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Abstract
The off situ accurate reconstruction of the core neutron field is an important step in realizing real-time reactor monitoring. 
The existing off situ reconstruction method of the neutron field is only applicable to cases wherein a single region changes 
at a specified location of the core. However, when the neutron field changes are complex, the accurate identification of the 
individual changed regions becomes challenging, which seriously affects the accuracy and stability of the neutron field recon-
struction. Therefore, this study proposed a dual-task hybrid network architecture (DTHNet) for off situ reconstruction of the 
core neutron field, which trained the outermost assembly reconstruction task and the core reconstruction task jointly such that 
the former could assist the latter in the reconstruction of the core neutron field under core complex changes. Furthermore, 
to exploit the characteristics of the ex-core detection signals, this study designed a global-local feature upsampling module 
that efficiently distributed the ex-core detection signals to each reconstruction unit to improve the accuracy and stability of 
reconstruction. Reconstruction experiments were performed on the simulation datasets of the CLEAR-I reactor to verify 
the accuracy and stability of the proposed method. The results showed that when the location uncertainty of a single region 
did not exceed nine and the number of multiple changed regions did not exceed five. Further, the reconstructed ARD was 
within 2%, RD

max
 was maintained within 17.5%, and the number of RD

≥10% was maintained within 10. Furthermore, when 
the noise interference of the ex-core detection signals was within ±2% , although the average number of RD

≥10% increased 
to 16, the average ARD was still within in 2%, and the average RD

max
 was within 22%. Collectively, these results show that, 

theoretically, the DTHNet can accurately and stably reconstruct most of the neutron field under certain complex core changes.

Keywords  Real-time reactor monitoring · Core neutron field reconstruction · Dual-task hybrid network architecture · 
Global-local feature upsampling module

1  Introduction

Nuclear energy is a strategic energy source that is safe, effi-
cient, has low-carbon emission, and has high energy density. 
It has become an important part of the world energy sys-
tem in recent years [1]. A reactor is a device that releases 
nuclear energy in a controlled manner and converts it into 
heat energy. Thus, its safe and effective operation has been 
of concern to the industry and the public. A real-time reactor 
monitoring system is an important safeguard to ensure the 
safety and economy of a reactor, which primarily monitors 
the core power, temperature, neutron distribution, and other 
physical quantities. Among these physical quantities, the in-
core neutron distribution (called the core neutron field) pro-
vides basic data for reactor power distribution and burn-up 
calculations, material irradiation damage analysis, and other 
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studies. Therefore, the accurate acquisition of the neutron 
field is an important task in reactor monitoring systems.

Direct acquisition uses in-core detection signals to 
reconstruct a neutron field. In recent years, researchers have 
proposed various in situ reconstruction methods, such as 
neutron detector-based methods [2–5] and non-neutron 
detector-based methods [6, 7], which have achieved good 
reconstruction results in pressurized- and heavy-water reac-
tors. However, an advanced reactor core has a harsh oper-
ating environment, such as high temperature [8], strong 
magnetic field [9], and modularity [10–12]. Thus, it is dif-
ficult to install neutron-monitoring instruments in the core, 
which greatly affects detector signal acquisition. Ultimately, 
this affects the accuracy and stability of the in-situ recon-
struction methods. Because ex-core detectors are flexible 
and unaffected by the harsh environment of the core, core 
neutron field reconstruction based on ex-core detection 
signals (namely off situ reconstruction) is the focus of the 
current research. Specifically, off situ reconstruction meth-
ods include analytical reconstruction and neural network 
methods.

Analytical reconstruction is a formula-driven solution-
based method. In 2019, Cao et al. [13] reconstructed the 
neutron energy spectrum by constructing a response for-
mula for the ex-core detection signals and core neutron spec-
trum. However, when the neutron field to be reconstructed 
becomes more complex, there is an ill-posed problem when 
directly solving it using the response formula. Thus, certain 
researchers have further developed an analytical reconstruc-
tion method based on an iterative optimization algorithm, 
which has been applied to the reconstruction of gamma radi-
ation fields [14], negative ion beams [15], and reactor power 
distributions [16, 17]. To reconstruct the neutron field, Rodi-
onov et al. [18] reconstructed DD and DT neutron emissiv-
ity profiles in two-dimensional space based on the principle 
of maximum likelihood estimation. Goricanec et al. [19] 
deduced a neutron flux redistribution factor based on an ex-
core detector and reconstructed the neutron flux distribu-
tion under specific working conditions. Although analytical 
reconstruction methods do not require a large amount of 
data to solve the core neutron field problem, the accuracy 
and speed of analytical reconstruction cannot be guaranteed.

In recent years, the neural network reconstruction meth-
ods have become a common algorithm for off situ recon-
struction of core physical quantities, such as reactor power 
distribution reconstruction [20, 21], fast neutron direction 
reconstruction [22], fault diagnosis [23, 24], multi-nuclide 
source term estimation [25], reactor temperature distribu-
tion reconstruction [26], source term distribution recon-
struction [27, 28], and fusion plasma prediction [29, 30], 
etc. They exhibit a strong generalization ability and can 
perform physical quantity reconstruction under a variety 
of core changes. However, these algorithms focus only on 

the spatial distribution of physical quantities and cannot 
satisfy the requirements of high-dimensional neutron field 
reconstruction. To realize the reconstruction of the neu-
tron distribution with space and energy, Cao et al. [31, 32] 
developed a neutron field reconstruction method based on 
a shallow neural network, and the neutron distribution with 
two-dimensional space and energy was successively recon-
structed on the reactor models of a pressurized water reactor 
and lead-based reactor. Further, Cao et al. [33] developed 
a pipeline architecture based on a deep neural network for 
complex neutron field reconstruction. This pipeline architec-
ture trains the core changed region recognition, core relay 
region reconstruction, and core neutron field reconstruction 
separately, which are then performed sequentially to achieve 
the reconstruction of the 3D neutron field. However, this 
method is applicable to cases wherein only a single region 
changes at a specified location of the core. In fact, the loca-
tion and number of core-changed regions are uncertain, and 
this situation can seriously affect the accuracy and stability 
of neutron field reconstruction.

To address this limitation, this study proposed a joint 
training model based on a hybrid architecture. The archi-
tecture simultaneously trains the core relay reconstruction 
and core neutron field reconstruction subtasks. Simultane-
ously, the relay region reconstruction task was used to assist 
the core neutron field reconstruction task to improve the 
accuracy of the neutron field reconstruction. Based on the 
above study, the core neutron field reconstruction can still 
be realized in the case of unknown core-changed region 
information.

2 � Related work

2.1 � Multi‑task deep learning

Multitask deep learning (MTDL) [34] is a model training 
paradigm wherein the main idea involves training with mul-
tiple tasks simultaneously using shared representations to 
learn information between related tasks. Shared representa-
tions can improve the efficiency of data feature extraction, 
improve the learning speed of related tasks, and alleviate 
the weaknesses of deep learning, such as large data scale 
and time consumption. Zhao et al. [35] introduced a clas-
sification method that divides MTDL architectures into four 
types: cascaded, parallel, interactive, and hybrid.

Figure 1a presents a typical cascaded architecture. This 
architecture does not have a shared task layer and the out-
put of the previous task is fed directly to the subsequent 
training task. The cascaded approach is primarily suitable 
for cases wherein the subsequent task relies heavily on the 
output of the former task. Thus, the results of the former task 
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significantly affect the performance of the subsequent task 
in the task combination.

Figure 1b presents a typical parallel architecture. In this 
architecture, a partially shared representation layer exists 
and different tasks are computed in parallel on specific task 
networks. This parallel approach may be more suitable for 
addressing task combinations that are related but exhibit 
different levels of complexity. Examples include the image 
segmentation and image generation tasks.

