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Abstract
Higher-order modes of the neutron diffusion/transport equation can be used to study the temporal behavior of nuclear reactors 
and can be applied in modal analysis, transient analysis, and online monitoring of the reactor core. Both the deterministic 
method and the Monte Carlo (MC) method can be used to solve the higher-order modes. However, MC method, compared 
to the deterministic method, faces challenges in terms of computational efficiency and � mode calculation stability, whereas 
the deterministic method encounters issues arising from homogenization-related geometric and energy spectra adaptation. 
Based on the higher-order mode diffusion calculation code HARMONY, we developed a new higher-order mode calculation 
code, HARMONY2.0, which retains the functionality of computing � and � higher-order modes from HARMONY1.0, but 
enhances the ability to treat complex geometries and arbitrary energy spectra using the MC-deterministic hybrid two-step 
strategy. In HARMONY2.0, the mesh homogenized multigroup constants were obtained using OpenMC in the first step, 
and higher-order modes were then calculated with the mesh homogenized core diffusion model using the implicitly restarted 
Arnoldi method (IRAM), which was also adopted in the HARMONY1.0 code. In addition, to improve the calculation effi-
ciency, particularly in large higher-order modes, event-driven parallelization/domain decomposition methods are embedded in 
the HARMONY2.0 code to accelerate the inner iteration of �∕� mode using OpenMP. Furthermore, the higher-order modes 
of complex geometric models, such as Hoogenboom and ATR reactors for � mode and the MUSE-4 experiment facility for 
the prompt � mode, were computed using diffusion theory.

Keywords Neutron diffusion equation · Higher-order modes · Global homogenization · Two-step method · Domain 
decomposition

1 Introduction

The eigenvalue problem of the neutron transport/diffusion 
equations is one of the most problematic issues in reactor 
physics. By solving the � eigenvalue equation, the effective 
multiplication factor keff and the neutron flux distribution 
(i.e., the fundamental � mode) at the critical state of a reac-
tor can be obtained. On the other hand, by solving the � 
eigenvalue equation, a reactor’s asymptotic characteristics of 
neutron multiplication behavior with time can be obtained. 
In reactors deviating from criticality, apart from the funda-
mental mode, a higher-order mode neutron flux exists, which 
together (fundamental and higher-order modes) reflect the 
time-space characteristics of the neutron flux in the reactor. 
The application of higher-order modes has been extended 
to several research areas in reactor physics, including modal 
analysis [1], transient analysis [2], online monitoring [3], 
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higher-order reactor noise analysis [4], and higher-order 
perturbation theory [5].

Calculation methods for the higher-order modes of the 
neutron transport/diffusion equation are mainly divided into 
deterministic and Monte Carlo (MC) methods. In determin-
istic methods, subspace methods, including the implicitly 
restarted Arnoldi method (IRAM) [6] and subspace iteration 
(SSI) [7] algorithms, are typically used to solve multigroup 
transport/diffusion equations. The MC method is primar-
ily based on the fission matrix method and its derivative 
methods, in which the fission matrix is obtained by the MC 
transport process, and the higher-order neutron flux is then 
calculated by solving the eigenvalue problem of the fission 
matrix [8, 9].

A major advantage of deterministic methods is the vari-
ety of numerical solvers available for large sparse matrices. 
These methods have led to many studies on the calculation 
of higher-order mode neutron fluxes, particularly for � mode. 
However, research on solving higher-order � modes based on 
deterministic methods has mainly focused on simple geomet-
ric problems or core problems with homogenized group con-
stants of assemblies. For example, Wu et al. used the IRAM 
method to solve IAEA-3D and PHWR problems [6]. Bernal 
et al. used the Krylov–Schur method to solve the IAEA-3D 
and hexagonal lattice core VVER-1000 3D problems [10]. 
Morato et al. solved the BWR and C5G7 problems based on 
the Krylov–Schur method using homogenized fuel assem-
blies as the computational mesh and the finite difference 
and discrete coordinates method as an approximation [11]. 
To make the deterministic higher-order modes calculation 
applicable to complex cores, Abrate et al. used the "hybrid 
two-step method" of MC assembly homogenization and core 
deterministic higher-order mode calculation to obtain the � 
higher-order modes of C5G7 and UAM benchmarks with 
the parallel SSI algorithm (PSSI) to speed up [7]. Compared 
with � mode, there is relatively less research related to � 
mode, and the models of � mode calculations are usually 
similar to or simpler than those of the � mode. For example, 
Verdú et al. solved the PHWR problem [12], and Avvaku-
mov et al. solved the hexagonal lattice core VVER-1000 
and HWR based on homogenized two-group constants [13]. 
In addition, the �-mode demonstrates lower computing effi-
ciency than the �-mode. In previous studies, to study the 
spatial effect induced by higher-order modes in an exter-
nal neutron source-driven subcritical reactor, we developed 
the deterministic higher-order mode diffusion code HAR-
MONY1.0, based on the IRAM algorithm [14].

