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Abstract
Over the last decade, nuclear theory has made dramatic progress in few-body and ab initio many-body calculations. These 
great advances stem from chiral effective field theory ( �EFT), which provides an efficient expansion and consistent treat-
ment of nuclear forces as inputs of modern many-body calculations, among which the in-medium similarity renormalization 
group (IMSRG) and its variants play a vital role. On the other hand, significant efforts have been made to provide a unified 
description of the structure, decay, and reactions of the nuclei as open quantum systems. While a fully comprehensive and 
microscopic model has yet to be realized, substantial progress over recent decades has enhanced our understanding of open 
quantum systems around the dripline, which are often characterized by exotic structures and decay modes. To study these 
interesting phenomena, Gamow coupled-channel (GCC) method, in which the open quantum nature of few-body valence 
nucleons coupled to a deformed core, has been developed. This review focuses on the developments of the advanced IMSRG 
and GCC and their applications to nuclear structure and reactions.

Keywords Ab initio calculations · Chiral effective field theory · In-medium similarity renormalization group · Gamow 
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1 Introduction

In the past decades, great progress in nuclear forces [1, 2], 
and ab initio many-body theories [3–10] has been made. 
Using low-energy expansion with nucleons and pions 
as explicit degrees of freedom, the chiral effective field 
theory ( �EFT)  [1, 2] with Weinberg’s power counting 
(WPC) [11–13] provides a powerful framework in which 
two- and many-nucleon interactions, and electroweak 
currents can be naturally derived with the uncertainties 
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associated with each expansion order. The three-nucleon 
force (3NF) has been shown to be crucial in the quantitative 
predictions of nuclear structure [14–30].

However, it still challenges current calculations to extend 
the ab initio frontier to heavier nuclei. In ab initio calcula-
tions, one needs to handle the coupling between low and high 
momenta of nuclear forces. In recent years, new approaches 
to nuclear forces have been developed based on the ideas of 
the renormalization group (RG), whereby high-momentum 
degrees of freedom are decoupled by lowering the resolution 
(or cutoff) scale in nuclear forces to typical nuclear struc-
ture momentum scales, which greatly accelerates the con-
vergence of the nuclear structure calculations [31–33]. The 
similarity renormalization group (SRG) [34, 35] provides a 
powerful method to decouple the high-momentum degrees 
of freedom, using continuous unitary transformations that 
suppress off-diagonal matrix elements and drive the Ham-
iltonian toward a band-diagonal form. The SRG softened 
nuclear forces can accelerate many-body calculations with-
out compromising the nature of realistic nuclear forces or 
the accuracy of calculations.

The ab initio SRG method has been further developed to 
treat the nuclear many-body problems, which are in-medium 
similarity renormalization group (IMSRG) [36–38] for the 
ground states of closed-shell nuclei and valence-space 
IMSRG (VS-IMSRG) [21, 28, 39] for open-shell nuclei. 
The IMSRG employs a continuous unitary transformation 
of the many-body Hamiltonian to decouple the ground state 
from all excitations, thereby solving the many-body prob-
lems [10, 21, 28, 37, 39, 40]. Other advanced ab initio many-
body methods include coupled-cluster (CC) theory [41–43], 
many-body perturbation theory (MBPT) [6, 44, 45], and 
self-consistent Green’s function (SCGF) [27, 46]. Current 
ab initio many-body approaches have become possible to 
accurately describe more than one hundred fully interacting 
nucleons in a controlled way [7, 47].

