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Abstract
In current neural network algorithms for nuclide identification in high-background, poor-resolution detectors, traditional 
network paradigms including back-propagation networks, convolutional neural networks, recurrent neural networks, etc., 
have been limited in research on � spectrum analysis because of their inherent mathematical mechanisms. It is difficult to 
make progress in terms of training data requirements and prediction accuracy. In contrast to traditional network paradigms, 
network models based on the transformer structure have the characteristics of parallel computing, position encoding, and 
deep stacking, which have enabled good performance in natural language processing tasks in recent years. Therefore, in this 
paper, a transformer-based neural network (TBNN) model is proposed to achieve nuclide identification for the first time. 
First, the Geant4 program was used to generate the basic single-nuclide energy spectrum through Monte Carlo simulations. 
A multi-nuclide energy spectrum database was established for neural network training using random matrices of �-ray 
energy, activity, and noise. Based on the encoder–decoder structure, a network topology based on the transformer was built, 
transforming the 1024-channel energy spectrum data into a 32 × 32 energy spectrum sequence as the model input. Through 
experiments and adjustments of model parameters, including the learning rate of the TBNN model, number of attention heads, 
and number of network stacking layers, the overall recognition rate reached 98.7%. Additionally, this database was used for 
training AI models such as back-propagation networks, convolutional neural networks, residual networks, and long short-
term memory neural networks, with overall recognition rates of 92.8%, 95.3%, 96.3%, and 96.6%, respectively. This indicates 
that the TBNN model exhibited better nuclide identification among these AI models, providing an important reference and 
theoretical basis for the practical application of transformers in the qualitative and quantitative analysis of the � spectrum.
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1  Introduction

Multi-nuclide identification is a radioactive material detec-
tion technology that is vitally important in medicine, 
national militaries, and social stability [1, 2]. For the � 
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spectrum under a complex background with low count and 
signal-to-noise ratio, multi-nuclide identification is chal-
lenging [3]. Traditional machine learning-based methods 
are suitable for situations with few types of nuclides ( ⩽ 4) 
and small amounts of data [4]. However, they have problems 
such as low recognition rates or an inability to quickly iden-
tify nuclides. Conventional shallow neural network struc-
tures tend to overfit and exhibit poor generalization during 
training, whereas deep network structures can alleviate these 
problems [5]; however, they have numerous hyperparameters 
and are difficult to train.

In the early days, owing to the insufficient calculation 
capacity of computers, nuclide identification classification 
mainly used traditional peak searching methods based on the 
full-energy peak, such as the maximum value, symmetric 
zero-area conversion, and derivative methods [6, 7]. How-
ever, traditional methods are not applicable for situations 
with low count rates or low peak-to-background ratios [8].

Classification algorithms based on machine learn-
ing, including Bayesian, decision tree, and support vector 
machine algorithms, as well as their variants, have been 
applied for nuclide identification. They have the advan-
tages of fast recognition speed and high accuracy under 
low-count-rate conditions compared to traditional methods 
[9–13]. Additionally, machine learning algorithms require 
researchers to manually extract data features [14, 15], such 
as the peak position and peak boundaries of characteristic 
peaks, background of the spectrum, and noise of the spec-
trum, then make decision inferences based on the extracted 
feature data, and finally perform classification statistics.

The accuracy of nuclide identification depends on the 
continuous improvement of feature extraction algorithms; 
however, increasingly complex feature extraction steps 
increase the difficulty of nuclide identification [16]. The 
multilayer perceptron (MLP) in machine learning has been 
applied in fields such as nuclide identification and signal 
processing [17, 18]. The MLP has good approximation and 
generalization abilities. For this approach, the overall pre-
diction accuracy in nuclide identification tasks can exceed 
90%; however, it can easily fall into locally optimal values. 
Combining feature extraction algorithms with the MLP is 
can effectively improve the system and increase the accu-
racy of nuclide identification by 5–9% [19–23]. For example, 
Yicong et al. used an improved particle swarm algorithm to 
optimize the threshold and weight values of a back-propa-
gation network (BP) [24]. However, these machine learning-
based nuclide identification methods exhibit a sharp drop 
in the recognition rate for cases involving more than five 
radioactive nuclides [4], and the mode dependence on the 
manual extraction of data features increases the difficulty of 
nuclide identification.