An interactive architecture refers to the presence of one or 
more connections between task-specific layers, which ena-
bles the exploration of deep correlations between tasks, as 
illustrated in Fig. 1c. It is more suitable for solving situations 
wherein there is a significant correlation between multiple 
tasks, and can enable related tasks to provide useful auxil-
iary information.

Owing to the diversity of detailed network structures, 
researchers have defined the fourth category as a hybrid 
architecture (Fig. 1d). Typically, in a hybrid architecture, 
at least two of the following strategies are used: cascaded, 
parallel, or interactive. The hybrid architecture can fully lev-
erage the advantages of the three architectures and is well 
suited for complex task combinations.

Core neutron field data exhibit the characteristics of 
high-dimensional and large-scale data, and there are cer-
tain correlations among the multiple tasks involved in core 
reconstruction. Therefore, this study applied MDTL to the 
reconstruction of core neutron fields. Through coopera-
tive learning among different tasks, the aim was to further 
enhance the efficiency of the core neutron field reconstruc-
tion using ex-core detection signals.

2.2 � Pipeline reconstruction architecture

The pipeline reconstruction architecture (PRA) proposed 
by the authors in 2022 [33] is a novel and effective algo-
rithm for studying 3D neutron field [33]. The architecture 

ranging from “coarse-grained” to “fine-grained” reconstruc-
tion comprises three separate tasks. When all the tasks are 
trained individually, the core neutron field is sequentially 
reconstructed.

As shown in Fig. 2, the reconstruction architecture is 
based on a pipeline pattern. The first stage of the architec-
ture is a core changed-region recognition module, designed 
by convolutional neural networks. It accurately identifies the 
core-changed region based on ex-core detection signals. In 
the second stage, an improved variational autoencoder is 
designed to reconstruct the core relay region. After deter-
mining the core-change region, the neutron field of the relay 
region is predicted by inputting ex-core detection signals. 
In the third stage of reconstruction, the neutron field in 
the relay region is converted from two-dimensions (2D) to 
three-dimensions (3D), and then the distribution of the 3D 
core neutron field is predicted using the 3D full convolu-
tion-based reconstruction module. By sequentially executing 
these three modules, the pipeline-based architecture enables 
the reconstruction of the 3D core neutron field.

Notably, the PRA must identify the location of a single-
core changed region. However, the location and number of 
core-changed regions are generally uncertain. Therefore, this 
architecture has certain limitations.

3 � Dual‑task hybrid network architecture

This study proposed a dual-task hybrid network architecture 
(DTHNet), which is illustrated in Fig. 3. The ex-core detec-
tor signals were first subjected to image processing to form 
the required data structure for the model. Subsequently, the 
processed data were fed into a dual-task shared global-local 
feature upsampling module. Through nonlinear transforma-
tions, the features carried by the ex-core detector signals 
were allocated to each unit to be reconstructed. The hidden 

Fig. 1   (Color online) Schematic of four multi-task deep learning architectures [35]: a cascaded architecture, b parallel architecture, c interactive 
architecture, and d hybrid architecture
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Fig. 2   (Color online) Reconstruction architecture based on a pipeline pattern. This architecture comprises three main modules: the core changed 
region recognition, reactor relay reconstruction, and core neutron field reconstruction modules

Fig. 3   (Color online) Dual-task hybrid network architecture. The 
framework comprises three main parts: image processing (IP), global-
local feature upsampling module (GLFS), and reconstruction tasks. 

Task A is for reconstructing the neutron field of outermost core 
assemblies and Task B is for reconstructing the core neutron field
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vectors HGLFS served as inputs for the downstream tasks and 
continue the training process.

The downstream tasks in this study mainly comprised 
two tasks: reconstruction of the neutron field in the outer-
most core assemblies (Task A) and reconstruction of the 
core neutron field (Task B). Here, Task A was used to assist 
Task B. The specific reasons are as follows. The outermost 
core assemblies are the region with a strong response from 
the ex-core detector, and it is also an unavoidable region for 
neutrons to be transported from the in-core to the ex-core. 
Therefore, the outermost core assembly can serve as a relay 
region where the ex-core detector responds to core neutrons.

However, there was a significant difference in the com-
plexity of the two tasks in terms of data construction. As 
shown in Fig. 3, the data of the core neutron field was con-
siderably more than that of the neutron field in the outer-
most core assemblies. According to the applicable scenarios 
of four architectures of the MTDL, this study proposed a 
parallel + cascaded dual-task training approach. Although 
both tasks were trained in parallel, the neutron field in the 
outermost core assemblies �outermost was concatenated with 
the hidden vectors HGLFS and then used as the input for the 
reconstruction of the core neutron field.

3.1 � Image processing of neutron data

The purpose of image processing is to organize the neu-
tron distribution in the reactor based on the arrangement 
of image pixels to facilitate efficient feature extraction and 
transformation by the neural network layer. The reasons for 
this design are as follows/The core neutron field has strong 
correlations between adjacent assemblies in 3D space, such 
as the relationships between pixels in an image. Therefore, 
each assembly to be reconstructed can be regarded as a pixel, 
and the number of energy groups corresponds to the number 
of channels in the image (such as the RGB channels in an 
image).

Typically, both discrete ex-core detection signals and con-
tinuous neutron fields are the objects of image processing. 
For discrete ex-core detection signals, imaging processing 
forms a 3D signals tensor according to the spatial position 
of each detection point. Subsequently the 3D signals are 
augmented to four-dimensions (4D) by adding the energy 
dimension to facilitate the extraction and allocation of the 
ex-core detection signal features through the three-dimen-
sional convolutional network layer. For a continuous core 
neutron field, image processing discretizes the neutron field 
from both space and energy to form a 4D tensor (energy, 
height, weight, and length); where, height is the height after 
discretization of a neutron field in the core, weight is the 
discretized width of the neutron field in the core, length is 
the discretized length of the neutron field in the core, and 
energy is the number of discretized energy groups.

According to the above design, the sample after image pro-
cessing includes the following steps.

where s represents the ex-core detection signals, (�)coreEdge 
represents the neutron field of the outermost core assemblies, 
(�)core represents the core neutron field, and E × H ×W × L 
is the sample size, which represents the number of recon-
struction units. In the study, the number of energy groups 
was used as the convolutional depth. In addition, the mag-
nitude of the neutron field distribution values calculated by 
the Monte Carlo method is small, which is not conducive to 
model training. Therefore, this study adopted normalization 
processing to limit the magnitude of the neutron field to the 
range of [0,1].

3.2 � Global‑local feature upsampling module

For a multitask architecture, it is essential to extract the shared 
features of tasks. By upsampling the features contained in the 
ex-core detection signals, the features carried by the signals 
can be evenly distributed to each reconstruction unit. Owing 
to the large magnitude difference between the values of the 
core neutron field, it is difficult to assign features to certain 
reconstruction units, and the model cannot reconstruct units 
with small numerical values.

Therefore, a global-local feature upsampling module was 
designed in this study. The architecture diagram of the module 
is shown in Fig. 4. The module was divided into two parts 
to upsample the information carried by the ex-core detection 
signals. The first was the global feature upsampling network, 
which ensured that the ex-core detection signals covered every 
reconstruction unit, and the network output was HGlobal . The 
second was a local feature upsampling network, which was 
primarily used to assign features to energy groups with less 
neutron distribution. The network output was HLocal . Finally, 
the sampling results of the two parts were concatenated as 
inputs for the following two reconstruction tasks.