In contrast, the MC method has significant advantages 
when dealing with complex geometries. Carney et  al. 
obtained � modes using MC models such as 2D-PWR, the 
Hoogenboom MC performance benchmark, fuel storage 
vault problem (FVP), and the advanced test reactor (ATR) 
model using the fission matrix method [15]. To speed up 

the calculation of MC, Gupta et al. implemented the SSI 
algorithm based on the MC method to solve higher-order � 
modes [16]; however, it still required thousands of seconds 
of CPU time for one-dimensional problems. In their subse-
quent research, the solution time for the Takeda 3D LWR 
reached as high as 250,000 s of CPU time [17]. Additionally, 
a higher-order � - mode solution based on the MC method 
has also been studied. Owing to their low computational 
efficiency, MC calculations are typically used in relatively 
simple models, with a significant portion being one-dimen-
sional. Betzler et al. used the transient rate matrix method 
(TRMM) to solve the forward/adjoint � mode in one-dimen-
sional media [8]. Vitali et al. obtained the first few orders of 
� mode of a rod model and a continuous-energy transport 
model using �-k power iterations and the generalized iter-
ated fission probability method [18]. Yamamoto employed 
the power iteration method to solve the one-dimensional 
five-region problem, and utilized a pulsed neutron method 
simulation to investigate the time characteristics of the 
first three � modes [19]. Betzler et al. utilized the TRMM 
method to solve the large hexagonal lattice core of the Fort 
St. Vrain (FSV) reactor and validated the numerical results 
with experimental � [20]. Vitali et al. implemented a matrix-
filling Monte Carlo method in TRIPOLI-4 and applied it to 
solve the EOLE reactor problem [21]. The fission matrix 
method and its derivatives face challenges related to memory 
usage. Taking a 3D problem as an example, and assuming 
that there are 102 meshes for space, energy, and angle, the 
total number of meshes is 1010 . Consequently, the number 
of elements contained in the fission matrix would amount 
to 1020 . Given that each element is a double-precision float-
ing-point number, both current and foreseeable computing 
resources would struggle to handle the memory overhead 
required for such a large amount of data [18].

To improve the adaptability of deterministic higher-order 
modes calculation method in complex geometry reactors 
and further accelerate the calculation speed, we developed 
a code system HARMONY2.0 based on the concept of 
"hybrid two-step method" by combining the Monte Carlo 
and deterministic methods, utilizing OpenMC [22] coupled 
with HARMONY1.0. HARMONY2.0 retains the function-
ality of computing higher-order � and � modes and their 
adjoint modes from HARMONY1.0 and, as well as the par-
allel acceleration of higher-order mode calculations through 
event-driven domain decomposition parallelization.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview of several key topics, including the 
theory and computational methods of higher-order harmonic 
neutron diffusion equations, the Monte Carlo homogeniza-
tion method based on OpenMC, and the principles of parallel 
acceleration achieved using OpenMP. In addition, it presents 
an introduction to the HARMONY2.0 code. The validation 
results are presented in Sect. 3, including the verification of 
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parallel computing and the validation of HARMONY2.0 for 
higher-order mode solutions in complex geometric reactor 
cores.

2  Methods and methodologies

2.1  Eigenvalue problems of neutron diffusion 
equation

The neutron diffusion equation is expressed as follows:

where � represents the neutron velocity, � denotes the neu-
tron flux, t stands for time, � represents the total delayed 
neutron fraction, �p signifies the prompt neutron fission 
spectrum, �d,i represents the delayed neutron fission spec-
trum for the ith group, �i denotes the decay constant of the 
ith group precursor nucleus, ci represents the concentration 
of the ith group precursor nucleus, and �i represents the frac-
tion of delayed neutrons for the ith group. The operators L 
and F are defined as follows:

By introducing a balance factor of 1∕� and adjusting the 
right-hand side fission neutron source term to make the sys-
tem pseudo-critical, the time derivative term is eliminated, 
resulting in a steady-state �-mode neutron diffusion equa-
tion, which can be expressed using the following matrices:

where � = (1 − �)�p +
∑i=1

6
�i�d,i is the total (or aver-

age) fission neutron spectrum. The neutron diffusion equa-
tion, which considers only prompt neutrons and disregards 
delayed neutrons, is as follows:

Supposing that the solution to Eq. (6) is
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By substituting Eq. (7) into Eq. (6), the neutron diffusion 
equation for the prompt �-mode can be obtained using Eq. 
(8):

The neutron diffusion equations of � mode and prompt � 
mode can be solved mathematically by the eigenvalue prob-
lem in the form of Ax = �x or Ax = �Bx , yielding a series of 
discrete eigenvalues �1, �2,… , �n , �1, �2,… , �n along with 
the corresponding eigenvectors (modes) �

�,1,��,2,… ,�
�,n , 

�
�,1,��,2,… ,�

�,n . The largest eigenvalue is referred to as 
the fundamental eigenvalue. In � mode, the fundamental 
eigenvalue carries the physical meaning of the effective 
multiplication factor keff , and the associated fundamental 
eigenvector represents the neutron flux distribution in pre-
cise or pseudo-critical systems. The � mode is typically used 
to characterize the reactivity and neutron flux distribution 
of reactors near criticality. In contrast, the � eigenvalue can 
be either a positive or negative real number, indicating that 
the reactor system is in a supercritical or subcritical state. 
The �-eigenvalue can also represent the evolution behavior 
of the unsteady neutron flux of the reactor over time [23]. 
Additionally, for noncritical systems, � and � modes are 
physically measurable quantities. (Typically, the fundamen-
tal eigenvalue of the prompt � mode is taken as the prompt 
neutron attenuation constant.)

The corresponding adjoint equations for the above � and 
� eigenvalue equations are as follows:

The � and prompt � adjoint equations have the same eigen-
values as the forward equations, where the � adjoint flux 
also has the physical significance of “neutron importance” 
and can be used to calculate kinetic parameters such as the 
effective fraction of delayed neutrons [24, 25].