In recent years, with improvements in the performance 
of hardware such as graphics processing units (GPUs) and 

tensor processing units (TPUs), convolutional neural net-
works (CNNs), recurrent neural networks (RNNs), and 
extended deep learning models based on CNNs or RNNs 
have begun to show advantages. Deep learning, as a branch 
of machine learning, has been widely applied in fields such 
as image recognition, target detection, and semantic segmen-
tation owing to its simplification of tensor operations, good 
scalability, and universality [25, 26]. Deep learning models 
usually consist of multiple layers, each fully connected to 
those in the layer below (from which they receive input) 
and those above (which they, in turn, influence). The entire 
model and its constituent layers share this structure. The 
entire model uses raw inputs (features), generates outputs 
(predictions), and possesses parameters (combined param-
eters from all constituent layers). Similarly, each individual 
layer receives inputs (supplied by the previous layer), gener-
ates outputs (the inputs to the subsequent layer), and pos-
sesses a set of tunable parameters that are updated according 
to the signal that flows backwards from the subsequent layer.

To date, researchers have explored the potential appli-
cations of deep learning models in the field of nuclide 
identification. The research focus can be summarized into 
three aspects: the construction of datasets, preprocessing of 
input data, and improvement of network models [27–29]. 
Increasing the depth of the network models improves 
nuclide identification performance to some extent, such as 
using ResNet-50 for full-spectrum all-nuclide identifica-
tion [30]. However, the large number of hyperparameters 
( ⩾ 107 ) makes the model training time-consuming and dif-
ficult to adjust. Additionally, this approach has high hard-
ware requirements. The performance of network models 
currently used in the field of nuclide identification, includ-
ing BP, CNNs, residual networks (ResNet), long short-term 
memory neural networks (LSTMs), etc., is limited by their 
own mathematical mechanisms. It is difficult to make break-
throughs in terms of training data requirements and predic-
tion accuracy. Therefore, the application of new network 
model paradigms to nuclide identification tasks represents 
a potential improvement.

The transformer is a neural network architecture that is 
different from traditional models such as RNN or CNN. It 
uses techniques such as residual connection and layer nor-
malization to accelerate parallel computing [31]. It is usu-
ally used for natural language processing (NLP) tasks such 
as language translation, language modeling, and sentiment 
analysis. For example, the ChatGPT model, which received 
significant attention at the end of 2022, was improved based 
on the transformer structure. The key innovation of the 
transformer is its self-attention mechanism, which allows 
networks to focus on different parts of the input sequence 
at different computational stages without relying on a fixed-
length context window to process the input sequence. This 
allows networks to dynamically focus on them based on the 
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relevance between different parts of the input sequence and 
the task at hand [32].

Although the transformer architecture was originally 
introduced for natural language processing tasks, researchers 
have also explored its potential in the field of image recogni-
tion. One of the main advantages of using a transformer for 
image recognition is that it can capture long-range correla-
tions in input images. By using the self-attention mecha-
nism, the transformer can learn to extract features that are 
useful for image recognition tasks [33, 34]. Dosovitskiy 
et al. proposed a visual transformer (ViT) method that com-
bines a CNN and the transformer to perform image recogni-
tion tasks, whereas Si et al. established an inception trans-
former (iFormers) architecture to improve the deficiency of 
the transformer in capturing high-frequency local informa-
tion [35, 36]. The ViT and iFormers methods have shown 
good results in various image recognition tasks, including 
classification, segmentation, and object detection. Nuclide 
identification methods based on deep learning use full-spec-
trum data as input, which can be used as one-dimensional 
sequence data and can also be transformed into a two-dimen-
sional image form input. Therefore, the transformer architec-
ture is theoretically applicable to nuclide identification tasks.

This paper proposes, for the first time, the use of the 
transformer model to replace the traditional network model 
paradigms used for nuclide identification and explores the 
potential application of the transformer in nuclide identifi-
cation. This study verifies the scalability of this method, as 
well as its stable gradient propagation ability, high accu-
racy of spectrum nuclide identification, and good robustness 
through training and testing with simulated spectrum data. 
Moreover, we provide a comparison with the traditional BP, 
CNN, and RNN in terms of the full-spectrum recognition 
rate and convergence speed.

2 � Algorithm and model

2.1 � Construction of training set through MC 
simulation method

According to the IAEA-2006 standard industrial nuclide 
library [37], the radioactive nuclides used for nuclide 
identification in this study were 241Am , 192Ir , 226Ra , 133Ba , 
60Co , 57Co , 137Cs and 152Eu . Currently, Monte Carlo (MC)-
based methods are commonly used in nuclear science and 
nuclear detection to simulate radioactive nuclide spectra. 
Geant4 is a software package developed by the European 
Organization for Nuclear Research (CERN) using the C++ 
language platform, which is widely used in nuclear phys-
ics, radiation protection, and detection [38]. This study 
used Geant4 to simulate the NaI detector response in 

nuclide spectrum simulation experiments. The simulated 
NaI detector uses a standard cylinder of size �5 cm × 5 cm.