The traditional spherical symmetry-conserving sin-
gle-reference scheme of IMSRG is applicable only to 
closed-shell nuclei. To calculate open-shell nuclei, sym-
metry-breaking schemes have been developed, which 
include single- and multi-reference approaches [48–52]. 
To capture the strong collective correlations, Yuan 
et al. developed an ab initio deformed single-reference 
IMSRG approach for open-shell nuclei in the m-scheme 
Hartree–Fock (HF) basis, referred to as D-IMSRG [53]. 
Using the m-scheme, a single HF reference state can be 
constructed for any even–even nuclei. The deformed refer-
ence state efficiently includes the important configurations 
of the deformed nucleus and captures more correlations 
through symmetry restoration, which would be many-par-
ticle-many-hole excitations in the spherical scheme. The 
calculations under the axially deformed HF basis break 
the SU(2) rotational symmetry associated with angular 

momentum conservation. The broken rotation symmetry 
can be restored by angular momentum projection.

Next-generation rare isotope beam (RIB) facilities have 
the ability to produce most of the rare isotopes located at 
the edge of the nuclear landscape, thereby shedding light on 
the origin of elements, the fundamental problems of nuclear 
structure, and nuclear forces. However, providing theoreti-
cal descriptions of proton- or neutron-rich nuclei in these 
regions is challenging due to the complexity of theoretical 
methods and computational demands. As nuclei approach 
the dripline, the effects of single-particle long-distance 
asymptotic behavior and coupling to the continuum become 
crucial for understanding the open quantum systems [54]. 
The complex-energy Berggren basis provides an efficient 
framework to treat bound, resonant, and scattering con-
tinuum states on an equal footing [55, 56]. To include the 
coupling to the continuum, Hu et al. developed a Gamow 
IMSRG (G-IMSRG) [57] in the complex-energy Berggren 
basis. The advanced G-IMSRG is capable of describing the 
resonance and non-resonant continuum properties of weakly 
bound and unbound nuclei. The known heaviest Borromean 
halo 22 C is a challenging nucleus for many theoretical cal-
culations [58–60]. The halo structure of 22 C can be clearly 
visualized by calculating the density distribution in which 
the continuum s channel plays a crucial role, and the low-
lying resonant excited states in 22 C are predicted via the 
G-IMSRG [57].

Significant efforts have been made to develop theoretical 
frameworks in an alternative direction to provide a compre-
hensive description of dripline systems, which often exhibit 
exotic structures and decay modes. These approaches aim 
to unify the treatment of structure, decay, and reactions 
within a single framework. Although a fully comprehen-
sive and microscopic model achieving this goal does not 
yet exist, substantial advances have been made over the past 
few decades [61–63]. Notably, in [64, 65], a method was 
demonstrated for integrating structural and reaction aspects 
starting from an ab initio framework. I. In this framework, 
each component of the three-body system is calculated using 
the no-core shell model (NCSM) in Jacobi coordinates. The 
inter-cluster motion is described using the resonating group 
method (RGM), which has been widely applied in nuclear 
reactions. Recent developments have also incorporated 
continuum effects, exemplified by the Gamow shell model 
coupled channel (GSM-CC) [54, 66] and Gamow coupled-
channel (GCC) method [67, 68]. The former focuses on con-
figuration mixing with self-consistent continuum effects [54, 
69], whereas the latter emphasizes the open quantum nature 
of few-body valence nucleons coupled to a deformed 
core [68, 70, 71]. This review primarily focuses on the recent 
advancements in the GCC method and its applications to 
exotic decays in the dripline region.
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This review is organized as follows. The basic IMSRG 
approach and its extensions are expounded in Sects. 2.1–2.4. 
The theory of GCC method is formulated in Sect. 2.5. Sec-
tion 3 describes the main results of the corresponding IMSRG 
and GCC computations of atomic nuclei. Finally, a summary 
is presented in Sect. 4.

2  Outline of developed methods

In this section, the basic formulae for the developed IMSRG 
and GCC approaches are presented. Section 2.1 is dedicated 
to the main ideas and previous developments of IMSRG 
itself. The symmetry-breaking m-scheme D-IMSRG is 
introduced in Sect. 2.2 for open-shell nuclei applications. 
Another approach to treat the open-shell nuclei while pre-
serving the spherical symmetry is the VS-IMSRG, which 
combines the shell model and IMSRG, as presented in 
Sect. 2.3. The G-IMSRG with the Berggren basis for the 
description of weakly bound and unbound nuclei is formu-
lated in Sect. 2.4. Finally, the reaction-related GCC method 
and its extensions to deformed systems and time-dependent 
approaches are briefly introduced in Sects. 2.5 and 2.6.