2.2  Methods for solving higher‑order modes

In practice, when solving the higher-order modes of the neu-
tron diffusion equation, matrix A in the eigenvalue prob-
lem ( Ax = �x ) is often not directly constructed and solved. 
Instead, iterative methods such as fixed-source iterations 
combined with subspace iterations as outer iterative algo-
rithms are employed to obtain higher-order modes. Taking 
IRAM as the outer algorithm, the calculation principle of 
the higher-order modes is as follows in Algorithm 1 [26, 
27]. Here, operator A represents the matrix to be solved or 
a subfunction equivalent to that matrix.

(8)
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Algorithm 1  Implicitly restarted Arnoldi method

The mth-order eigenvalues and eigenvectors obtained through 
the IRAM process are the mth-order modes required for the 
solution. This is described in Algorithm 1, the multiplication of 
matrices by subspace vectors ( Avj ) corresponds to a fixed-source 
inner iteration. The pseudocodes for computing � and prompt � 
modes are shown in Algorithms 2 and 3.

Algorithm 2  � mode

Algorithm 3  � mode

In HARMONY2.0 code, the inner iteration is solved using 
the finite difference method. In Algorithms 2 and 3, ag , bg, … 
represent the difference coefficients of the leakage terms after 
discretization. For example, in the x-direction, the inner node 
formula is given by Eq. (11).

where ag and bg represent the x− and x+ directions, respec-
tively. At the outer boundary with zero-flux boundary con-
ditions, the corresponding formulas are given by Eq. (12).

For the y and z-directions, the subscripts j, k, … in Eq (11) 
and (12) are changed accordingly.

The discretized central difference equations of the itera-
tion (in line 5 of Algorithm 2 and line 6 of Algorithm 3) are 
expressed in Eq. (13). Common numerical methods such as 
the Jacobi iteration and successive over-relaxation iteration 
can be used to solve these equations, although specific for-
mulations are not provided here.

where eg(i, j, k) denotes the removal rate as shown in 
Eq. (14):
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where Sg(i, j, k) denotes the total number of source terms. 
The � and prompt � modes have different expressions, as 
shown in Eq. (15). The corresponding formulas for FS, SS, 
PFS, and AS are presented in Algorithms 2 and 3.

2.3  Homogenization by OpenMC

This subsection introduces the MC homogenization method 
used to obtain the space- and spectrum-homogenized group 
constants of the reactor.

Traditional two-step methods for reactor core calculations 
face challenges in accurately describing complex geometric 
configurations owing to spatial discretization limitations. 
Additionally, homogenization processes entail addressing 
intricate issues such as resonance treatment and leakage 
corrections. To address these concerns, deterministic meth-
ods rely on assumptions and approximations. In contrast, 
MC homogenization methods utilize tallying functions to 
calculate neutron reaction rates statistically based on con-
tinuous-energy cross-sectional data. The group constants 
are then obtained using principles such as the conservation 
of reaction rates. This method not only allows for an accu-
rate description of various geometrical configurations but 
also avoids challenges such as resonance treatment. Sev-
eral MC codes have functionalities developed to generate 
group constants for coupling with downstream deterministic 
codes, including RMC [28], Serpent [29], OpenMC [30, 31], 
McCard [32], and MVP [33].

In spatial homogenization using traditional approaches, 
the reactor core is treated as single assemblies or individ-
ual fuel rod lattices. Reflective boundary conditions were 
assumed during homogenization [34]. Because the tradi-
tional assembly or lattice homogenization approach neglects 
the actual boundary conditions of the assembly or lattice, 
necessary correction methods or special treatments are inev-
itable when using these homogenized group constants for 
core calculations [35]. In contrast, due to its geometric flex-
ibility, MC homogenization can not only implement assem-
bly homogenization (infinite lattice homogenization [36]) 
with reflective boundary conditions but also achieve global 
homogenization with "real" boundary conditions [37] and 
"mesh" homogenization for generating group constants 
based on a mesh with "real" boundary conditions, among 
other types of homogenization.

Infinite lattice homogenization using the MC method, 
similar to deterministic assembly homogenization, involves 
modeling individual assemblies and then calculating the 
homogenized group constants using the full reflective 
boundary conditions of each type of assembly, as shown 

(15)Sg(i, j, k) =

{

FSg(i, j, k) + SSg(i, j, k)

ASg(i, j, k) − PFSg(i, j, k) − SSg(i, j, k)

in Fig. 1a. However, global homogenization establishes a 
model around the assembly or even the entire core to obtain 
the homogenized group constants for individual assemblies, 
as illustrated in Fig. 1b. Mesh homogenization, however, 
directly divides the core space into meshes, calculating the 
homogenized constants for each mesh under "real" bound-
ary conditions. Given the flexibility in adjusting the mesh 
parameters, mesh homogenization offers greater applicabil-
ity in geometric processing. The difference in the steps of 
the full-core calculation between the infinite lattice or global 
homogenization and mesh homogenization is demonstrated 
in Fig. 2.

By utilizing mesh homogenization, the critical calcula-
tion, tallying, and cross-sectional data treatment required for 
subsequent computations can be efficiently achieved in a sin-
gle run of the MC calculation, without the need to perform 
homogenization calculations for each assembly separately. 
Furthermore, the group constant data obtained through mesh 
homogenization can be stored in accordance with the mesh 
index, which facilitates coupling with downstream determin-
istic core calculation programs.

2.4  Parallel using OpenMP

In this subsection, we discuss the inner iteration acceleration 
process by using event-driven parallelization and domain 
decomposition based on OpenMP [38]. The differences 
between the two types of parallelization were also discussed.