The radiation source was set as a point source located 
5 ∼ 15 cm (randomly selected) directly in front of the 
detector, and the number of emitted particles was 1.0 × 10

8 . 
Considering the different energy resolutions of the detec-
tor in real scenarios, this study adopted the Gaussian 
broadening formula as follows:

where xRandom is a random number; Ei is the initial energy of 
the i-th channel; and a, b, c are the broadening coefficients 
of the detector [39]. After obtaining the simulated radioac-
tive nuclide spectrum data through an MC simulation, we 
obtained the initial 80 spectrum data (ten spectra for each 
nuclide), each with 1024 channels (0–3 MeV). Consider-
ing the activity size of radioactive nuclides and the impact 
of environmental noise in actual measurements, this study 
expanded the nuclide spectrum dataset by adding random 
noise and amplitude transformation and used random combi-
nations to obtain mixed spectra of multiple source nuclides. 
The calculation formula is as follows:

where Addnoise refers to adding Gaussian white noise 
with a signal-to-noise ratio (SNR) between 25 and 35, 
random(0.1 ∼ 10) is a random number from 0.1∼10, ran-
dom[0, 1] refers to a random value of 0 or 1, and Specn is 
the corresponding nuclide spectrum. The spectrum dataset 
for this study was constructed in this way with a database 
volume of 1.0 × 10

4.

2.2 � Construction of neural network models

2.2.1 � Transformer‑based neural network (TBNN) nuclide 
identification model

The attention mechanism can be considered as a simu-
lation of the human visual mechanism. The processing 
of visual information consumes a large amount of brain 
resources. To make full use of brain resources, it will not 
process all information at the highest granularity, but will 
focus on the parts of interest and apply brain resources to 

(1)Enew = Gauss (xRandom;Ei, �FWHM),

(2)�FWHM =
a + b

√

Ei + cEi

2.3548
,

(3)

Specnew = Addnoise
{

Spec241Am × random(0.1 ∼ 10)random[0, 1]

+ Spec192Ir × random(0.1 ∼ 10)random[0, 1]

+⋯ + Spec152Eu × random(0.1 ∼ 10)random[0, 1]}
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them [40]. The multi-head attention mechanism is derived 
from the self-attention mechanism, which is also the core 
part of the transformer.

As shown in Fig. 1, the self-attention mechanism is a top-
down mechanism used to calculate the similarity and feature 
associations between different data [41]. The self-attention 
mechanism can be represented by the following formula:

where s ∈ Rl×h represents an input sequence with a sequence 
length of l and a feature dimension of h , and WQ,WK,WV

are fully connected layers of size h × k , which map each 
piece of input s data to q, k, v vectors of size 1 × k , respec-
tively, and combine them into Q,K,V matrices of size l × k . 
By calculating the corresponding attention scores � using 
the dot product of q and each k vector, then summing the 
corresponding v vectors (weighted by each normalized atten-
tion score), we obtain a new output corresponding to this q . 
In the matrix representation, the attention score matrix of 
size l × l is softmax

�

QKT

√

dk

�

.
The multi-head attention mechanism calculates nhead 

attention vectors by dimensionally increasing through a fully 
connected layer to nhead× dimension and then uses a fully 
connected layer to fuse the features calculated through multi-
head attention. The multi-head attention mechanism can be 
represented by the following formula:

(4)Q,K,V = sWQ, sWK, sWV

(5)Attention(Q,K,V) = softmax

�

QKT

√

dk

�

V

(6)
Qnhead,Knhead,Vnhead

= QW
Q

nhead
,KWK

nhead
,VWV

nhead
,

W
Q

nhead
,WK

nhead
,WV

nhead
 correspond to the multi-head dimen-

sional matrices of Q,K,V respectively, and W0 is a dimen-
sional reduction matrix used for fusing multi-head attention 
features.

The transformer is a model based on the multi-head atten-
tion mechanism, where each sub-layer uses residual connec-
tions and then performs layer normalization. The transformer-
based neural network (TBNN) model designed in this study 
based on the transformer structure is shown in Fig. 2. In the 
training stage, the input “Targets” of the decoder part denotes 
the predicted targets corresponding to the dataset and is used 
to enforce teaching on the network. In the prediction stage, 
the decoder part performs cyclic prediction until 32 sequence 
predictions are completed, and finally outputs the final result 
through the “FN+Flatten” layer.