3.3 � Dual‑task optimization function

The hidden layer vector HGLFS obtained from the global-local 
feature upsampling module was used to train the reconstruc-
tion task of the neutron field in the outermost core assemblies 
and that of the core neutron field. The formula for the recon-
struction of the neutron field in the outermost core assemblies 
is as follows:

(1)S = {s, (�)E×H×W×L
coreEdge

, (�)E×H×W×L
core

}

(2)LA =
1

N

N∑

j=1

(f
j

A
(HGLFS) − �

j

A
)
2
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where N = E × H × CA , E is the number of discretized 
energy groups, H is the height of the core neutron field, 
and CA =

∑W

i=1
ni , where W is the width of the core neutron 

field, ni is the number of outermost core assemblies in the 
i-th line. Further, HGLFS is the output vector of GLFS mod-
ule, f j

A
(HGLFS) represents the reconstructed data of the j-th 

outermost core assemblies, and �j

A
 represents the reference 

data of the j-th outermost core assemblies obtained through 
Monte Carlo simulations.

Subsequently, the results of the outermost core assem-
blies were concatenated to the hidden layer vectors to 
obtain new hidden layer vectors that were used for core 
neutron field reconstruction training. This step is similar 
to a residual network, which not only retains the origi-
nal sampled features but also incorporates certain learned 
knowledge features, thereby improving the effectiveness 
of core neutron field reconstruction. Therefore, the loss 
function for the second task is as follows:

where M = E × H × CB , E is the number of discretized 
energy groups, H is the height of the core neutron field, 
and CB =

∑W

i=1
li , where W is the width of the core neutron 

field, li is the number of core assemblies in the i-th line of 
width. Further, HGLFS is the output vector of GLFS module, 
f
j

B
(HGLFS) represents the reconstructed data of the j-th-core 

assemblies, and �j

B
 represents the reference data of the j-th-

core assemblies obtained through Monte Carlo simulations.
Finally, the loss function of the entire model training 

comprised LA and LB . The formula is as follows:

(3)LB =
1

M

M∑

j=1

(f
j

B
(HGLFS) − �

j

B
)
2

where � and � are hyperparameters. They are used to balance 
the two tasks during the training of the neural network, and 
their values are in the range [0,1]. Typically, after multiple 
manual attempts, an appropriate value can be selected to 
obtain better model learning efficiency.

4 � Experimental settings

4.1 � Benchmark and dataset

Lead-cooled fast reactors, recommended as fourth-genera-
tion nuclear energy systems, have made significant progress 
in their development. The China Lead-based Experimen-
tal Advanced Reactor-I (CLEAR-I) [36] is a lead-cooled 
fast reactor that operates in both critical and accelerator-
driven subcritical modes. The numbers of core assemblies 
and material summaries are listed in Table 1. As shown in 
Fig. 5, the CLEAR-I core adopts the commonly used hex-
agonal prism assemblies of fast reactors. According to the 
different functions of the assemblies, the core was divided 
into target, buffer, active, reflecting, and shielding regions 
from the inside to the outside. The buffer region comprised 
six assemblies, and the core active region consisted of 94 
assemblies, including 86 fuel assemblies (52 of which were 
replaced with reflector assemblies when the reactor was in 
subcritical operation) and eight control-rod assemblies.

In this study, the critical mode was selected as the simu-
lated operation mode of the reactor to verify the reconstruc-
tion of the neutron field under transient changes in the core. 
In addition, to reduce the time required for model training, 

(4)LDTHNet = � ∗ LA + � ∗ LB

Fig. 4   (Color online) Global-local feature upsampling module. Both global and local sub-modules upsample ex-core signals. Finally, the outputs 
of sub-module are concatenated together as inputs for downstream tasks
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half of the reactor model was selected for verification of the 
reconstruction method.

According to the characteristics of the neutron dis-
tribution in fast reactors, the energy groups for neutron 
field reconstruction in this study were set as follows: 
[ 0, 1.00 × 10−2]  MeV, [ 1.00 × 10−2, 1.00 × 10−1]  MeV, 
[ 1.00 × 10−1, 5.00 × 10−1]  MeV, [ 5.00 × 10−1, 1.00]  MeV, 
and [ 1.00, 2.00 × 101]  MeV. Figure 6 shows the ex-core 
detection points and relay region for CLEAR-I model in 
this study. Herein, 8 × 8 detection points were set outside 
the shielding layer; thus, the ex-core detection signals were 
s8×8 , and the detection signals were s1×8×1×8 after image pro-
cessing. In addition, the core assembly region was divided 
into two parts according to the material distribution; thus, 
the height of the core was 2. Based on the radial profile 
of the reactor (Fig. 7), the core had a length of 11 and a 
width of 7. Therefore, in this case, the size of the neutron 
flux distribution for the outermost assemblies (relay region) 
of the core was 5 × 2 × 18 and that after image processing 
was 5 × 2 × 7 × 11 . The dimensions of the neutron field core 
were 5 × 2 × 7 × 11.

In line with the symmetry of the model, a Monte Carlo 
fixed-source calculation was conducted in this study, and 
the response matrix of the ex-core detection points was 
obtained. In this study, assembly was used as the basic spa-
tial unit for reconstruction. When the neutron distribution of 
an assembly changes, the neutron fields of the surrounding 
assemblies may be affected. Thus, 5–6 adjacent assemblies 
were chosen as changed regions. In this context, this study 
set 18 regions where the core changes, and the upper and 
lower layers of the core contained nine changes. Table 2 lists 

Table 1   Quantity and material composition of CLEAR-I core compo-
nents

Core components Numbers Material composition

Buffer region 8 Lead
Fuel assemblies 86 UO

2
 with 19.75% enrichment

Reflector assemblies 84 Lead
Shielding assemblies 48 Lead, boron
Safety rod/control 

rod/compensatory 
rod

3/3/2 Stainless steel, boron, and cadmium

Fig. 5   (Color online) Radial profile of the CLEAR-I reactor

Fig. 6   (Color online) Settings of ex-core detection points and relay region. The relay region is composed of the outermost assemblies of the core
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the assembly serial numbers of each region of the upper 
core. The nine regions of the lower core corresponded to the 
upper core and were not repeated.

In a previous study [21], the authors assumed that only 
one region of the core was changed at a given time and that 
the region must be identified first; therefore, a single change 
dataset (SCD) was constructed. However, in practice, both 
the location and the number of the changed region are uncer-
tain. Thus, to systematically verify the performance of the 
architecture proposed in this study, two types of mixed data-
sets were constructed based on the 18 regions where the 
core may change: single-region mixed datasets (SRMDs) 
and multi-region mixed datasets (MRMDs). For SRMDs, the 
authors assumed that only one region of the core changed 
at a given time; however, this region was uncertain. In this 
study, 17 datasets, SRMDs = {Dm|2 ≤ m ≤ 18} , were gen-
erated, where m indicates that a single change occurred in 
one of m certain regions. Thus, m can also be considered 
the location uncertainty of a single-changed region. For 
example, when m = 3 , a region change occurs in regions 3, 
4, or 5, and the location uncertainty is 3. For MRMDs, we 
assumed that there were multiple changed regions at a cer-
tain time. Seventeen datasets MRMDs = {Dn|2 ≤ n ≤ 18} 

were generated. Further, n represents the number of changed 
regions in all 18 regions. For example, when n = 3 , there 
were 3 certain changed regions in the core, where these 3 
regions were randomly selected among the 18 regions. In 
fact, the magnitude of the core changes in reactor opera-
tion was also uncertain; therefore, this study increased the 
diversity of the neutron field changes; that is, even if any two 
samples of the training set exhibited a consistently changed 
region, the magnitude of the change was not consistent. The 
amplitude of the core-changed region was 0 ∼ 15% ; these 
datasets are listed in Table 3.