In the context of higher-order mode calculations or sub-
sequent research, improving the computational speed is 
very important. In the process from MC homogenization 
to higher-order mode core calculation, several steps can be 
parallelized for acceleration, such as critical calculation, 
inner flux iteration, and the last step for eigenpairs solu-
tion. Taking the example of solving the prompt � modes 
of a PHWR model with a mesh division of 18 × 18 × 10 
and utilizing HARMONY1.0 for serial computation under 
two-group conditions with a subspace number of 50, the 
inner iteration process requires approximately 760 s of CPU 
time. With 200 subspace vectors and an order of 100, it took 
more than 4000 s. Such rates are unacceptable for studies 
requiring higher-order mode expansion and reconstruction 
analyses requiring large number of higher-order modes. (All 
the calculations in this study were performed on a Linux 
system equipped with an Intel i5-13600K CPU and 16 GB 
of RAM.)

2.4.1  Event‑driven parallelization

One approach to parallelization that is easily achieved using 
OpenMP is to parallelize individual code blocks (events). 
For instance, when writing serial code, it is necessary to nest 
multilayer FOR loop code blocks to calculate the scattering 
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source terms during the inner iteration. However, in a serial 
execution, each layer loop must be traversed sequentially. In 
reality, the computation of terms (such as the scatter source) 
in individual meshes has no inherent dependency, and can 
be performed simultaneously. This presents a natural oppor-
tunity for parallelization.

Similarly, parallel acceleration can be achieved for events 
with nested loops such as total source calculations and flux 
iterations. The events and "communication" nodes of the 
parallel computation achieved using this principle-based 
approach (hereafter referred to as event-driven paralleliza-
tion) are depicted as Fig. 3a.

The event-driven approach requires a certain amount of 
time for thread-task communication and waiting between 
multiple parallel computation steps. Thread waiting pri-
marily occurs because of disparities in workload and per-
formance variations among threads, resulting in a load 

imbalance [39]. The time consumed by thread-task com-
munication is primarily attributed to the distribution of 
computational tasks among threads and the aggregation of 
computational results from different threads. As the number 
of threads increases, the time required for thread communi-
cation inevitably increases and the load imbalance becomes 
more severe. Both factors contribute to the reduced parallel 
efficiency. In certain cases of event-driven parallelization, 
this can result in slower performance compared to serial 
execution.

2.4.2  Domain decomposition parallelization

Event-driven parallelization divides parallel regions based 
on each computation event because of the existence of 
dependencies between different computation events. For 
instance, the total source calculation must wait for the 

Fig. 1  (Color online) Different 
boundary conditions. a Reflec-
tive boundary conditions; b 
“real" boundary conditions

Fig. 2  (Color online) Core cal-
culation with different assembly 
homogenized group constants. a 
Infinite lattice homogenization; 
b mesh homogenization
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completion of the scatter source calculation before pro-
ceeding, necessitating a thread waiting between these two 
computational events. However, although dependencies exist 
between different computational events, they exist only in 
the same mesh. For example, the total source calculation 
at the mesh point (1, 1, 1) must wait for its scatter source 
calculation to be completed, but the total source at the mesh 
point (3, 3, 3) does not depend on the completion of the 
scatter source at (1, 1, 1). This gives rise to the "domain 
decomposition" parallel method [6, 40].

The principle and schematic diagram of domain decom-
position parallel computation is as follows: Consider all spa-
tial meshes (or energy groups) as the "all region" that needs 
iterative computation. Based on this, divide the "all region" 
into N subdomains, where N threads are responsible for the 
iterative computation in each subdomain (as Fig. 4). This 
approach ensures that thread-task communication occurs 
only at the beginning and after each thread completes its 
task [41], thereby significantly reducing its frequency. The 
events and "communication" nodes of the domains decom-
position are as Fig. 3b.

2.5  The HARMONY2.0 code

Based on the above principles, we developed an MC-
deterministic hybrid two-step method for the higher-order 
mode calculation code HARMONY 2.0, building upon 
HARMONY1.0. The outer iteration employs the IRAM 
algorithm, whereas the inner iteration module is recoded 
and uses Python modules to couple with the mgxs API of 
OpenMC. The program modules and overall computational 
process are outlined in Fig. 5.

The complete computational process is as follows: begin 
by constructing the reactor model using OpenMC and 
defining the parameters for mesh homogenization, such as 
mesh structure, energy groups, and cross-sectional types. 
Subsequently, execute the critical calculation to gener-
ate homogenized cross-sectional data. Afterward, use the 
Python coupling modules to connect with Fortran modules, 
which include calculations for difference coefficients, result 
processing, and the inner iteration module. Finally, compile 
the Fortran modules for computing higher-order modes. 
Notably, Python modules require the reading of a simple 
text file containing information about the geometry mesh/
energy bins. Furthermore, a few modules can be invoked 

Fig. 3  Two types of parallelization. a Event-driven; b domain decomposition
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to generate HARMONY2.0’s inner iteration modules for 
parallel computation or to choose the solution mode ( � or 
prompt � mode; forward, adjoint calculation). Table 1 lists 
the names and functions of the Python modules.