2.1  The in‑medium similarity renormalization 
group

The SRG is to evolve the Hamiltonian H(s) to be band-diag-
onal by using the continuous unitary transformation as [34, 
35]

where s denotes the so-called flow parameter and Hd(s) and 
Hod(s) are appropriately defined as the “diagonal” and “off-
diagonal” parts of the Hamiltonian, respectively. Although 
the evolution should continue up to s → ∞ , a finite number 
of evolution steps is usually sufficient to make H(s) approach 
the band-diagonal form of Hd(∞).

Equation (1) expresses a general ideal. In practice, taking 
the derivative of Eq. (1), a flow equation is defined to evolve 
the Hamiltonian H(0),

where the anti-Hermitian generator �(s) is related to the uni-
tary transformation U(s) by

A commonly used generator is defined as

(1)H(s) = U(s)HU†(s) ≡ Hd(s) + Hod(s) → Hd(∞),

(2)
d

ds
H(s) = [�(s),H(s)],

(3)�(s) =
dU(s)

ds
U†(s) = −�†(s).

which guarantees that the off-diagonal coupling of Hod is 
driven exponentially to zero with increasing in the value 
of the flow parameter s [35]. In practice, the demand for 
strict diagonality is usually relaxed to band diagonality of 
the Hamiltonian matrix in a chosen basis, such as in relative 
momentum or harmonic oscillator (HO) spaces. In nuclear 
physics, the SRG is used to decouple the momentum or 
energy scales in free space to construct “soft” NN and 3N 
interactions, thereby rendering the nuclear Hamiltonian 
more suitable for ab initio many-body calculations [31, 33, 
72–74].

The SRG is used to soften the nuclear force which has 
a hard core in free space. This renormalization can signifi-
cantly accelerate ab initio calculations of nuclei. Another 
development of the SRG theory is the in-medium SRG 
(IMSRG) [36–38] which evolves the many-body Hamilto-
nian to block diagonal form. The decoupling between the 
lowest-energy ground state and excited states of the Ham-
iltonian directly provides the energy of the ground state 
of the nucleus. A distinct advantage of IMSRG, compared 
to the SRG free-space evolution, is its ability to approxi-
mately evolve 3,… ,A-body operators using only two-
body machinery. This simplification is primarily achieved 
through the use of normal ordering with respect to a refer-
ence state �Φ⟩ , usually the Hartree–Fock (HF) state.

The intrinsic Hamiltonian of A-body nuclear system is 
expressed as

where pi is the nucleon momentum in laboratory coordi-
nates and m is the nucleon mass, with vNN and v3N denoting 
the NN and 3N interactions, respectively. In order to gener-
ate the reference state in the IMSRG calculation, the HF 
equation for the intrinsic Hamiltonian Eq. (5) is first solved. 
The Wick’s theorem is applied to normal order all opera-
tors starting from a general second-quantized Hamiltonian 
with two- and three-body interactions, with respect to the 
HF ground state.

where E0 , f, Γ , and W correspond to the normal-ordered 
zero-, one-, two-, and three-body terms, respectively, given 
by

(4)�(s) =
[
Hd(s),H(s)

]
=
[
Hd(s),Hod(s)

]
,

(5)H =

A∑

i=1

(
1 −

1

A

) p2
i

2m
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∑
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where ni = �
(
�F − �i

)
 represents the occupation numbers in 

the reference state �Φ⟩ , with �F denoting the Fermi energy of 
the reference state and T representing the kinetic part of the 
Hamiltonian. From Eqs. (7)–(10), it is evident that all the 
zero-, one- and two-body parts of the Hamiltonian contain 
the in-medium effects from the free-space 3N interactions.