The spectrum output simulated by the NaI detector con-
sists of 1024 channels. The model first transforms the 1 × 1024 
spectrum into a 32 × 32 sequence, and no longer uses the 
embedding layer of the original transformer model to encode 
the 1024 data. Positional encoding adds absolute or relative 
positional information to the input sequence. Fixed-position 
encoding based on sine and cosine functions was used, and 
the calculation formula is as follows:

(7)Multihead = Attention(Qnhead,Knhead,Vnhead),

(8)MultiHead(Q,K,V) = MultiHead ⋅W0
,

(9)PEm,2n = sin

(

m

100002n∕32

)

,

(10)PEm,2n+1 = cos

(

m

100002n∕32

)

,

Fig. 1   (Color online) Schematic diagram of attention mechanism and multi-head attention
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where PEm,2n and PEm,2n+1 represent the position encoding 
calculation results of indices (m, 2n) and (m, 2n + 1) in the 
sequence, respectively. Adding them to the sequence before 
encoding yields the output of the position encoding layer.

The output of the position encoding enters the encoder 
and decoder structure and then flattens the sequence and 
connects it to a fully connected layer, finally outputting a 
nuclide identification result with a dimension of 1 × 8.

2.2.2 � Other neural network models for comparison

To evaluate the performance of the newly constructed 
model, this study selects four neural network models that 
have been widely used in the field of nuclide identification in 
recent years for comparison. These networks are BP, CNN, 
ResNet, and LSTM [42, 43].

The CNN is essentially a multilayer perceptron com-
posed of a convolutional layer, a pooling layer, an input 
layer, a fully connected layer, and an output layer [44]. 
The convolutional and pooling layers in the hidden layer 
form the core of the CNN for achieving feature extrac-
tion. The convolution operation of the convolutional layer 
achieves local connections; its output data are calculated 
for each neuron using the same convolution kernel (shared 
weight) and then added with the same bias (shared bias). 
The pooling layer also contains something similar to a 

convolutional kernel for performing pooling operations 
on data, but it does not have any parameters to learn; it 
only takes the maximum or average value from the tar-
get region. The pooling operation utilizes the principle of 
local image correlation to sample the data, which increases 
the robustness of the CNN to small positional changes 
while retaining useful information. These two main lay-
ers effectively reduce the number of network parameters 
and alleviate the problem of model overfitting. Assuming 
that the input is N  , the convolution kernel is L , and the 
feature mapping is M , the corresponding two-dimensional 
convolution operation expression is as follows:

where I is the width of the convolution kernel and J is the 
height of the convolution kernel.

ResNet is an improved CNN model. It is built from resid-
ual blocks, which are connected to form a residual network 
[45]. Among them, residual connections allow the network 
to reach more ancestors during back-propagation, thereby 
alleviating network degradation. ResNet performs well when 
training deep networks [30]. Effective deep neural networks 
can be trained using ResNet. The main formula for the resid-
ual network is:

(11)
S(n,m) = (1 ⋅ L)(n,m) =

∑I

i=0

∑J

j=0

N(i, j)L(n − i,m − j)

Fig. 2   The structure of the transformer-based nuclide identification model in the paper
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where F(x) is the final output of ResNet, g(x) is the output of 
the two convolutions, and x is the sample data.

LSTM was proposed by Hochreiter and Schmidhuber in 
1997 to solve problems such as those faced by traditional 
RNN models, which have difficulty learning dependencies 
between long-term information and can easily cause gradient 
vanishing and gradient explosion [46]. The LSTM model 
selects additions and deletions during data input. Its key part 
mainly relies on three gate structures: forget, update, and 
output gates [47]. The forget gate determines the data to be 
discarded or retained through the sigmoid layer. Then, the 
update gate mainly screens the data content and selects data 
updates to the status, mainly determined through the tanh 
and sigmoid layers. Finally, the output gate combines the 
current memory with the long-term memory and then judges 
whether this result should be output through the sigmoid 
activation function layer, thus passing it to the next neuron 
cell. The sigmoid and tanh layers use the sigmoid and tanh 
functions as activation functions, respectively, to enhance 
the nonlinear relationships between neurons.