3  Results and analysis

3.1  Comparison of serial and parallel computing

The � mode of the PHWR-3D-2 G problem was chosen for 
computational testing to compare the results and accel-
eration effects of serial and parallel computations. The 
number of subspace vectors was set as 200 to compute 
the first 100 higher-order modes. The PHWR-3D model 
( 19 × 19 × 10 ) shown in Fig. 6 and the first 10 order’s 
prompt � values are listed in Table 2. A time compari-
son between the event-driven domain decomposition and 
serial computations is presented in Table 3. In the case 
of parallel computation using domain decomposition, the 
subdomain partitions were as follows: two threads were Fig. 4  (Color online) Schematic of domain decomposition

Fig. 5  (Color online) Schematic diagram of HARMONY 2.0 code system structure and the overall calculation flow

Table 1  Python coupling 
function modules

Modules Version Function

MESH_MXS_Former �/prompt � Process mesh homogenized group constants
COE_Former Generate difference coefficient calculation code
Solver_Former �/prompt � ; forward/

adjoint; parallel
Generate iterative computing modules in different modes

Editor Generate eigenpairs post-processing files
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allocated with 9 × 18 × 10 , four threads with 9 × 9 × 10 , 
eight threads with 9 × 9 × 5 , and 16 threads with 9 × 9 × 2 
or 3 (z-direction).

The results indicate that serial and parallel computations 
for both methods yielded the same values. The acceleration 
ratio of event-driven parallelization reached a maximum of 
1.95 with five threads but decreased beyond five threads. In 
contrast, domain decomposition parallelization outperforms 
event-driven parallelization significantly, with a maximum 
acceleration ratio of 6.16, which was achieved using 16 
threads.

Computational experiments were conducted using a 
relaxation factor of 1.0. However, adjusting this factor 
could potentially further accelerate the computation rates. 
For instance, in the case of domain decomposition with 16 
threads, changing the relaxation factor to 1.05 reduced the 

computational time from 310.07 to 298.62 s. In addition, 
the HARMONY code was rewritten and ported to the Linux 
platform. This reduced the time for serial computations from 
over 4000 s to 1908.79 s, compared with HARMONY1.0. 
Therefore, with the parallelization implemented in HAR-
MONY2.0, the computational speed increases appreciably.

3.2  Validation of C5G7 model

As shown in Table 2, the first four-order results of PHWR 
agree well with the reference values. However, because the 
validation of PHWR was obtained directly through deter-
ministic calculations, it is still necessary to validate the 
hybrid two-step method used in this study before further 
discussion. Given the limited number of related benchmarks, 
we selected the C5G7 model for validation.

In the homogenization calculations, the criticality calcu-
lation parameters were set as follows: 20,000 generations 

Fig. 6  (Color online) PHWR reactor. a xy direction; b xz direction

Table 2  Prompt � mode result of PHWR (first 10)

Order � (s−1)

Ref. [42] Serial Event-driven Domain
decomposition

1 −3.5650 −3.3872 −3.3872 −3.3872
2 −1.8335× 101 −1.8297× 101 −1.8297× 101 −1.8297× 101

3 −1.8335× 101 −1.8297× 101 −1.8297× 101 −1.8297× 101

4 −3.8560× 101 −3.8537× 101 −3.8537× 101 −3.8537× 101

5 −4.3540× 101 −4.3540× 101 −4.3540× 101

6 −4.5691× 101 −4.5691× 101 −4.5691× 101

7 −5.2802× 101 −5.2802× 101 −5.2802× 101

8 −5.2802× 101 −5.2802× 101 −5.2802× 101

9 −7.7179× 101 −7.7179× 101 −7.7179× 101

10 −7.8292× 101 −7.8292× 101 −7.8292× 101

Table 3  Computation time of PHWR (first 100 modes)

Threads Time of inner iteration (s)

Event-driven Speed
up ratio

Domain
decomposition

Speed
up ratio

1 1908.79
2 1158.54 1.65 883.39 2.16
3 1126.03 1.70
4 1135.15 1.68 516.85 3.69
5 976.67 1.95
6 995.08 1.92
7 1194.73 1.60
8 1133.10 1.68 376.98 5.06
16 1464.02 1.30 310.07 6.16
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with the first 500 inactive and 100,000 particles per cycle 
for C5G7-2D and 500,000 particles per cycle for C5G7-3D. 
During the homogenization and mode calculations, the mesh 
divisions for C5G7-2D is 51 × 51 , and the mesh division 
for C5G7-3D is 51 × 51 × 10 . The models used in OpenMC 
were 1/4 or 1/8 symmetric, therefore, reflective boundary 
conditions were employed in the mode calculations. The keff 
values of OpenMC were 1.18640(± 5.6 pcm) and 1.18378(± 
0.8 pcm), respectively. The C5G7 model and simplified cal-
culation process are shown in Fig. 7.

The calculation results are presented in Table 4, where 
the reference values were obtained from Gupta et al. and 
calculated using the SSI-based MC method [17]. Here, we 
observed a difference between the HARMNOY2.0 computed 
values and reference values. The difference was 267 pcm 
for the fundamental eigenvalue of C5G7-2D and 253 pcm 
for C5G7-3D. As the order increases, the differences gradu-
ally increase, which could be due to several reasons such as 
differences in algorithms and discrepancies between diffu-
sion and transport theories. One reason for this is that the 
settings of the number of meshes lead to differences in the 
eigenvalue solutions, particularly for higher orders. This will 
be discussed in the following subsections.

3.3  Verification of complex geometry computation

To validate the applicability of HARMONY2.0, to com-
plex geometric reactor cores, we selected the Hoogenboom 
problem [43], Advanced Test Reactor (ATR) [22, 46], and 
MUSE-4 experimental facility [47] as test cases. This sub-
section discusses the computational results for the three 

models. Models of the Hoogenboom and ATR are shown 
in Fig. 8, and the MUSE-4 model is illustrated in Fig. 13.