The exact treatment of the 3NF is computationally expen-
sive. Therefore, the residual 3NF is usually neglected, which 
provides a reasonably good approximation in nuclear struc-
ture calculations. The omission of the residual normal-
ordered three-body component of the Hamiltonian has been 
shown to result in only 1–2% discrepancy in ground-state 
and excited-states energies for light and medium-mass 
nuclei [16, 75]. The approximation of normal-ordered two-
body (NO2B) for the Hamiltonian has been proved to be 
useful and beneficial in practical calculations, offering an 
efficient method to include 3NF effects in nuclear many-
body calculations, thereby avoiding the computational bur-
den of directly dealing with three-body operators.

Similar to the evolution of the Hamiltonian, the opera-
tors of other observables can also be evolved using the flow 
equation

The Magnus expansion was usually used in matrix differ-
ential equations [76] and was applied to reformulate the 
IMSRG [77] for more efficient calculations. In the Magnus 
approach, the IMSRG transformation can be written as an 
exponential expression [76],

The Magnus evolution operator Ω(s) works for both the 
Hamiltonian and other observable operators, which allows 
the derivation of the flow equation for the anti-Hermitian 
Magnus operator Ω(s),

(7)

E0 =
∑

i

Tiini +
1

2

∑

ij

(Tijij + vNN
ijij
)ninj

+
1

6

∑

ijk

v3N
ijkijk

ninjnk,

(8)fij = Tij +
∑

k

(Tikjk + vNN
ikjk

)nk +
1

2

∑

kl

v3N
ikljkl

nknl,

(9)Γijkl = Tijkl + vNN
ijkl

+
1

4

∑

m

v3N
ijmklm

nm,

(10)Wijklmn = v3N
ijklmn

,

(11)
d

ds
O(s) = [�(s),O(s)].

(12)U(s) ≡ eΩ(s).

where Bk denote the Bernoulli numbers and

In practical calculations, � and Ω are truncated along with 
their commutators at the two-body level, called the Mag-
nus(2) approximation. The series of nested commutators 
generated by adk

Ω
 are recursively evaluated until a satis-

factory convergence of the right-hand side of Eq. (13) is 
reached [77]. At each integration step, U(s) is used to con-
struct the Hamiltonian H(s) via the Baker–Campbell–Haus-
dorff (BCH) formula

The Magnus formulation offers a significant advantage, as it 
enables the evaluation of arbitrary observables by utilizing 
the final Magnus operator Ω(∞),

The computational effort for solving the IMSRG(2) flow 
equations is primarily dictated by the two-body flow equa-
tion, which exhibits polynomial complexity of O

(
N6

)
 based 

on the single-particle size N.

2.2  The deformed IMSRG

The use of deformations as degrees of freedom in nuclear 
many-body problems can make the calculations more effi-
cient [78, 79]. The standard IMSRG conserves spherical 
symmetry with a single reference, which works for closed-
shell nuclei. To calculate open-shell nuclei, symmetry-
breaking schemes have been developed, including both sin-
gle- and multi-reference approaches. The single-reference 
Hartree–Fock–Bogoliubov (HFB) IMSRG, which selects 
a single HFB state as the reference state, has been pro-
posed [48]. The HFB quasiparticle state breaks the parti-
cle number conservation, necessitating that particle num-
ber projection be performed. To choose a reference state 
closer to the true solution, the multi-reference IMSRG with 
particle-number-projected spherical HFB [49, 50] has been 
suggested. Calculations based on the Bogoliubov quasi-
particle states significantly complicate the formalism and 
increase computational costs. Using the m scheme, a single 
HF reference state can be constructed for any even–even 
nuclei, with the particle number conserved but rotational 

(13)
dΩ

ds
=

∞∑

k=0

Bk

k!
adk

Ω
(�),

(14)ad0
Ω
(�) = �

(15)adk
Ω
(�) =

[
Ω, adk−1

Ω
(�)

]
.