Theoretically, for BP, a three-layer neural network (with a 
concise structure and relatively few parameters) can approxi-
mate a given function with arbitrary accuracy, which is a 
tempting prospect [19]. Simultaneously, BP has a certain 
ability to promote and summarize. However, from a math-
ematical perspective, the BP is a local search method. When 
solving for the global extremum of a complex nonlinear 
function, it is highly likely to fall into local extrema, caus-
ing training failures [20, 21]. CNNs perform excellently 
in feature extraction for two-dimensional inputs, and their 
structural features are local connections, weight sharing, and 
pooling operations [18, 28]. Owing to the balance between 
local feature extraction and global feature interaction, CNNs 
usually outperform BP [27]. The main reason for using 
ResNet in this study was to test whether it could achieve 
better performance than a CNN when increasing the depth 
of the convolutional networks. In theory, owing to the use 
of residual blocks, ResNet can train deeper neural networks, 
such as ResNet-50, which performs well on the nuclide rec-
ognition task [30]. The LSTM model exhibits outstanding 
performance in processing sequence inputs, which mitigates 
the long-term dependency problem in RNNs [29]. Each 
LSTM cell has several MLPs, and if the time span of the 
LSTM is large and the network is deep, the training phase 
is computationally intensive and time-consuming (because 
parallel computing is not used). The parallel computation 
of the multi-head attention mechanism in the transformer 
model significantly improves the efficiency of training and 
inference, allowing larger models and processing of longer 
sequences. However, its high computational cost, structural 
complexity, and number of hyperparameters increase the 

(12)F(x) = g(x) + x, difficulty of optimization, requiring careful adjustment of 
hyperparameters such as the learning rate and batch size to 
achieve better performance [33, 34]. The energy spectrum 
data can be regarded as both a two-dimensional image and a 
sequence; therefore, the above models were selected to test 
their nuclide recognition performance.

3 � Results and Discussion

Eight nuclides from the industrial nuclide library were 
selected as the nuclides to be analyzed, and the Geant4 simu-
lation NaI detector was used to establish a spectrum database 
corresponding to the eight nuclides. To bring the simulated 
data closer to the actual spectrum, the simulated database 
was preprocessed using Gaussian broadening and random 
noise superposition. Based on the principle of data augmen-
tation, the database size was expanded to 1.0 × 10

4 . TBNN 
was established for the characteristics of input spectrum 
data, and traditional network paradigms including BP, CNN, 
and RNN were also constructed for comparative experiments 
to analyze the recognition rate, convergence speed, and other 
aspects of the performance of the TBNN model. The overall 
process is illustrated in Fig. 3.

3.1 � Data preparation

Through the method in Sect. 2.1, a nuclide library was 
generated, containing eight industrial radioactive nuclides: 
241Am , 192Ir , 226Ra , 133Ba , 60Co , 57Co , 137Cs , and 152Eu . The 
volume of the database was 1.0 × 10

4 . Each � spectrum in 
the database was formed using a random combination of 
eight nuclides with random activity. Some � spectra are 
shown in Fig. 4. The dataset annotation in this paper adopts 
the [ 1 × 8 ] matrix label to be annotated, each column in the 
matrix corresponds to 241Am , 192Ir , 226Ra , 133Ba , 60Co , 57Co , 
137Cs , and 152Eu, respectively, “0” indicates the absence of 
the radionuclide, and “1” indicates the presence of the radio-
nuclide. For example, if a spectrum contains 192Ir , 152Eu , 
57Co three radionuclides, then the label is “[0, 0, 1, 0, 0, 1, 
0, 1].” Therefore, the spectrum recognition task in this study 
corresponds to a multi-label classification task. Each label 
was annotated after the MC simulation.

Traditional nuclide library comparison methods are 
highly complex and inaccurate in identifying nuclides dur-
ing the process [4, 22]. In the nuclide library selected in this 
study, there were some nuclides with similar characteristic 
� energies, leading to overlapping peaks. For example, the 
difference between the characteristic � ray energy of 57Co ’s 
122.0614 keV (85.60%) and 152Eu ’s 121.782 keV (39.76%) 
is far less than the energy resolution of the NaI scintillator 
detector (7% ∼ 9%, 137Cs @ 661 keV). As shown in Fig. 5, 
although they have other smaller branch ratio characteristic 
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peaks, it is difficult to identify the two types of nuclides from 
the spectrum under high-background and low-activity condi-
tions. The database generated by Geant4 in this study used a 
combination spectrum method of random activity, random 
noise, and random nuclide types to objectively verify the 
ability of the TBNN model to identify overlapping peaks.