4.2 � Hyperparameter settings

Table 4 lists the hyperparameter of DTHNet utilized in the 
experiment. In the experiment employs a three-dimensional 
convolutional network layer was employed to reconstruct a 
four-dimensional core neutron field. Moreover, to preserve 
the inherent features of the ex-core detection signals, the 
network architecture in this study did not utilize a pool-
ing layer. Finally, the training parameters of the DTHNet 
in this study were set to � = 0.5 , � = 0.1 , epochs = 1500 , 
batch_size = 100.

5 � Results and discussion

5.1 � Evaluation criteria for neutron field 
reconstruction

The relative deviation is expressed as RD, where the value 
quantifies the relative difference between the reconstructed 
and reference data. Within the context of this study, RD 
served as an assessment metric for appraising the recon-
struction effect of each reconstruction unit within the phase-
space neutron field. Meanwhile, the closer ARD is to 0, the 
smaller the overall difference between the reconstructed data 
and reference data. The mathematical expression for RD is 
as follows:

Fig. 7   (Color online) Core assembly cross sections and their serial 
number(upper layer)

Table 2   Assembly serial numbers corresponding to the regions where 
the core changes

Region number Assembly serial numbers

1 49, 51, 67, 69, 71, 83, 85
2 31, 33, 49, 51, 53, 69, 71
3 19, 21, 33, 35, 37, 53, 55
4 21, 23, 35, 37, 39, 55, 57
5 23, 25, 37, 39, 41, 57, 59
6 39, 41, 57, 59, 61, 73, 75
7 59, 61, 73, 75, 77, 87, 89
8 5, 7, 17, 19, 31, 33
9 13, 15, 23, 25, 39, 41

Table 3   Databases and their description

Training data/dataset indicates the amount of data used for training 
in each dataset. Validation data/dataset represents the amount of data 
used for validation in each dataset. Testing data/dataset indicates the 
amount of data used for testing in each dataset

Database name Number of 
datasets

Training 
data/dataset

Validation 
data/dataset

Testing 
data/data-
set

SCDs 18 8000 2000 2000
SRMDs 17 8000 2000 2000
MRMDs 17 8000 2000 2000
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where �reconstructed represents the reconstructed data obtained 
by using the trained model, and �reference represents the neu-
tron flux obtained through Monte Carlo simulations, where 
the number of particles for the Monte Carlo fixed source 
simulation was 109.

Based on the calculation results of the above relative 
deviation, the average relative deviation ARD and maximum 
relative deviation RDmax were used as the evaluation criteria. 
As there were 460 reconstruction units in this study, taking 
the average relative deviation as the evaluation criterion will 
inevitably cover certain of the larger deviations, which will 
affect the final judgment. Therefore, 10% was selected as 
the reconstruction deviation threshold, and the reconstruc-
tion unit with a relative deviation of more than 10% RD

≥10% 
between the reconstructed value and the Monte Carlo simu-
lation reference value was considered as an additional evalu-
ation criterion.

(5)RD =
|�reconstructed − �reference|

�reference

5.2 � Experiments on SCDs

To test the reconstruction effect of DTHNet on SCDs, the 
core neutron field reconstruction performance was tested on 
18 datasets of SCDs, and the reconstruction results were 
compared with those based on PRA. The statistical results 
in Table 5 revealed that with the utilization of DTHNet, on 
average, the RDmax was 10.82%, and the number of RD

≥10% 
was 2. When employing PRA, the RDmax is 12.39%, and the 
number of RD

≥10% was 3. Meanwhile, the average relative 

Table 4   Network structure of 
core neutron field reconstruction 
based on DTHNet

Network module Layer name Kernel Strides Output size

Feature upsampling InputLayer – – (1, 8, 1, 8)
Conv3DTr 1 × 2 × 1 1 × 2 × 1 (3, 8, 2, 8)
Conv3DTr 1 × 2 × 1 1 × 2 × 1 (4, 8, 4, 8)
Conv3DTr 1 × 2 × 1 1 × 2 × 1 (5, 8, 8, 8)
Conv3DTr 1 × 1 × 2 1 × 1 × 2 (10, 8, 8, 16)
Conv3D 2 × 1 × 1 2 × 1 × 1 (10, 4, 8, 16)
Conv3D 2 × 2 × 1 2 × 2 × 1 (6, 2, 7, 16)
Conv3D 1 × 1 × 6 1 × 1 × 1 (5, 2, 7, 11)

Local feature upsampling InputLayer – – (1, 8, 1, 8)
Conv3DTr 1 × 2 × 1 1 × 2 × 1 (1, 8, 2, 8)
Conv3DTr 1 × 2 × 1 1 × 2 × 1 (1, 8, 4, 8)
Conv3DTr 1 × 2 × 1 1 × 2 × 1 (1, 8, 8, 8)
Conv3DTr 1 × 1 × 2 1 × 1 × 2 (1, 8, 8, 16)
Conv3D 2 × 1 × 1 2 × 1 × 1 (1, 4, 8, 16)
Conv3D 2 × 2 × 1 2 × 2 × 1 (1, 2, 7, 16)
Conv3D 1 × 1 × 6 1 × 1 × 1 (1, 2, 7, 11)

Core outermost assembly reconstruction task InputLayer – – (5, 2, 7, 11)
Conv3D 2 × 5 × 5 1 × 1 × 1 (10, 2, 7, 11)
Conv3D 2 × 5 × 5 1 × 1 × 1 (16, 2, 7, 11)
Conv3D 2 × 5 × 5 1 × 1 × 1 (8, 2, 7, 11)
Conv3D 2 × 5 × 5 1 × 1 × 1 (5, 2, 7, 11)

Core neutron field reconstruction task InputLayer – – (5, 2, 7, 11)
Conv3D 2 × 5 × 5 1 × 1 × 1 (3, 2, 7, 11)
Conv3D 2 × 5 × 5 1 × 1 × 1 (4, 2, 7, 11)
Conv3D 2 × 5 × 5 1 × 1 × 1 (5, 2, 7, 11)
Conv3D 2 × 5 × 5 1 × 1 × 1 (8, 2, 7, 11)
Conv3D 2 × 5 × 5 1 × 1 × 1 (8, 2, 7, 11)
Conv3D 2 × 5 × 5 1 × 1 × 1 (6, 2, 7, 11)
Conv3D 2 × 5 × 5 1 × 1 × 1 (5, 2, 7, 11)

Table 5   Average result of the evaluation on the SCDs

PRA  Pipeline Reconstruction Architecture, DTHNet Dual-Task 
Hybrid Network Architecture

PRA DTHNet

ARD (%) RD
max

 (%) RD
≥10% ARD (%) RD

max
 (%) RD

≥10%

1.22 12.39 3 1.35 10.82 2
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deviations ARD of the two methods were slightly different, 
and both remained within 2.5%.

To facilitate a more intuitive comparison of the recon-
struction outcomes of the two architectures, a line chart was 
generated as shown in Fig. 8. The chart illustrates RDmax 
and RD

≥10% for the 18 datasets of SCDs. Upon examination 
of the chart, it is evident that the reconstruction RDmax of 
PRA was inferior to that of DTHNet on 14 datasets, and 
the reconstruction RD

≥10% of PRA was inferior to that of 
DTHNet on 11 datasets.

Thus, this analysis indicates that the DTHNet was well 
suited for core neutron field reconstruction in the case of a 

single changed region, and it offered certain advantages over 
the PRA architecture.

5.3 � Experiments on SRMDs and MRMDs

The change in SCDs is relatively simple, and there is only a 
single changed region in each dataset. To assess the adapt-
ability of DTHNet to complex core changes, we evaluated 
the core neutron field reconstruction efficacy of this model 
on both SRMDs and MRMDs.