(16)H(s) ≡ eΩ(s)H(0)e−Ω(s) =

∞∑

k=0

1

k!
adk

Ω(s)
(H(0)).

(17)O(∞) ≡ eΩ(∞)O(0)e−Ω(∞).
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symmetry broken. This deformed reference state may better 
reflect the intrinsic structure of a deformed nucleus and cap-
ture more correlations through symmetry restoration, which 
would otherwise be many-particle-many-hole excitations in 
the spherical scheme. The expected symmetry preconsidera-
tions, e.g., as in the symmetry-adapted approach [80, 81], 
provide an efficient way to capture the expected features of 
nuclear states of interest while simultaneously reducing the 
computational cost.

As indicated in Sect. 2.1, the standard IMSRG is lim-
ited to extracting the ground-state energy of a closed-shell 
nucleus. An extension of the IMSRG to the deformed 
scheme would be useful for the description of open-shell 
nuclei. Therefore, we developed the D-IMSRG method [53] 
within the deformed HF basis, i.e., the m-scheme HF basis. 
First, the axially deformed HF equation of the even–even 
nucleus is solved within the spherical HO basis. Under the 
j-scheme, the initial Hamiltonian is typically expressed in 
the spherical HO basis. Using the Wigner–Eckart theorem, 
the matrix elements of operators, including the Hamiltonian 
in the j-scheme, can be converted to the matrix elements in 
the m-scheme,

where ��jm⟩ are quantum states with good angular momen-
tum j and projection m. The quantity � contains all other 
quantum numbers needed to completely specify the quantum 
state. Okq is a spherical tensor of rank k; ⟨jmkq ∣ j�m�⟩ is the 
Clebsch–Gordan coefficient; and 

⟨
�
′j′‖‖Ok

‖‖�j
⟩
 denotes the 

reduced matrix elements. The one-, two-, and three-body 
matrix elements can thus be converted from j-scheme to 
m-scheme through Eq. (18). The m-scheme HF single-par-
ticle levels obtained are twofold degenerate with respect to 
the angular momentum projection quantum number m of 
the orbital (i.e., the energies are the same with respect to 
±m ). Filling the deformed HF single-particle levels up to the 
Fermi surfaces of neutrons and protons in ±m pairing from 
low to high |m|, keeps the axial, parity, and time-reversal 
symmetries of the even–even ground state, thereby creat-
ing an oblate or prolate deformed HF reference state [82]. 
Subsequently, the intrinsic A-body Hamiltonian in Eq. (5) is 
normal ordered with respect to the deformed A-dependent 
reference state �Φ⟩ (i.e., the m-scheme HF ground state of 
the target nucleus). The off-diagonal parts of the Hamil-
tonian are consistent with the standard IMSRG, and the 
flow equations are evolved using the Magnus expansion 
Eqs. (16)–(17).

Subsequently, the ground-state energy and other observ-
ables can be calculated using the D-IMSRG ground-state 

(18)

�
�
�j�m����Okq

����jm
�
=
�
jmkq ∣ j�m�

�

×
1√

2j� + 1

�
�
�j���Ok

���j
�
,

wave function �Ψ⟩ = e−Ω�Φ⟩ (here �Φ⟩ is the deformed HF 
reference state of the nucleus) expressed as

In the D-IMSRG, the reference state is just the ground state 
of the deformed even–even nucleus. However, performing 
exact symmetry restoration of the D-IMSRG wave function 
is mathematically cumbersome and computationally expen-
sive due to the exponential increase of configurations in pro-
jecting the wave function �Ψ⟩ = e−Ω�Φ⟩.

Therefore, an HF projection correction is introduced as 
a first approximation, to account for the angular momen-
tum projection effect. The projection correction to the 
ground-state energy is estimated by

where PJ
MM� =

2J+1

8�2
∫ d�DJ∗

MM� (�)R(�) is the angular 
momentum projection operator. This provides a D-IMSRG 
ground-state energy given by E + ΔEproj with the projection 
correction estimated by the HF wave function (here E is 
obtained by Eq. (19), that is, the ground-state energy without 
the projection).