Neural network models usually require a database inde-
pendent of the training set to evaluate the inference ability 

of the model; therefore, the nuclide library obtained by 
simulation was divided into a training set and a valida-
tion set at a ratio of 9:1. To make the model easier to 
train, before inputting data into the model for training, it 
was necessary to normalize the spectrum data of 1 × 1024 . 
Z-score normalization was used to transform the data to 
follow a normal distribution. The formula for this is as 
follows:

Fig. 3   (Color online) The workflow diagram of the research process in this study. It mainly includes three parts: dataset preparation, model con-
struction, and data analysis

Fig. 4   Some � spectrum 
samples generated by the MC 
simulation. The horizontal axis 
represents the number of energy 
channels, and the vertical axis 
represents the count of each 
energy channel. The range of 
energy is 0 ∽ 3MeV
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where Xi denotes the i-th channel spectrum data, � represents 
the mean value of this spectrum, � represents the standard 
deviation of this spectrum, and XiNorm is the normalization 
result of the i-th channel spectrum data.

3.2 � Training of models

3.2.1 � Settings of models for comparison

Referring to the principles of model design in Sect. 2, the 
model designed in this study was built based on Python and 
used Keras and TensorFlow2.6.0. The experimental plat-
form was a RTX 2060 12GB GPU. In the training phase, 
the model performs a large number of calculations, such as 
gradient calculations and parameter updates, so it imposes 
certain requirements on the memory size and computing per-
formance of the GPU. In addition, the overhead of the model 
weights, gradient propagation, optimizer parameters, input 
data and their labels, intermediate calculations, temporary 
buffers, hardware, and dependency libraries also consume 
some memory. Taking the TBNN model constructed in this 
study as an example, if the 1 × 1024 energy spectrum is 
regarded as a sequence of length 1024 in the input phase, 
then when the embedding operation is performed on it (map-
ping the data to a high-dimensional space) [48], the shape of 
the model input is transformed into 1024 × 200 (taking the 
200-dimensional embedding as an example). During the test, 
a 12 GB GPU prompts an “Out Of Memory (OOM)” error; 
that is, the memory required to train the model exceeds 
the current graphics card resources. Therefore, the input 

(13)XiNorm =

Xi − �

�

sequence was set to a 32 × 32 shape, and the embedding 
process was directly skipped. By monitoring the memory 
status of the GPU, we can conclude that the graphics card 
occupied approximately 1.5 G (the maximum value in all 
models) during the training phase.

The TBNN model designed in this study adopts a struc-
ture with 1 to 8 encoder–decoder layers, and the number 
of attention heads was set to 2n ( n = 0, 1, 2, 3 ). The models 
built for comparison included a BP with four hidden layers, a 
CNN with two convolutional layers and one fully connected 
layer, a ResNet with three residual blocks, and a unidirec-
tional LSTM model with two hidden layers, as shown in 
Fig. 6.

The task of identifying the eight radioactive nuclides in 
this study can be regarded as a multi-label task; therefore, 
the loss function for network model training was a binary 
cross-entropy function (a measure of the difference between 
two probability distributions, often used in binary classifi-
cation problems). The weight initialization method for all 
models was random initialization. The adaptive moment 
estimation (Adam) algorithm was used as the optimiza-
tion function. Adam combines the driven gradient descent 
and root-mean-square prop (RMSProp) algorithms and can 
reduce the number of iterations required to reach the optimal 
value and improve the ability of the optimization algorithm.

3.2.2 � Parameters tuning of TBNN model

Learning rate To avoid overfitting or gradient explosion of 
the model while ensuring a certain convergence speed, we 
set different learning rates for testing. The learning rates 
were set to 0.01, 0.005, 0.003, 0.001, 0.0008, and 0.0005, 
respectively; the number of epochs, attention head count, 

Fig. 5   The original � spectrum of 57Co (122.0614 keV, 85.60%) and 152Eu (121.782 keV, 39.76%). The peak positions of 57Co and 152Eu almost 
overlap
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and layer count were set to 20, 4, and 4, respectively, and 
the test results are shown in Fig. 7.

When the learning rate was set to 0.01, the model did 
not converge, indicating that the initial learning rate was 
too large; therefore, it was appropriate to reduce the learn-
ing rate to try to obtain the optimal initial learning rate. A 
better convergence speed was obtained when the learning 
rate was less than 0.001. Table 1 lists the test accuracy for 
different learning rates within 20 training steps. Therefore, 
subsequent training of this model was performed with the 
learning rate set to 0.0008.

