tran-
sition from ground state to 2 + state given by:

For the current LightGBM parameter settings, the value 
of num_leaves (i.e., the maximum number of leaves allowed 
per tree; an increase in the number of leaves adds complexity 
to the model) is set to 48. The learning_rate (the step size for 
each iteration; a lower learning rate typically enhances the 
model’s generalization ability) is set at 0.05, and num_round 
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(i.e., the maximum number of iterations allowed for Light-
GBM model training, indicating the intensity of model 
training) is 500. Other parameters are generally set to their 
default values, as altering them does not significantly affect 
the results. During the training process, LightGBM gen-
erates a decision tree based on the relationships between 
the features of the training set and E(2+

1
 ). Tenfold cross-

validation is employed to evaluate the model by dividing 
the original dataset into 10 equally sized subsamples, which 
helps prevent overfitting and selection bias. After training, 
the model makes predictions using a test set, with each 
atomic nucleus in the test set navigating the decision tree 
created during training [20]. Each decision tree contributes 
to the predicted values based on the feature quantities of 
each nucleus, and the final predicted value is the sum of the 
contributions from all the trees.

3 � Results and discussion

In this section, LightGBM is trained to learn the functional 
patterns between the first 2+ state energies and various 
nuclear properties. The excitation energies of 646 nuclei 
between 4 He and 256Rf, obtained in Ref. [54], are utilized in 
this study. These nuclei are divided into training and testing 
datasets. It is important to note that four data points with 
energy values exceeding 5000 keV are excluded from the 
analysis, as these unusually high values are rare in the data-
set. Consequently, the total number of samples used in the 
present LightGBM study is 642.

First, the effect of training size on the predicted excita-
tion energy was examined, as depicted in Fig. 2. 128, 321, 
and 514 nuclei (approximately 20%, 50%, and 80% of the 
total 642 nuclei, respectively) were randomly selected to 
construct the training sets. It can be observed that for atomic 
nuclei with proton and neutron numbers less than the magic 
number 50, the average excitation energy was higher, at 
approximately 1115 keV. In contrast, for atomic nuclei with 
proton and neutron numbers greater than the magic number 
50, the average excitation energy was significantly lower, 
around 399 keV. This difference may be attributed to the 

Fig. 2   (Color online) Locations 
of the training dataset with 642 
cores from Ref. [54], including 
20% (a), 50% (b), and 80% (c), 
in the N-Z plane. Energies of 
2
+

1
 states E(2+

1
) for even-even 

Z=2–104 nuclei, in keV

Table 1   Selection of characteristic quantities

Features Description

Z Proton number
N Neutron number
�
2

Quadrupole deformation parameter
|Z − m| The distance between the num-

ber of protons in nucleus and 
the nearest magic number; 
m ∈ {8, 20, 28, 50, 82, 126}

|N − m| The distance between the num-
ber of neutrons in nucleus and 
the nearest magic number; 
m ∈ {8, 20, 28, 50, 82, 126, 184}
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filling of lower energy levels in the shell structure when 
the number of protons and neutrons is below 50, requiring 
higher energy to excite the nucleus to higher energy lev-
els. Conversely, when the number of protons and neutrons 
exceeds 50, the deformation and collective motion modes 
of the nucleus increase, resulting in decreased shell spacing 
and consequently lower excitation energies.

Based on the aforementioned analysis, we adopted three 
uniformly random training sets with different segmenta-
tion ratios to train the LightGBM model and calculated 
the RMSE for each group over the training rounds. The 
results are presented in Fig. 3. As the number of training 
rounds increased, the RMSE gradually converged to a cer-
tain value. Additionally, as the training ratio increased, the 
RMSE tended to decrease. During the initial stages of model 
training, optimizing model parameters using only the train-
ing set ensured a gradual decrease in error on the training 
data. However, this approach does not accurately reflect the 
model’s generalization ability to unseen data. To address 
this, we introduced a validation set to monitor the model’s 
performance in real time with unseen data. By plotting the 
RMSD curves for both the training and validation sets, we 
can intuitively evaluate the model’s learning performance 
and identify any potential overfitting, thereby optimizing its 
overall performance and generalization ability. As shown 
in Fig. 4, during the initial stage of training, the prediction 
accuracy on the validation set continued to improve, as indi-
cated by a gradual decrease in the RMSD value. However, as 
the training rounds reached between 500 and 1000, the loss 
curve for the validation set began to increase slowly, sug-
gesting a slight deviation from optimal generalization per-
formance. Consequently, we recommend using 500 training 

rounds as a suitable number for the current model to effec-
tively avoid both overfitting and underfitting.