A deformed coupled-cluster calculation has estimated 
that the angular-momentum projection of the HF state 
reduced the HF energy by approximately 3–5 MeV in the 
sd shell [82], corresponding to the static correlation, which 
is not size extensive. Since modern ab initio calculations 
already include some of the correlations associated with 
the projection, the energy correction obtained by project-
ing the ab initio wave function would be slightly smaller 
than the HF projection correction [82, 83].

In the spherical j-scheme, single-particle levels within 
the same j shell are degenerate. However, this degeneracy 
is broken with the onset of deformation although a twofold 
degeneracy with respect to ±m persists in axially sym-
metric shapes, significantly increasing the model-space 
dimension. The dimension of D-IMSRG calculation 
depends on the nucleon number A and basis-space size 
Nshell (the number of spherical HO major shells considered 
in solving the deformed HF). For 40Mg, the number of 
D-IMSRG Hamiltonian matrix elements already exceeds 
109 at Nshell = 10 . Nonetheless, such a large model space 
may still not be sufficient to make the calculation con-
verged. To estimate the converged ground-state energy, a 
simple exponential fitting method was applied with respect 
to Nshell to extrapolate the D-IMSRG result to an infinite 
basis space, similar to the ones used in NCSM [16, 84–87] 
and multi-reference IMSRG [19] calculations,

(19)E = ⟨Ψ�H�Ψ⟩ = ⟨Φ�eΩHe−Ω�Φ⟩ = ⟨Φ�H̃�Φ⟩,

(20)O = ⟨Ψ�O�Ψ⟩ = ⟨Φ�eΩOe−Ω�Φ⟩ = ⟨Φ�Õ�Φ⟩.

(21)ΔEproj =
⟨Φ�HP�Φ⟩
⟨Φ�P�Φ⟩ −

⟨Φ�H�Φ⟩
⟨Φ�Φ⟩ ,
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where b0 , b1 , and b2 are the fitting parameters. The value of 
b0 ≡ E(Nshell → ∞) provides the estimate for the fully con-
verged energy.

2.3  The valence‑space IMSRG

The spherical j-scheme IMSRG can only treat closed-shell 
nuclei. The m-scheme D-IMSRG was designed to calculate 
open-shell nuclei. Unfortunately, the D-IMSRG does not 
conserve the angular momentum, and the exact angular-
momentum projection D-IMSRG has not been available.

The nuclear shell model (SM) has served as one of 
the most powerful theoretical and computational tools 
for nuclear structure calculations [38, 88–91]. In the SM, 
valence nucleons move in the mean field generated by the 
inert core and interact via residual effective interactions. 
While the SM has been used predominantly in a phenomeno-
logical context [91, 92], there have been efforts dating back 
to decades ago to derive shell-model parameters based on a 
realistic interaction between nucleons [93, 94], the ab initio 
effective shell-model interactions. For open-shell systems, 
in addition to solving the full A-body problem, such as the 
D-IMSRG mentioned in Sect. 2.2, it is beneficial to follow 
the shell-model paradigm to construct and diagonalize the 
effective Hamiltonian in which the active degrees of freedom 
are Av valence nucleons confined to a few orbitals near the 
Fermi level. As for the IMSRG, a valence-space effective 
interaction can be derived using the spherical symmetry-
conserving single-reference IMSRG at a shell closure to 
perform ab initio shell-model calculations for open-shell 
nuclei. This method, which combines the IMSRG and SM, 
is referred to as the VS-IMSRG [39]. 