Table 6 presents the reconstruction effect on SRMDs 
and MRMDs; compared with the ARD of the reconstructed 

Fig. 8   (Color online) Maximum relative deviation RD
max

 and the number of RD
≥10% evaluated by PRA and DTHNet on SCDs

Table 6   Results of the 
evaluation on the SRMDs 
and MRMDs; where m is the 
location uncertainty of a single 
channel region, and n represents 
the number of core changed 
regions

SRMDs MRMDs

Dataset serial 
number

m ARD (%) RD
max

 (%) RD
≥10% n ARD (%) RD

max
 (%) RD

≥10%

1 2 1.32 7.91 0 2 0.93 11.66 1
2 3 1.20 13.15 3 3 1.32 17.15 6
3 4 1.49 12.44 1 4 1.07 17.28 5
4 5 0.93 7.94 0 5 1.59 16.50 10
5 6 1.15 16.17 5 6 1.94 18.92 15
6 7 1.59 17.00 7 7 1.47 22.54 15
7 8 1.28 14.21 5 8 2.04 21.17 24
8 9 1.24 17.49 10 9 1.37 20.88 22
9 10 1.70 24.89 9 10 1.89 25.88 25
10 11 1.75 17.72 10 11 1.62 27.71 32
11 12 1.95 20.00 13 12 1.72 20.32 34
12 13 2.09 32.57 22 13 1.94 30.71 26
13 14 2.11 27.86 23 14 1.92 26.95 25
14 15 1.85 31.61 23 15 1.98 40.26 22
15 16 2.06 28.77 23 16 1.78 22.47 40
16 17 2.06 37.82 28 17 2.42 30.52 44
17 18 2.01 33.72 25 18 1.80 28.87 38
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results on SCDs, the ARD on SRMDs and MRMDs 
increased; however, it could be maintained within 3%. On 
average, RDmax of SRMDs was 21.25%, and the number of 
RD

≥10% was 12. When the location uncertainty m of a single 
changed region was small (9), the number of RD

≥10% could 
be maintained to within 10. Meanwhile, on average, RDmax 
of MRMDs was 22.92%, and the number of RD

≥10% was 
23. When the number of changed regions n in a dataset was 
less than five, RD

≥10% was maintained within 10. The results 
show that DTHNet can achieve core neutron field recon-
struction on some datasets of SRMDs and MRMDs, further 
proving the applicability of the architecture for neutron field 
reconstruction under complex core changes.

To more intuitively analyze the reconstruction effect of 
DTHNet under complex core changes. A line chart is drawn 
for the data in Table 6, as shown in Fig. 9. It displays the 
RDmax and maximum number of RD

≥10% values of the recon-
struction results for SRMDs and MRMDs, respectively. As 
depicted in Fig. 9a, the reconstruction deviation increased 
with location uncertainty of single changed region. Simi-
larly, when a larger number of regions underwent changes, 
as shown in Fig. 9b, the efficacy of the reconstruction dimin-
ished. These results indicate that the location uncertainty 
of a single core-changed region and the number of core-
changed regions at a certain time significantly impact the 
reconstruction effect of DTHNet. Therefore, the continuous 
improvement of the network architecture of the DTHNet 
method and further enhancement of its applicability under 
various complex changes in the core will be the focus of 
subsequent research.

5.4 � Experiment on noise data

To verify the effect of neutron field reconstruction in the 
case of signals containing noise, reconstruction experiments 
were performed wherein the ex-core detection signals were 

affected by noise. When the location uncertainty m of a sin-
gle changed region did not exceed nine, and the number of 
multiple changed regions n did not exceed five, the ex-core 
detection signals were disturbed by noise to obtain noisy 
data ( SRMDsnoise and MRMDsnoise ). Noise generation is 
based on the inherent error of the detector, which ranges 
as ±20%–±30% in current engineering applications. The 
process of adding noise is as follows. First, six interference 
intervals ( ±2% , ±5% , ±10% , ±15% , ±20% and ±25% ) for 
the ex-core detection are set, and then the SRMDsnoise and 
MRMDsnoise are generated by adding noise to each detection 
signal of SRMDs(n≤9) and MRMDs(m≤5).

The DTHNet method was trained and tested based on 
the acquired noise data. Table 7 presents the results of the 
reconstruction using the noise data. Compared with the 
results presented in Table  6, for SRMDsnoise , when the 
degree of interference was ±2% , on average, ARD increased 
by approximately 0.22%, RDmax increased by approximately 
8.33%, and among the 460 reconstructed units, the num-
ber of RD

≥10% increased by approximately 6. However, the 
reconstruction accuracy decreased sharply as the degree of 
interference increased. For MRMDsnoise , when the degree 
of interference was ±2% , among the 460 reconstructed 
units, although the average number of RD

≥10% increased by 
approximately six, the average ARD increased by approxi-
mately 0.23%. Further, the average RDmax increased by 
approximately 5.05%. As the degree of interference con-
tinued to increase, the reconstructed ARD and RDmax did 
not change significantly, and only the average number of 
RD

≥10% increased. Thus, when the ex-core detection signals 
were noisy, the location uncertainty of the core change had 
a significant impact on the accuracy of the reconstruction; 
however, an increase in the number of changed regions had a 
slight impact on the reconstruction accuracy of the method.

In summary, when the noise interference amplitude is 
within ±2% , the DTHNet method can accurately and stably 

Fig. 9   (Color online) RD
max

 for each dataset on the SRMDs and MRMDs. The m value of SRMDs and n value of MRMDs increase linearly with 
the serial number of dataset
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reconstruct most neutron fields. Subsequently, we will con-
tinue to optimize the reconstruction method under noise 
interference to improve the stability of neutron field off situ 
reconstruction methods.

5.5 � Reconstruction time

To test the reconstruction speed of the proposed method, 
the time required for model training and reconstruction 
(experimental environment: windows11+NVIDIA 2080Ti) 
was determined. The model was trained for approximately 
3333 s on each dataset, and the results of neutron field recon-
struction could theoretically be obtained in approximately 
3 s. Therefore, it can be considered that this method satisfies 
the real-time monitoring requirements for the neutron field.

5.6 � Ablation study

By analyzing the aforementioned experimental effect, it is 
evident that DTHNet exhibits superiority not only in com-
parison to PRA under a single-region change, but also in 
its capacity to achieve precise reconstruction under some 
complex core changes. To further validate the effectiveness 
of the method design, ablation experiments were conducted 
on a global-local feature upsampling module and dual-task 
training. The results are presented in Table 8.

To assign the features of the ex-core detection signals to 
each reconstruction unit to improve the overall reconstruc-
tion accuracy, DTHNet incorporates a global-local feature 
upsampling module. To validate the efficacy of this module, 
we conducted ablation experiments, the results of which are 
presented in Table 8.

When the global-local feature upsampling module was 
replaced by a common upsampling module, the average 
RDmax on SCDs, SRMDs, and MRMDs was approximately 
89%, 81%, and 74%, respectively. In addition, the average 
number of RD

≥10% in SCDs, SRMDs, and MRMDs increased 
significantly. From this observation, it is evident that global-
local feature upsampling captures ex-core detection informa-
tion and enhances the core reconstruction efficiency.

In DTHNet, the reconstruction task of neutron field in the 
outermost core assemblies (Task A) was used to assist the 
core neutron field reconstruction task (Task B). To verify the 
assistance effect of Task A, core neutron field reconstruc-
tion experiments were performed after Task A was removed. 
Comparing the results of DTHNet and DTHNet (without 
Task A) in Table 8, it can be observed that ARD increased 
slightly for SCDs, SRMDs, and MRMDs. In addition, the 
average RDmax values of the SCDs, SRMDs, and MRMDs 
were approximately 2.57%, 2.99%, and 2.29%, respectively. 
The average number of RD

≥10% increased by 2 ∼ 3 for SCDs 
and SRMDs but increased significantly for MRMDs. These 
results show that the reconstruction task of the neutron field 
in the outermost core assemblies improved the accuracy of 
core neutron field reconstruction.