To further evaluate the predictive capability of Light-
GBM across different nuclear regions, Fig. 5 presents the 
predicted energies for the first 2+ states of the Mg, Ca, Kr, 
Sm, and Pb isotope chains. While the BNN [52] offers a 
reasonable description of these isotopes, its quantitative 
accuracy can still be improved. Notably, the BNN tends 
to overestimate the 2+ state energies of Mg isotopes while 
underestimating those of Ca isotopes. In contrast, the Light-
GBM predictions not only effectively replicated the trends 
observed in the isotopes but also captured the magic number 
mutations caused by shell effects more accurately, aligning 
closely with experimental measurements.

The Mg isotope chain is a typical light isotope series that 
transitions from a spherical nucleus to a deformed nucleus. 
When the neutron number N reaches 20, the phenomenon of 
“magic number disappearance” in the shell model begins to 
manifest, leading to the formation of the so-called “deforma-
tion island”. Due to the significant deformation of atomic 
nuclei that deviates from spherical symmetry, traditional 
shell models can no longer accurately describe nuclear 
structures. In this context, LightGBM offers a more com-
plex and effective description of atomic nuclei in inversion 
islands, outperforming the BNN method. For the Mg iso-
tope chain, the traditional magic number N =28 for 40 Mg is 
situated close to the drip-line nucleus. The predicted ener-
gies of the first 2+ states in this isotope chain are illustrated 
in Fig. 5a, with recent experimental data [55] provided for 
comparison. The results from LightGBM demonstrate better 
agreement with the experimental values than those from the 
BNN method. In the Ca isotope chain, LightGBM effectively 
reproduces the shell effects at N = 20 and 28, as well as its 
sub-shell effect at N = 32 , as shown in Fig. 5b. For the Kr 

Fig. 3   (Color online) RMSE loss decline curve of each group over 
for 3000 training rounds, with 642 nuclei in the training set randomly 
divided into 20% (blue), 50% (orange), and 80% (green) of the dataset

Fig. 4   Variation curves of RMSD of training set (blue curve) and val-
idation set (red curve) with the number of training round
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and Pb isotopes, the existence of shape coexistence leads 
to very low first 2 + state energies in the neutron-deficient 
region. Additionally, LightGBM accurately predicts experi-
mental values in the neutron-rich region, particularly near 
the magic numbers N = 50 and 126. For the Sm isotopes in 
the medium-heavy nucleus region, when N approaches 90, 
the observed energy drops to as low as 0.04 MeV due to 
deformation characteristics, which are successfully repro-
duced by the LightGBM. These comparisons validate the 
robustness and accuracy of LightGBM’s predictions.

Based on the qualitative constraints discussed above, a 
more specific, intuitive, and analytically quantitative expres-
sion is obtained to quantify the differences between the mod-
els. Therefore, we present the differences between the first 
2+ states predicted by LightGBM and the corresponding 
experimental data in Fig. 6. For comparison, we also include 
differences between the shell model [54] calculations and the 
BNN results [52]. It is evident that when the charge number 
Z reaches 30, the shell model provides limited computational 
results. Overall, LightGBM not only accurately reproduces 
the experimental results in the light nucleus region but also 
in the medium-heavy nucleus region. The calculated results 
for transition and magic nuclei align well with experimental 
data, demonstrating more consistent and stable outcomes 
compared to the BNN.

To better assess the accuracy and stability of LightGBM 
in predicting the first 2+ state energies, we plotted histo-
grams of the differences between the predictions from the 
shell model, BNN, and LightGBM against the experimental 
values, as shown in Fig. 7. The average difference between 
the shell model calculations and the experimental values 
for 90 nuclei (see Ref. [54]) is 0.091 MeV, with a standard 
deviation of 0.17 MeV. In contrast, the average difference 
between the BNN calculations and the experimental val-
ues for 630 nuclei is 0.007 MeV, with a standard deviation 
of 0.12 MeV. For LightGBM, the average difference from 
the experimental values across 642 nuclei is 0.005 MeV, 

accompanied by a standard deviation of 0.10 MeV. Given 
that LightGBM exhibits both a lower average difference 
and standard deviation, we conclude that it provides more 
accurate and consistent results. This further reinforces the 
reliability of LightGBM as a machine learning method for 
predicting the first 2 + states energies.