The utility of the IMSRG lies in its flexibility to custom-
ize the definition of Hod to address specific problems. For 
the ground state of closed-shell nuclei, all terms that couple 
the reference state �Φ⟩ to the rest of the Hilbert space can be 
eliminated, as in the standard IMSRG. For open-shell nuclei, 
��Φv⟩ is decoupled from states containing non-valence states. 
This can be achieved by defining the Hod using the following 
matrix elements,

where p= v, q . These off-diagonal parts of the generators 
evolve the Hamiltonian to diagonal Hd form, where states 
outside the valence space are decoupled using the flow equa-
tion, as illustrated in Fig. 1, non-perturbatively satisfying the 
decoupling equation:

(22)E(Nshell) = b0 + b1exp(−b2Nshell),

(23)Hod =
{
fph, fpp� , fhh� ,Γpp�hh� ,Γpp�vh,Γpqvv�

}
+ H.c.,

(24)PHd(∞)Q = QHd(∞)P = 0,

with P =
∑

v
��Φv⟩⟨Φv

�� and Q = 1 − P . After the evolution is 
complete, the effective shell-model Hamiltonian is obtained. 
The last step is to use the SM code, such as KSHELL [95], 
to diagonalize the effective Hamiltonian and express it as a 
reduced eigenvalue problem in the valence-particle space.

The current VS-IMSRG is at two-body approximation 
without explicitly considering 3NF or three-body correla-
tions. To reduce the residual 3NF effect, a fractional fill-
ing of open-shell orbitals in an open-shell nucleus, named 
ensemble normal ordering (ENO), has been suggested [40]. 
Using the ENO approximation of the VS-IMSRG, nucleus-
dependent valence-space effective Hamiltonian and effective 
operators of other observables can be obtained.

2.4  The Gamow IMSRG with coupling to continuum

Weakly bound and unbound nuclei belong to the category 
of open quantum systems, where coupling to the particle 
continuum profoundly affects the system behavior  [96, 
97]. Many novel phenomena, including halos  [98, 99], 
genuine intrinsic resonances [100, 101], and new collective 
modes [102–104], have been observed or predicted in exotic 
nuclei. However, the majority of IMSRG calculations are 
performed within the HO or real-energy HF basis. Here the 
real-energy HF means that the HF approach is performed 
under the HO basis, which is bound and localized and hence 
isolated from the environment of unbound scattering states 
because of the Gaussian falloff of the HO functions. Simi-
larly, the real-energy HF basis cannot include the continuum 
effect in IMSRG calculations.

The complex-energy Berggren basis offers an elegant 
framework for treating bound, resonant, and scattering con-
tinuum states on an equal footing [55, 56]. This basis is a 
generalization of the standard completeness relation from 
the real-energy axis to the complex-energy plane. Complete-
ness encompasses a finite set of bound and resonance states 
together with a complex-energy scattering continuum:

Fig. 1  (Color online) Schematic illustration of the VS-IMSRG decou-
pling from the initial Hamiltonian H(0) to obtain the final Hamilto-
nian H(∞) for the two valence nucleons
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where

Here ,  kn = i𝜅n
(
𝜅n > 0

)
 fo r  bound  s t a t e s  and 

kn = 𝛾n − i𝜅n
(
𝜅n, 𝛾n > 0

)
 for decaying resonances located in 

the fourth quadrant of the complex-momentum (complex-k) 
plane.

In practical applications, it is more convenient to express 
Eq. (25) in momentum space,

As depicted in Fig. 2, bound and resonant states appear 
as poles of the scattering matrix within the complex-k plane, 
and the scattering continuum is represented by the blue con-
tour. Within the Berggren basis, the GSM [23, 100, 101, 
105–115] and complex coupled cluster [18, 116] methods 

(25)

∑

n

un
(
En, r

)
un
(
En, r

�
)

+ ∫L

dE u(E, r)u
(
E, r�

)
= �

(
r − r�

)
,

(26)u
n

(
E
n
, r
)
∼ O

l

(
k
n
r
)
∼ eiknr.

(27)
�

n∈(b,d)

�un⟩⟨un� + ∫L+
�u(k)⟩⟨u(k)�dk = 1.

have been well developed and widely applied to the calcula-
tions of weakly bound and unbound nuclei.