Number of attention heads and layers Next, we analyzed 
the recognition rate of TBNN models composed of differ-
ent numbers of attention heads and transformer layers. We 
set the learning rate to 0.0008 and number of epochs to 20 
(not considering the slowdown in convergence speed due 
to increased model parameters). Because the parameter 

Fig. 6   Construction of other models including BP, CNN, ResNet, and LSTM for comparison

Fig. 7   (Color online) Training curves for different learning rates of the transformer-based neural network. The left and right subfigures show the 
changes in training accuracy and training loss, respectively, over 20 epochs

Table 1   Test accuracy for different learning rates (20 epochs)

lr 0.01 0.005 0.001 0.0008 0.0005

Accuracy 0.6% 15.1% 75.2% 78.3% 77.1%
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initialization method of the model was set to random ini-
tialization, all models were trained three times, and the best 
recognition rate was used as the final model for horizontal 
comparison. The best-performing model for each combina-
tion of the attention head count and network layer count was 
selected to obtain the results, as shown in Fig. 8. Note that 
the surface in the figure was obtained through linear fitting 
of the measured points, which can intuitively display the 
accuracy trends with parameter changes.

From the perspective of changing the number of network 
layers with a fixed attention head count within 20 training 
cycles, as the number of network layers changes, models 
with different attention head counts can all achieve an accu-
racy of over 80%, and they all reach their current best when 
there are two to four layers in the network. However, from 
the perspective of changing the attention head count with a 
fixed number of network layers within 20 training cycles, an 
increase in the attention head count does not significantly 
affect network accuracy.

From Fig. 8, it can be concluded that optimal accuracy is 
achieved when the number of attention heads is two and the 
number of layers is four. For models with deeper network 
layers and more attention heads, owing to a surge in the 
number of hyperparameters, it is difficult for the model to 
achieve ideal accuracy within 20 cycles. Simultaneously, the 
use of a large number of hyperparameters makes network 
training more time-consuming and difficult to converge. 
Table 2 lists the time costs of training networks with differ-
ent layer counts and attention head counts. Training time was 
positively correlated with both.

Epoch The aforementioned training process exceeded 20 
training cycles in all cases. Models with smaller parameter 
quantities may reach their optimal fitting ability within 20 
cycles; however, deeper models may be far from conver-
gent. A reasonable epoch can give the model good predic-
tive ability without overfitting. Therefore, the next step was 
to set the epochs to 200 to test the convergence accuracy 
of the different models. According to the results in Sects. 
1 and 2, models named “(num_Head, num_Layer)” were 
selected, including (2,2), (2,4), (2,8), and so on. Each model 
was trained three times by taking the step length when each 
model reached optimal accuracy; the final step length results 
are shown in Table 3 and Fig. 9. Note that the purpose of 
Fig. 9 is similar to that of Fig. 8. The surface in the figure 
was obtained through linear fitting of the measured points, 
which can visually display the accuracy trends with param-
eter changes.

At 20 training cycles, the models with smaller param-
eter values (smaller numbers of attention heads and model 
layers) achieved higher accuracy than models with larger 
parameter values in a shorter time span. When the number 
of training cycles was increased to 200, models with larger 
parameter values were sufficiently trained, and their accu-
racy also increased to above 95%. However, increasing the 
model’s parameter values will not continuously increase its 
accuracy, as shown in Fig. 9. When the number of atten-
tion heads was four and the number of layers was four, the 
model’s recognition rate reached its highest value of 98.7%. 
This might be because an excessive number of hyperparam-
eters increase unnecessary or redundant connections in the 
network layer, which affects the model’s ability to extract 
data features and increases the training cost. However, this 
does not mean that models with fewer hyperparameters often 
achieve superior results. The model with parameters of (4, 4) 

Fig. 8   (Color online) The impact of selecting numbers of different 
attention heads and layers on accuracy ( lr = 0.0008 , epoch = 20 ). 
Here, “layer” can only take integers from 1 to 8

Table 2   The time (sec) spent for different numbers of attention heads 
and network layers

Layer(hyperparameters) Head

1 2 4 8 16

1(186700) 21.5 21.5 21.8 22.8 28.1
2(336016) 31.6 32.8 34.5 37.7 46.9
4(634648) 54.3 56.7 60.1 66.7 84.3
8(1231912) 98.2 103.3 110.1 123.6 160.1

Table 3   Number of epochs used 
to train each model to achieve 
optimal accuracy

num_Head num_Layer

2 4 8

2 136 179 180
4 129 130 186
8 66 154 178
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exhibited the best nuclide recognition for the database estab-
lished in this paper and was used for comparison with other 
neural network models, as described in the next section.