5.7 � Error analysis

To further analyze the details of the model prediction, two 
cases of core changes were randomly selected, and the ex-
core detection signals of the two cases were simulated using 
the Monte Carlo transport program. The neutron flux dis-
tribution of the core assembly calculated by Monte Carlo 
transport was used as the reference data to evaluate the 
reconstruction effect. Figure 10 shows the two types of the 
ex-core detection signals and their changes compared to the 

Table 7   Average result on 
SRMDs

noise
 and MRMDs

noise

SRMDs
noise

MRMDs
noise

The degree of 
interference

ARD (%) RD
max

 (%) RD
≥10% ARD (%) RD

max
 (%) RD

≥10%

±2% 1.49 21.62 16 1.60 21.14 16
±5% 1.69 83.02 35 1.74 22.85 22
±10% 2.04 129.19 75 1.72 21.22 27
±15% 2.18 162.77 67 1.87 25.02 28
±20% 2.34 168.14 73 2.12 22.86 40
±25% 2.25 161.97 76 2.24 26.95 45

Table 8   Average result of the ablation experiments on SCDs, SRMDs 
and MRMDs

Database Architecture ARD (%) RD
max

 (%) RD
≥10%

SCDs DTHNet 1.35 10.82 1.78
DTHNet(without Task A) 1.35 13.39 4.72
DTHNet(without GLFS) 5.15 100 37.60

SRMDs DTHNet 1.63 21.25 12.17
DTHNet(without Task A) 1.86 24.24 14.31
DTHNet(without GLFS) 7.41 102 49.37

MRMDs DTHNet 1.69 22.92 22.82
DTHNet(without Task A) 2.08 25.21 43.47
DTHNet(without GLFS) 4.10 99.16 56.94
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initial signals. The upper part of the core assembly changed 
in case1, and the lower part of the core changed in case2.

In this section, we analyze the reconstruction effect of 
the neutron flux distribution of the core assembly and the 
distribution of the reconstruction deviation. According to 
the reconstruction evaluation criteria in Sect. 5.1, the rela-
tive deviation RD between the reconstructed and reference 
neutron fluxes was calculated, and the errors were analyzed 
based on RD. Figures 11 and 12 show RD visualizations of 
core neutron flux reconstruction when two and four regions 
of the core changed, respectively.

In Figs. 11 and 12, the bold part of the frame line indi-
cates the changed regions. The assemblies with large errors 
were mainly concentrated in the core-changed regions and 
[ 1.00, 2.00 × 101] MeV. Therefore, it can be concluded that 
the large error in certain assemblies was related to the spatial 
position and energy group.

First, the spatial influencing factors were analyzed. 
Figures 11f and 12f show that the reconstruction error of 
the changed regions was generally greater than that of the 
unchanged regions. The reasons are as follows. This study 
provided the model with sufficient pairs of ex-core detec-
tion signals and in-core neutron field data, and the model 

was trained to learn some nonlinear relationship between the 
ex-core detection signals and each unit to be reconstructed. 
However, in the learning process, if the change in the ampli-
tude of the unit to be reconstructed is uncertain, then it is 
difficult for the model to learn the exact nonlinear relation-
ship between the ex-core detection signals and the value of 
the reconstruction unit. According to the dataset settings in 
Sect. 4.1, the diversity of the neutron field change amplitude 
was increased to simulate the uncertainty of the core change 
during the reactor operation. Thus, even if any two samples 
of the training set consistently changed their regions, the 
magnitude of the change was inconsistent. Thus, when the 
changed and unchanged regions were trained synchronously, 
it was difficult to fit the nonlinear relationship between the 
changed regions of the core and ex-core detection signals, 
which is the primary cause of the uneven distribution of the 
error space.

Next, the energy-influencing factors were analyzed. 
This study mainly selected the RD of the reconstruction 
unit in the [ 0, 1.00 × 10−2] MeV, [ 1.00 × 10−2, 1.00 × 10−1

] MeV and [ 1.00, 2.00 × 101] MeV with obvious error dis-
tribution for visualization. As evident from the two fig-
ures, the RD was within 13%, the number of RD

≥10% did 

Fig. 10   (Color online) Visuali-
zation of two ex-core detection 
signals. The change image 
indicates that the upper of the 
core has changed under case1, 
and the lower of the core has 
changed under case2
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not exceed 3, but the RD distribution of [ 0, 1.00 × 10−2

]  MeV and [ 1.00, 2.00 × 101]  MeV exceeded that of 
[ 1.00 × 10−2, 1.00 × 10−1] MeV. This is because if the 
magnitude of the values is different among reconstruc-
tion units, neural network models may struggle to learn 
suitable weights and biases for each reconstruction unit 
simultaneously, such that the individual reconstruction 
units cannot obtain the optimal results at the same time. 
Because this study is focused a fast neutron reactor, the 
distribution of neutrons among the five energy groups is 
uneven; therefore, error distribution between different 
energy groups is inevitable.

In summary, the errors of some reconstruction units may 
be affected by both spatial and energy factors. The design of 
the method will be further improved according to the above 
analysis to improve the accuracy of the reconstruction under 
complex changes in neutron fields.

6 � Conclusion

This study proposed a novel reconstruction architecture, 
DTHNet, based on multitasking deep learning. Based on 
the PRA method, the outermost assembly and core neutron 
field reconstruction tasks were jointly trained. In addition, 

Fig. 11   (Color online) RD of certain core reconstruction units under case1. The redder the color, the larger the RD; and the bluer the color, the 
smaller the RD 
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to fully extract the features of the ex-core detection sig-
nals, this study designed a global-local feature upsampling 
module which assigns and the information to the high- and 
low-energy groups, respectively, from the ex-core detec-
tion signals. Further, the upsampled features were used 
for the training of the two downstream tasks. To verify 
the validity and applicability of the proposed method for 
core neutron field reconstruction, DTHNet was tested on 
SCDs, SRMDs, and MRMDs. The results demonstrated 
that when the location uncertainty of a single region 
did not exceed nine and the number of multiple changed 
regions did not exceed five. Further, the effect of the 
dual-task hybrid reconstruction architecture had a certain 

applicability under certain complex core changes. When 
the noise interference amplitude was within ±2% , the 
DTHNet method could accurately and stably reconstruct 
most of the neutron fields. In summary, this study offers 
a new technological pathway for the accurate monitoring 
of reactor cores. According to the experimental results, 
the continuous improvement of the network architecture 
of the DTHNet method and further enhancement of its 
applicability under various complex core changes will be 
the focus of subsequent research. Based on this, we will 
optimize the reconstruction method under noise interfer-
ence to improve the accuracy and stability of neutron field 
off situ reconstruction methods.

Fig. 12   (Color online) RD of certain core reconstruction units under case2. The redder the color, the larger the RD; and the bluer the color, the 
smaller the RD 



	 P. Cao et al.6  Page 16 of 17

Author Contributions  All authors contributed to the study conception 
and design. Material preparation, data collection and analysis were 
performed by Pei Cao, Guo-Min Sun and Zi-Hui Yang. The first draft 
of the manuscript was written by Pei Cao and all authors commented 
on previous versions of the manuscript. All authors read and approved 
the final manuscript.

Data Availability Statement  The data that support the findings of this 
study are openly available in Science Data Bank at https://​cstr.​cn/​
31253.​11.​scien​cedb.​j00186.​00231 and https://​www.​doi.​org/​10.​57760/​
scien​cedb.​j00186.​00231.