In addition to predicting the first 2+ state energies, we 
investigated the sensitivity of the LightGBM model to input 
parameters, which can enhance both the interpretability [20] 
and transparency of the model. To achieve this, we employed 
the popular SHAP [56] (SHapley Additive exPlanations) 

Fig. 5   Energies of the first 2 + states on Mg, Ca, Kr, Sm, and Pb isotope chains, with blue dots representing experimental values, red squares rep-
resenting BNN, purple pentagons representing Shell model and green triangles representing LGBM

Fig. 6   (Color online) Difference between the theoretical excitation 
energy obtained from Shell Model (blue diamond), BNN(red dia-
mond), LightGBM (green diamond) and the experimental excitation 
energy
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feature attribute method to interpret the LightGBM model. 
SHAP is an explanatory method grounded in cooperative 
game theory, designed to quantify the contribution of each 
feature to the predictions made by machine learning models. 
The core principle of SHAP is to allocate feature contribu-
tions by calculating Shapley values, thereby ensuring fair-
ness and consistency in interpretation. Key characteristics 
of SHAP include the provision of unique and interpretable 
contribution values for each feature, as well as its compat-
ibility with various model types, including tree-based mod-
els and neural networks.

Given a feature set F and model prediction function f (x) , 
the SHAP value �

i
 of a certain feature i is defined as

where S is a subset of the feature set that does not contain 
features i , |S| represents the size of the set S , and F is the 
complete set of all features. This formula calculates the 
weighted average of the marginal contribution of the added 
feature i to the model prediction for all possible feature 
combinations.

(4)𝜙
i
=

∑

S⊆F⧵{i}

|S|! (|F| − |S| − 1)!

|F|!

[

f (S ∪ {i}) − f (S)
]

,

Figure 8 shows the ranking of the importance of five 
sets of features. The top N and |N − m| are the most criti-
cal parameters for predicting the first 2+-state energies. The 
red and blue points correspond to the high- and low-end 
parts of the feature values, respectively. The dots are more 
enriched between −0.5 and 0.3, with only approximately 2% 
of the light nuclei in the total dataset showing a bias. Similar 
behavior was observed in the experimental data and BNN 
predictions. In future, we expect to enlarge the prediction 
horizon either when sufficient experimental data are avail-
able for the light nuclear region or by studying different 
nuclear regions separately.

4 � Summary

The properties of the first 2+ excited states are crucial for 
understanding nuclear structure. This study employed a 
LightGBM-based machine learning model to investigate 
the first 2+ states across 642 nuclei. Several features of 
atomic nuclei were considered as inputs to predict the 2+ 
state energies. The LightGBM predictions were explicitly 
compared with available experimental data, shell model cal-
culations, and BNN method predictions. Notably, the dif-
ference between the LightGBM predictions and the average 
experimental data was 18 times smaller than that obtained 
using the shell model and only 70% of the BNN prediction 
results. We demonstrated that LightGBM effectively repro-
duces the magic number mutations caused by shell effects, 
with energies as low as 0.04 MeV due to shape coexistence. 
The results for transition and magic nuclei showed excellent 
agreement with experimental data. These findings not only 
enhance existing predictive models but also pave the way 
for future machine learning applications in nuclear phys-
ics, allowing for a more nuanced understanding of nuclear 
structure and excitation energies.

Fig. 7   (Color online) Density distribution of the difference between 
experimental and model output. Blue color histogram bar represents 
the Shell Model, red denotes BNN, while green indicates the Light-
GBM

Fig. 8   (Color online) The importance ranking of the five input fea-
tures obtained by the SHAP explained LightGBM model is presented, 
and the x-axis of the graph represents the SHAP value, indicating the 
importance of the features for specific predictions. Each point repre-
sents a nucleus, and the color changes from red (high eigenvalue) to 
blue (low eigenvalue)
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