3.3.1  Hoogenboom

The Hoogenboom problem, proposed by Hoogenboom 
et al., is an MC performance benchmark comprising 241 
fuel assemblies with the same enrichment level. Each 
assembly consisted of fuel rods arranged in a 17 × 17 mesh 
and included 25 guide tubes. The axial zone of the core 
is divided into cold and hot regions  [43]. In this study, 
Hoogenboom problem is chosen as a typical square lattice 
core model for solution.

The computational results for the different spatial mesh 
configurations and energy group divisions are presented 
in Table 5. Radially, the model was divided into one or 
four meshes per assembly. The energy boundaries of the 

Fig. 7  C5G7 model and calculation flow

Table 4  � mode results of C5G7

Order C5G7-2D C5G7-3D

Ref HARMONY2.0 Ref HARMONY2.0

1 1.18637 1.18370 1.18328 1.18075
2 0.91623 0.90220 1.15969 1.16073
3 0.87625 0.86260 1.11468 1.12420
4 0.72468 0.70179 1.05192 1.07698
5 0.59157 0.56272 0.97627 1.02564
6 0.59088 0.56207 0.91421 0.97632
7 0.49873 0.46282 0.89875 0.93382
8 0.49651 0.46461 0.89274 0.90061
9 0.36976 0.33206 0.87448 0.90159
10 0.36860 0.33114 0.86528 0.88743
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2-group energy structure were (0, 0.625, 1.96403× 107 ) 
in eV, and for 6-group, they were (0, 4.53999× 102 , 
9.11822× 103 , 6.73795× 104 , 4.97871× 105 , 2.23130× 106 , 
and 1.96403× 107 ). For the 8-group configuration, the 
CASMO 8-group [44] energy structure was employed for 
the eight-group configuration. The MC critical calcula-
tion parameters were set to 1,000,000 particles per cycle, 
totaling 1150 cycles, with the first 150 cycles being inac-
tive. The results showed that the differences between the 
fundamental eigenvalues and keff obtained from OpenMC 
were within 200 pcm. Specifically, the fundamental eigen-
value calculation for the 34 × 34 × 8 8-group configuration 
is 1.00126, differing by only 1 pcm from OpenMC.s. Fur-
thermore, we obtained the fission matrix using RMC3.5 

and solved for higher-order modes using SciPy  [45]. 
Table 5 presents the results along with those from [15].

As mentioned in the previous subsection, the division of 
meshes affects the calculation results for higher-order modes 
(similar to the fission matrix method [15]). The discrepan-
cies in the results for the higher-order modes were partly 
due to differences in the diffusion calculations under dif-
ferent meshes. In addition, from a mathematical perspec-
tive, the calculation of higher-order modes is equivalent 
to an eigenvalue problem. Different mesh divisions affect 
the order of the matrix A, thereby altering the total number 
of corresponding eigenvalues. This also resulted in larger 
discrepancies in the higher-order eigenvalue results as the 
order increased across different mesh divisions. As shown in 
Table 5, the comparison indicates that the lack of an energy 

Fig. 8  (Color online) Hoogenboom a and ATR b model

Table 5  � mode results of Hoogenboom

Order OpenMC HARMONY2.0 RMC&SciPy Results of [15].

19×19× 8 &2 g 19×19× 8 &6 g 19×19× 8 &8 g 34×34× 8 &8 g 36×36× 8 &8 g 34×34×8 42×42×20

1 1.00127 1.00293 1.00093 1.00031 1.00126 1.00059 1.00193 0.99919
2 ±8.5 pcm 0.99402 0.99051 0.98961 0.99078 0.98991 0.98687 0.98483
3 0.99323 0.98861 0.98791 0.98808 0.98840 0.98659 0.98362
4 0.99263 0.98817 0.98766 0.98844 0.98816 0.97444 0.98469
5 0.98437 0.97792 0.97717 0.97763 0.97768 0.96766 0.96956
6 0.98353 0.97773 0.97679 0.97701 0.97729 0.96664 0.96950
7 0.98183 0.97482 0.97377 0.97474 0.97406 0.96011 0.96693
8 0.98032 0.97420 0.97324 0.97250 0.97302 0.95975 0.96591
9 0.97797 0.97138 0.97097 0.97093 0.97241 0.95954 0.96043
10 0.97553 0.96834 0.96706 0.96593 0.96740 0.94412 0.95671
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group dimension leads to progressively larger discrepancies 
among the higher eigenvalues. By the 10th order, the fission 
matrix method results from RMC3.5 &SciPy are 0.94412, 
whereas those from HARMONY 2.0 are all above 0.96.

Figure 9 illustrates the mode distribution of Hoogen-
boom with a 34 × 34 × 8-mesh. The eigenvectors of differ-
ent groups of fundamental modes exhibited similar shapes. 
Therefore, only the distributions of the eighth group at 
z = 4 for the first ten orders are displayed. As depicted in 
the Fig. 9, the first, seventh, and tenth orders exhibit fully 
symmetric distributions, whereas the second, third, fourth, 
fifth, and sixth orders exhibit a 1/2 symmetric distribution. 
The eighth and ninth orders displayed a 1/4 symmetric 
distribution.

3.3.2  ATR 

The ATR is one of the few large research reactors world-
wide and is characterized by high flux, numerous irradia-
tion channels, and reactivity control through multiple drums 
[22, 46]. It utilizes special curved-plate fuel elements, which 
make it challenging to calculate higher-order modes using a 
deterministic method. Hence, we chose ATR as the complex 
geometry core model for HARMONY2.0 test.