Declarations 

Conflict of interest  The authors declare that they have no Conflict of 
interest.

References

	 1.	 I. Meesha, M. Rae, W. Irene, Peoples’ perception th nuclear 
energy. Energies 15, 4397 (2022). https://​doi.​org/​10.​3390/​en151​
24397

	 2.	 Q. Zhang, B. Deng, X. Liu et al., Deconvolution-based real-time 
neutron flux reconstruction for self-powered neutron detector. 
Nucl. Eng. Des. 326, 261–267 (2018). https://​doi.​org/​10.​1016/j.​
nucen​gdes.​2017.​11.​024

	 3.	 I. Ramezani, M.B. Ghofrani, Reconstruction of neutron flux dis-
tribution by nodal synthesis method using online in-core neutron 
detector readings. Prog. Nucl. Energy 131, 103574 (2021). https://​
doi.​org/​10.​1016/j.​pnuce​ne.​2020.​103574

	 4.	 B. Anupreethi, V.S. Yellapu, A. Gupta et al., Performance evalu-
ation of AHWR flux mapping system during normal operational 
scenarios. Nucl. Eng. Des. 390, 111686 (2022). https://​doi.​org/​10.​
1016/j.​nucen​gdes.​2022.​111686

	 5.	 S. Liu, Z. Shao, Y. Sang et al., A general method for delay com-
pensation of self-powered neutron detectors in reactors. Ann. 
Nucl. Energy 193, 110035 (2023). https://​doi.​org/​10.​1016/j.​anuce​
ne.​2023.​110035

	 6.	 Y. Zhang, X. Fang, S. Jiang et al., The direct measurement of 
HTR-10 in-core neutron flux. Nucl. Eng. Des. 401, 112085 
(2023). https://​doi.​org/​10.​1016/j.​nucen​gdes.​2022.​112085

	 7.	 L.E. Moloko, P.M. Bokov, X. Wu et al., Prediction and uncertainty 
quantification of Safari-1 axial neutron flux profiles with neural 
networks. Ann. Nucl. Energy 188, 109813 (2023). https://​doi.​org/​
10.​1016/j.​anuce​ne.​2023.​109813

	 8.	 X. Zhao, Y. Zou, R. Yan et al., Analysis of burnup performance 
and temperature coefficient for a small modular moltensalt reactor 
started with plutonium. Nucl. Sci. Tech. 34, 17 (2023). https://​doi.​
org/​10.​1007/​s41365-​022-​01155-2

	 9.	 Y. Wu, Comprehensive neutronics simulations (Springer, 
Singapore, 2019), pp.375–375. https://​doi.​org/​10.​1007/​
978-​981-​13-​6520-1

	10.	 B. Yan, C. Wang, L. Li, The technology of micro heat pipe cooled 
reactor: a review. Ann. Nucl. Energy 135, 106948 (2020). https://​
doi.​org/​10.​1016/j.​anuce​ne.​2019.​106948

	11.	 X. Wang, F. Zhao, Y. He et al., Development and verification of 
helium-xenon mixture cooled small reaction system. Prog. Nucl. 
Energy 160, 104679 (2023). https://​doi.​org/​10.​1016/j.​pnuce​ne.​
2023.​104679

	12.	 P. Lien, U. Rohatgi, Scaling challenges in small modular reactor. 
Nucl. Eng. Des. 407, 112309 (2023). https://​doi.​org/​10.​1016/j.​
nucen​gdes.​2023.​112309

	13.	 Q. Gan, P. Cao, An inversion method of in-core neutron field 
based on ex-core neutron spectrum measurement. Nucl. Tech. 
(in Chinese) 42, 090502 (2019). https://​doi.​org/​10.​11889/j.​0253-​
3219.​2019.​hjs.​42.​090502

	14.	 S. Zhu, S. Zhuang, S. Fang et al., 3-D gamma radiation field 
reconstruction method using limited measurements for multi-
ple radioactive sources. Ann. Nucl. Energy 175, 109247 (2022). 
https://​doi.​org/​10.​1016/j.​anuce​ne.​2022.​109247

	15.	 M. Ugoletti, M. Agostini, Development of the tomographic recon-
struction technique of spider negative ion beam. Fusion Eng. Des. 
189, 113470 (2023). https://​doi.​org/​10.​1016/j.​fusen​gdes.​2023.​
113470

	16.	 R. Kimura, Y. Nakai, S. Wada, Reactor core power distribution 
reconstruction method by ex-core detectors based on the correla-
tion effect between fuel regions. Nucl. Sci. Eng. 195, 1–12 (2021). 
https://​doi.​org/​10.​1080/​00295​639.​2021.​19080​81

	17.	 R. Kimura, Y. Nakai, T. Sano et al., Time-dependent experiment 
on reactor power distribution estimation by ex-core detectors at 
UTR-KINKI. Nucl. Technol. 209, 1859–1866 (2023). https://​doi.​
org/​10.​1080/​00295​450.​2023.​22128​28

	18.	 R. Rodionov, G. Nemtcev, A. Krasilnikov, Fusion neutron emissiv-
ity tomography for ITER vertical neutron camera. Nucl. Instrum. 
Methods Phys. Res. Sect. A 1040, 167127 (2022). https://​doi.​org/​
10.​1016/j.​nima.​2022.​167127

	19.	 G. Tanja, K. Bor, A. Klemen et al., Determination of neutron flux 
redistribution factors for a typical pressurized water reactor ex-
core measurements using monte carlo technique. Front. Energy 
Res. 11, 1137867 (2023). https://​doi.​org/​10.​3389/​fenrg.​2023.​
11378​67

	20.	 X. Peng, Q. Li, K. Wang, Core axial power shape reconstruction 
based on radial basis function neural network. Ann. Nucl. Energy 
73, 339–344 (2014). https://​doi.​org/​10.​1016/j.​anuce​ne.​2014.​06.​
055

	21.	 W. Li, P. Ding, W. Xia et al., Artificial neural network reconstructs 
core power distribution. Nucl. Eng. Technol. 54, 617–626 (2022). 
https://​doi.​org/​10.​1016/j.​net.​2021.​08.​015

	22.	 J. Bae, T. Wu, J. Igor, Reconstruction of fast neutron direction in 
segmented organic detectors using deep learning. Nucl. Instrum. 
Methods Phys. Res. Sect. A 1049, 168024 (2023). https://​doi.​org/​
10.​1016/j.​nima.​2023.​168024

	23.	 Y. Yao, J. Wang, M. Xie, Adaptive residual CNN-based fault 
detection and diagnosis system of small modular reactors. Appl. 
Soft Comput. 114, 108064 (2022). https://​doi.​org/​10.​1016/j.​asoc.​
2021.​108064

	24.	 B. Salmassian, A. Rabiee, M.R. Nematollahi et al., Diagnosing 
core local flow blockages in a VVER-1000/446 reactor using 
ex-core detectors and neural networks. Prog. Nucl. Energy 161, 
104736 (2023). https://​doi.​org/​10.​1016/j.​pnuce​ne.​2023.​104736

	25.	 Y. Ling, T. Huang, Q. Yue et al., Improving the estimation accu-
racy of multi-nuclide source term estimation method for severe 
nuclear accidents using temporal convolutional network optimized 
by bayesian optimization and hyperband. J. Environ. Radioact. 
242, 106787 (2022). https://​doi.​org/​10.​1016/j.​jenvr​ad.​2021.​
106787

	26.	 C. Victor, M. Elia, P. Roberto et al., Convolutional neural network-
aided temperature field reconstruction: an innovative method for 
advanced reactor monitoring. Nucl. Technol. 209, 1–22 (2023). 
https://​doi.​org/​10.​1080/​00295​450.​2022.​21518​22