3.2.3 � Comparison with other neural network models

The four models shown in Fig. 6 were trained for compari-
son with the TBNN model proposed in this paper. For BP, 
which has fewer network nodes, a large step size can easily 
lead to overfitting. Therefore, the learning rate was set to 
0.01. For the CNN, ResNet, and LSTM, the learning rate 
was set to 0.0001. The epoch number for each model was set 
to 200. The network training loss and accuracy are shown 
in Fig. 10.

All of these models can converge quickly (the training 
loss decreases exponentially and steadily during training 
and can be reduced to approximately 0.1 over 50 epochs); 
the final nuclide identification accuracy of each model is 
shown in Table 4. Overall, the accuracy of the identifica-
tion method based on neural networks exceeded 90%. BP 
has a simple structure and can stabilize within 50 epochs; 

Fig. 9   (Color online) The optimal accuracy that each model can 
achieve within 200 epochs. Here, “layer” can only take integers from 
2 to 8, and “head” can only take values of 2, 4, or 8

Fig. 10   Training curves for different learning rates of models including BP, CNN, ResNet, and LSTM for comparison. The average accuracy was 
obtained after each model training process became basically stable (epoch ⩾ 150)
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however, it easily reaches a local optimum, resulting in no 
further improvement in the final accuracy. The “dropout 
layer” can effectively alleviate the phenomenon of BP over-
fitting, and the worst accuracy rate of BP without the drop-
out layer after training was 83%. This shows that BP has the 
problem of falling into local optima. After adding a dropout 
layer and setting the dropout rate to 0.2, BP’s convergence 
accuracy reached 92.8%. The CNN and LSTM networks had 
better global optimization capabilities than BP, and all three 
training methods converged stably at approximately 95%. 
Compared with the CNN, the RNN has the disadvantage 
that it cannot be parallel, which is an important factor that 
causes its longer training cycle. The step length of LSTM 
(which is based on the RNN) is longer than that of the RNN, 
and the corresponding forward- and back-propagation steps 
are also increased, resulting in greater training resource con-
sumption. Therefore, the LSTM requires a longer training 
cycle. ResNet, as an improved CNN model, allows deeper 
convolutions to be fully trained. Its ability to extract data 
features is better than that of a CNN, and the overall rec-
ognition rate increased by approximately 1%. The TBNN 
model proposed in this paper has a hyperparameter magni-
tude similar to that of ResNet, both of which are on the order 
of millions. Within 20 training cycles, the recognition rate 
is approximately 83%. However, as the number of training 
cycles increased, the potential of TBNN was revealed. The 
optimal recognition rate reached 98.7%, which is at least 
2.4% higher than that of the other models. This indicates that 
the transformer network structure paradigm has significant 
potential for nuclide identification.

4 � Conclusion

A nuclide identification model based on the transformer is 
proposed for the first time in this paper. Unlike traditional 
neural network architectures such as BP and CNN, this 
study explores the potential of the encoder–decoder struc-
ture paradigm based on the self-attention mechanism in 
the field of artificial intelligence nuclide identification. In 
the field of NLP, the numbers of hyperparameters of large 
language models have reached hundreds of millions. The 
input of the transformer is usually a sequence; therefore, 

this study converts the 1024-channel one-dimensional 
spectrum into a 32 × 32 spectrum sequence as the input of 
the TBNN. Experimental verification demonstrated that 
converting the spectrum into a sequence is an effective 
processing method that retains all data of the spectrum and 
does not generate excessive model nodes; thus, the model 
can be trained under limited graphics card resources.

We established a database for eight industrial radioac-
tive nuclides: 241Am , 192Ir , 226Ra , 133Ba , 60Co , 57Co , 137Cs 
and 152Eu , and established four representative neural net-
work models: BP, CNN, ResNet, and LSTM, to verify the 
effect of the new model proposed in this paper. When the 
number of attention heads was four and the number of lay-
ers was four, the TBNN model achieved the best nuclide 
identification effect on the dataset established in this study, 
with an identification rate of 98.7%. Based on the com-
parison results, it is inferred that ability of the TBNN to 
extract data features is not weaker than that of traditional 
neural network paradigms. It is also worth noting that 
in the recognition task of 8 nuclides, TBNN with four 
attention heads and four network layers achieved the best 
results, and increasing attention heads and network layers 
did not significantly reduce recognition rate. This indicates 
that in more complex tasks, such as nuclide identification 
tasks on databases with richer nuclide types, deeper TBNN 
models still be highly competitive, which is a direction 
for future research. Overall, our research demonstrates the 
effectiveness of introducing transformer models into the 
field of artificial intelligence for nuclide identification.
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