Table 6 presents ATR’s first ten eigenvalue calculation 
results with a 50 × 50 × 1 mesh, equivalent to a mesh size of 
2 cm × 2 cm × 125 cm. The group energy structure follows 
CASMO 8-group. The OpenMC critical calculation param-
eters were 1,000,000 particles for 1150 cycles and using 
the first 150 cycles were inactive. The computed keff for 
ATR was 1.02293. A comparison revealed an error of only 
226 pcm for ATR. Additionally, no approximation correc-
tions were applied during MC homogenization, and further 
adjustments to parameters such as the energy group structure 
were not made. Figure 10 illustrates the differences in the 

fundamental flux distributions among the 8th groups in ATR 
with a mesh division of 50 × 50 × 1.

The fundamental neutron flux distribution of the ATR 
conformed to the characteristic neutron flux distribution of a 
thermal reactor. This distribution entails fast neutrons gener-
ated from fission and predominantly concentrated in the fuel 
region, whereas the distribution of epithermal neutrons tends 
to be relatively flat owing to diffusion. By contrast, thermal 
neutrons exhibit a lower flux in the fuel region because of 
absorption, which reflects the absorption effect of the fuel 
material. Notably, this distribution also highlights the neu-
tron absorption by structural materials, as evidenced by the 
lower neutron flux in regions containing absorbers, such as 
the surrounding drums.

The 2nd to 9th orders of ATR’s first and 8th group modes 
are shown in Fig. 11, exhibiting symmetrical distributions 
similar to 1/2 and 1/4 across the various orders.

The corresponding adjoint mode distributions for the 
1st and 8th groups are shown in Fig. 12. A comparison 
revealed that the adjoint fundamental mode distribution 

Fig. 9  (Color online) � mode of Hoogenboom ( g = 8 , z = 4 , order 1 − 10)

Table 6  � mode results of ATR 

Nev ATR 

OpenMC HARMONY2.0

1 1.02293 1.02519
2 ±8.3 pcm 0.85252
3 0.86857
4 0.77553
5 0.62682
6 0.54278
7 0.53784
8 0.54650
9 0.46770
10 0.45797
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of the 8th group exhibits a pattern “opposite” to that of 
the forward fundamental distribution in the fuel region. In 
other words, the adjoint neutron flux is larger in the fuel 
region, reflecting the physical significance of the “neutron 
importance" associated with the adjoint neutron flux.

3.3.3  MUSE‑4

Compared with the � mode, the calculation results of the 
higher-order modes in the prompt � mode are limited 

because of fewer experiments compared with critical bench-
marks and lower computational efficiency. Therefore, we 
chose the MUSE-4 experimental facility for validation, 
which provides experimental data for prompt neutron attenu-
ation constants [47].

The MUSE-4 subcritical experimental apparatus is a 
modification of the zero-power MASURCA facility that is 
expanded to accommodate a wider range of experiments. 
At its core, it utilizes MOX fuels in the active region, with 

Fig. 10  (Color online) Fundamental � mode of ATR ( g = 1 − 8)

Fig. 11  (Color online) � modes of ATR (group 1 &8, order 2–9) Fig. 12  (Color online) adjoint � modes of ATR (group 1 &8, order 
1–8)



 E.-P. Zhang et al.18 Page 14 of 19

a central aluminum tube extending toward the accelerator. 
This configuration serves as an external neutron source for 
simulating the target of an accelerator-driven system (ADS) 
reactor. Surrounding this central feature, the lead compo-
nents replicate the spallation target of the ADS, coupled with 
a reflector layer composed of a sodium-stainless steel blend. 
The outermost layer consists of stainless steel shielding, 
which provides radiation protection. This setup allows con-
trol of the reactor’s subcriticality by adjusting the loading of 
the fuel assemblies. When loaded with 976 fuel assemblies, 
its keff corresponds to 0.97 (Fig. 13).

The parameters for the OpenMC homogenization calcula-
tion were as follows: 500,000 particles, 100 inactive cycles, 
and 1000 active cycles. The computed keff is 0.96817. The 
parameters for the mesh homogenization are defined with 
a 6-group energy structure with energy boundaries of (0, 
4.53999× 102 , 9.11822× 103 , 6.73795× 104 , 4.97871× 105 , 
2.23130× 106 , and 1.96403× 107 ) in eV. The mesh spacing 
in the xy direction was 5.3 cm, whereas in the z-direction, it 
was divided into 10.3/12 cm. The numbers of mesh points 
were 28 × 30 × 14 and 28 × 30 × 12 for the two configura-
tions, respectively. The computed eigenvalues for both the 
� and prompt � modes for the first ten orders are presented 
in Table 7

The results indicate that the computed fundamental 
eigenvalues for both � modes under the two different mesh 
configurations differ from the OpenMC calculation by less 
than 200 pcm. Similarly, the fundamental prompt � eigen-
value closely aligns with the experimental values. Figure 14 
shows the computed first-order eigenvectors of � and the 
corresponding � eigenvectors for a mesh configuration of 
28 × 30 × 12 . The shapes of the fundamental distributions 
for the same energy group are similar for the � and prompt � 
modes, differing only in the numerical values.