	27.	 J. Liu, H. Jiang, Z. Cui et al., Simultaneous measurement of 
energy spectrum and fluence of neutrons using a diamond 
detector. Sci. Rep. 12, 12022 (2022). https://​doi.​org/​10.​1038/​
s41598-​022-​16235-x

	28.	 Y. Hao, Z. Wu, Y. Pu et al., Research on inversion method for 
complex source-term distributions based on deep neural net-
works. Nucl. Sci. Tech. 34, 195 (2023). https://​doi.​org/​10.​1007/​
s41365-​023-​01327-8

https://cstr.cn/31253.11.sciencedb.j00186.00231
https://cstr.cn/31253.11.sciencedb.j00186.00231
https://www.doi.org/10.57760/sciencedb.j00186.00231.
https://www.doi.org/10.57760/sciencedb.j00186.00231.
https://doi.org/10.3390/en15124397
https://doi.org/10.3390/en15124397
https://doi.org/10.1016/j.nucengdes.2017.11.024
https://doi.org/10.1016/j.nucengdes.2017.11.024
https://doi.org/10.1016/j.pnucene.2020.103574
https://doi.org/10.1016/j.pnucene.2020.103574
https://doi.org/10.1016/j.nucengdes.2022.111686
https://doi.org/10.1016/j.nucengdes.2022.111686
https://doi.org/10.1016/j.anucene.2023.110035
https://doi.org/10.1016/j.anucene.2023.110035
https://doi.org/10.1016/j.nucengdes.2022.112085
https://doi.org/10.1016/j.anucene.2023.109813
https://doi.org/10.1016/j.anucene.2023.109813
https://doi.org/10.1007/s41365-022-01155-2
https://doi.org/10.1007/s41365-022-01155-2
https://doi.org/10.1007/978-981-13-6520-1
https://doi.org/10.1007/978-981-13-6520-1
https://doi.org/10.1016/j.anucene.2019.106948
https://doi.org/10.1016/j.anucene.2019.106948
https://doi.org/10.1016/j.pnucene.2023.104679
https://doi.org/10.1016/j.pnucene.2023.104679
https://doi.org/10.1016/j.nucengdes.2023.112309
https://doi.org/10.1016/j.nucengdes.2023.112309
https://doi.org/10.11889/j.0253-3219.2019.hjs.42.090502
https://doi.org/10.11889/j.0253-3219.2019.hjs.42.090502
https://doi.org/10.1016/j.anucene.2022.109247
https://doi.org/10.1016/j.fusengdes.2023.113470
https://doi.org/10.1016/j.fusengdes.2023.113470
https://doi.org/10.1080/00295639.2021.1908081
https://doi.org/10.1080/00295450.2023.2212828
https://doi.org/10.1080/00295450.2023.2212828
https://doi.org/10.1016/j.nima.2022.167127
https://doi.org/10.1016/j.nima.2022.167127
https://doi.org/10.3389/fenrg.2023.1137867
https://doi.org/10.3389/fenrg.2023.1137867
https://doi.org/10.1016/j.anucene.2014.06.055
https://doi.org/10.1016/j.anucene.2014.06.055
https://doi.org/10.1016/j.net.2021.08.015
https://doi.org/10.1016/j.nima.2023.168024
https://doi.org/10.1016/j.nima.2023.168024
https://doi.org/10.1016/j.asoc.2021.108064
https://doi.org/10.1016/j.asoc.2021.108064
https://doi.org/10.1016/j.pnucene.2023.104736
https://doi.org/10.1016/j.jenvrad.2021.106787
https://doi.org/10.1016/j.jenvrad.2021.106787
https://doi.org/10.1080/00295450.2022.2151822
https://doi.org/10.1038/s41598-022-16235-x
https://doi.org/10.1038/s41598-022-16235-x
https://doi.org/10.1007/s41365-023-01327-8
https://doi.org/10.1007/s41365-023-01327-8


Study on the off situ reconstruction of the core neutron field based on dual‑task hybrid network… Page 17 of 17  6

	29.	 X. Wei, S. Sun, W. Tang et al., Reconstruction of tokamak plasma 
safety factor profile using deep learning. Nucl. Fusion 63, 086020 
(2023). https://​doi.​org/​10.​1088/​1741-​4326/​acdf00

	30.	 J. Seo, S. Kim, A. Jalalvand, Avoiding fusion plasma tearing 
instability with deep reinforcement learning. Nature 626, 746–751 
(2024). https://​doi.​org/​10.​1038/​s41586-​024-​07024-9

	31.	 P. Cao, Q. Gan, J. Song et al., An artificial neural network based 
neutron field reconstruction method for reactor. Ann. Nucl. 
Energy 138, 107195 (2020). https://​doi.​org/​10.​1016/j.​anuce​ne.​
2019.​107195

	32.	 P. Cao, Q. Gan, A neutron field reconstruction method for reac-
tor based on semi-supervised learning. Ann. Nucl. Energy 152, 
108020 (2021). https://​doi.​org/​10.​1016/j.​anuce​ne.​2020.​108020

	33.	 P. Cao, C. Cao, Q. Gan, A 3-D neutron distribution reconstruc-
tion method based on the off-situ measurement for reactor. IEEE 
Trans. Nucl. Sci. 68, 2694–2701 (2021). https://​doi.​org/​10.​1109/​
TNS.​2021.​31233​81

	34.	 J. Zhao, W. Lv, B. Du et al., Deep multi-task learning with flex-
ible and compact architecture search. Int. J. Data Sci. Anal. 15, 
187–199 (2021). https://​doi.​org/​10.​1007/​s41060-​021-​00274-0

	35.	 Y. Zhao, X. Wang, T. Che et al., Multi-task deep learning for 
medical image computing and analysis: a review. Comput. Biol. 
Med. 153, 106496 (2023). https://​doi.​org/​10.​1016/j.​compb​iomed.​
2022.​106496

	36.	 Y. Wu, Y. Bai, Y. Song et al., Development strategy and con-
ceptual design of China lead-based research reactor. Ann. Nucl. 
Energy 87, 511–516 (2016). https://​doi.​org/​10.​1016/j.​anuce​ne.​
2015.​08.​015

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1088/1741-4326/acdf00
https://doi.org/10.1038/s41586-024-07024-9
https://doi.org/10.1016/j.anucene.2019.107195
https://doi.org/10.1016/j.anucene.2019.107195
https://doi.org/10.1016/j.anucene.2020.108020
https://doi.org/10.1109/TNS.2021.3123381
https://doi.org/10.1109/TNS.2021.3123381
https://doi.org/10.1007/s41060-021-00274-0
https://doi.org/10.1016/j.compbiomed.2022.106496
https://doi.org/10.1016/j.compbiomed.2022.106496
https://doi.org/10.1016/j.anucene.2015.08.015
https://doi.org/10.1016/j.anucene.2015.08.015

	Study on the off situ reconstruction of the core neutron field based on dual-task hybrid network architecture
	Abstract
	1 Introduction
	2 Related work
	2.1 Multi-task deep learning
	2.2 Pipeline reconstruction architecture

	3 Dual-task hybrid network architecture
	3.1 Image processing of neutron data
	3.2 Global-local feature upsampling module
	3.3 Dual-task optimization function

	4 Experimental settings
	4.1 Benchmark and dataset
	4.2 Hyperparameter settings

	5 Results and discussion
	5.1 Evaluation criteria for neutron field reconstruction
	5.2 Experiments on SCDs
	5.3 Experiments on SRMDs and MRMDs
	5.4 Experiment on noise data
	5.5 Reconstruction time
	5.6 Ablation study
	5.7 Error analysis

	6 Conclusion
	References