The computed results for the 2–9 orders of the first 
group’s � modes and the corresponding prompt � modes are 
shown in Fig. 15. In the �-mode, the distributions for each 
order adhere approximately to symmetric distribution pat-
terns, such as 1/2 and 1/4. Although the prompt �-mode still 
approximately satisfies the symmetric distribution patterns, 
its symmetry is less pronounced. In addition to the similarity 
in the fundamental distribution shapes, there are significant 
differences in the shapes of the higher-order modes between 
the � and prompt � modes.

3.4  Computation time evaluation

Based on the cases discussed in the previous section, the 
execution times for each part of HARMONY2.0 are shown 
in Fig. 16. In these cases, event-driven parallel examples uti-
lized six threads, whereas domain decomposition employed 
16 threads.

The most time-consuming part of these cases was the 
MC homogenization calculation. (All cases in Fig. 16 uses 
1,000,000 particles with 12 threads.) In our tests, some cases 
using 100,000 particles yielded the same fundamental eigen-
values as those using 1,000,000 particles. For example, the 
Hoogenboom problem, with a mesh division of 34×34× 8 and 
8 groups, required only 2710.89 s of MC calculation with 
100,000 particles (1,000,000 required 25837.21 s). However, 
the use of fewer particles could lead to asymmetrical flux 
results because of the characteristics of MC calculations. 
Additionally, because MC homogenization is based on tally 
functions, if the particle numbers are not sufficiently large, 
the cross sections of some meshes might exhibit increased 
errors owing to insufficient particle counts or even result in 
a zero cross-sectional value. These issues may be resolved 
using variance-reduction techniques.

Fig. 13  (Color online) MUSE-4 
model in OpenMC (with mesh) 
a x − y direction; b x − z direc-
tion
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In addition to the MC calculations, the most time-
consuming part is the inner iteration when calculating 
the first 10 modes with 20 subspace vectors. Taking the 
C5G7-3D tests as examples, the ratio of the time spent on 
inner iterations to that spent on other parts (mainly the 
DNEUPD function [26] and its associated calculations) 
was approximately 11.85:1. Our tests showed that at the 
500th mode with 600 subspace vectors, the inner iteration 
takes approximately 1446.98 s, while the time for other 
parts increases to 701.54 s, bringing the ratio to 2.06:1.

Figure  16 also shows that domain decomposition 
achieved considerable acceleration in all test cases. Fur-
thermore, the calculations in � mode are significantly 
slower than those in � mode. In the case of the MUSE-4 
model, despite using domain decomposition, the inner iter-
ations for the first 10 modes required 1518.40 s (approxi-
mately 60.35 times that of the � mode), and the time for 

the other parts increased to 51.87 seconds. Thus, it is evi-
dent that acceleration in the � mode is necessary.

4  Conclusion

Based on a hybrid two-step method of MC homogenization 
combined with deterministic higher-order mode calcula-
tions, we developed the HARMONY2.0 code with enhanced 
capabilities for handling complex geometric cores. Valida-
tion was performed by solving C5G7, Hoogenboom, ATR, 
and MUSE-4 cores, demonstrating that HARMONY2.0 can 
compute higher-order modes in both � and prompt � modes 
for complex geometric cores. The computed fundamental 
eigenvalues for � mode closely matched the results obtained 
from OpenMC, and the fundamental prompt � eigenvalues 

Table 7  MUSE-4 eigenvalue 
results (first 10)

OpenMC Experiment 
value/(s−1)
[47]

HARMONY2.0

28 × 30 × 14 28 × 30 × 12

� �/s−1 � �/s−1

keff = 0.96817 ± 3.2 pcm � = −46308 ( keff = 0.97) 0.96963 − 43430 0.96717 − 45561
0.69617 − 72951 0.69353 − 73006
0.60302 − 73376 0.60063 − 73452
0.60091 − 74452 0.59986 − 74516
0.46344 − 75652 0.46018 − 75803
0.46288 − 75964 0.46095 − 76078
0.44332 − 77311 0.44054 − 77471
0.39024 − 77433 0.38549 − 77650
0.34971 − 77657 0.35699 − 77784
0.34700 − 81859 0.34327 − 81871

Fig. 14  (Color online) Fundamental mode of MUSE-4 (group 1–6, z = 7 ). a � mode; b prompt � mode
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for the MUSE-4 core aligned well with the experimental 
values.

Furthermore, to enhance the calculation speed of deter-
ministic higher-order modes, we employed two acceleration 
methods: event-driven parallelization and domain decom-
position parallelization based on OpenMP. The verification 
confirmed that the serial and parallel computations obtained 
the same results. Both methods achieve acceleration in solv-
ing higher-order modes, with domain decomposition sig-
nificantly outperforming event-driven parallelization. In the 
case of event-driven parallelization, the computational speed 
initially increases with the number of threads but decreases 
below serial execution when the thread count exceeds a 

certain threshold, resulting in an overall acceleration ratio 
significantly lower than expected. For domain decompo-
sition parallelization, the acceleration ratio continued to 
increase with the number of threads, up to 16.

The computational results also validated the feasibil-
ity of using the MC-deterministic hybrid two-step method 
to solve higher-order modes in complex geometric cores. 
Additionally, the development of the HARMONY2.0 code, 
based on this method could provide support for studies on 
the spatial effects induced by higher-order modes in reac-
tors, as well as research requiring a large number of higher-
order modes, such as mode expansions and reconstruction 
analyses. Moreover, HARMONY2.0 code offers a feasible 
approach for calculating the prompt neutron attenuation con-
stants of reactors.

Fig. 15  (Color online) Higher-
order modes of MUSE-4 (group 
1, order 2 − 9 , z = 7 ). a � mode; 
b prompt � mode
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