For calculations within the Gamow–Berggren framework, 
selecting an appropriate one-body potential is essential for 
generating resonance and the continuum Berggren basis, 
frequently using the phenomenological Woods–Saxon poten-
tial  [100, 101, 105, 111, 117]. In our approach, we used the 
Gamow Hartree–Fock (GHF) method with chiral potentials to 
produce an ab initio Berggren single-particle basis, which is 
convenient for computing the Berggren basis using an analyti-
cal continuation of Schrödinger’s equation in complex-k space. 
The complex-k single-particle GHF equation is formulated as 
follows:

where � = m∕
(
1 −

1

A

)
 , and k

(
k′
)
 is defined on the scattering 

contour. U(ljk�k) is the GHF single-particle potential,

where l, j are the orbital and total angular momenta of a 
single-particle orbital, respectively. Greek letters denote HO 
states, indicating that ⟨��k⟩ is the HO basis wave functions 
��⟩ expressed in the complex-k plane

Here Ll+1∕2n  denotes the generalized Laguerre polynomial; 
b =

√
ℏ∕m� ; and � is the frequency of the oscillator basis. 

Since Ll+1∕2n  is analytic, it can be extended to the complex 
momentum space, expressing its real part as

and its imaginary part as

where x and y represent the real and imaginary parts of b2k2 , 
respectively; ⟨��U��⟩ is the HF single-particle potential 
which can be obtained by solving the real-energy HF equa-
tion in the HO basis

(28)
ℏ
2k2

2�
�i(k) + ∫L+

dk�k�2U
(
ljk�k

)
�i

(
k�
)

= ei�i(k),

(29)U
�
ljk�k

�
=
�
k�U�k�

�
=
�

��

⟨k���⟩⟨��U��⟩⟨��k⟩,

(30)

⟨��k⟩ =(−i)2n+le−l∕2b2k2 (bk)l

×

�
2n!b3

Γ(n + l + 3∕2)
Ll+1∕2
n

�
b2k2

�
.

(31)Re
[
Ln(x + iy)

]
=

|||
n

2

|||∑

j=0

(−1)jy2j

(2j)!
L
2j

n−2
(x),

(32)Im
[
Ln(x + iy)

]
=

|||
n−1

2

|||∑

j=0

(−1)j−1y2j+1

(2j + 1)!
L
2j+1

n−2j−1
(x),Fig. 2  (Color online) Location of one-body states in the complex-k 

plane. The Berggren completeness relation in Eq.  (25) involves the 
bound states (brown-filled circles) lying on the imaginary k-axis, 
scattering states lying on the contour (solid blue line), and decaying 
resonant states (blue-filled circles) in the fourth quarter of the com-
plex-k plane lying between the real axis and scattering contour. The 
capturing states (purple-filled circles) and antibound states (cyan-
filled circles) are not included in the present completeness relation
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where D is the coefficient of the HF single-particle state. In 
numerical calculations, the GHF equation is solved using 
the Gauss-Legendre quadrature scheme [107, 112, 118] with 
discrete points on the contour L+,

Here k
�
 ( k

�
 ) are the discrete momentum points, and �

�
 ( �

�
 ) 

are the corresponding Gauss-Legendre quadrature weights. 
We define

Then, Eq. (34) can be written as

with

The bound, resonant, and continuum GHF basis can be 
obtained by diagonalizing the complex-energy in Eq. (36).

Within the GHF basis, the G-IMSRG calculations can be 
conducted. Notably, the Hamiltonian in real-energy space 
is Hermitian, H = H† . Therefore, in practice, the similarity 
transformation U(s) is a unitary transformation, satisfying 
U(s)U†(s) = U(s)U−1(s) = 1 , and �(s) = dU(s)

ds
U†(s) = −�†(s) 

is the anti-Hermitian generator. However, in the G-IMSRG 
framework, the Hamiltonian is complex symmetric, 
H = HT (here  T indicates the transpose). Therefore, 
employing a continuous orthogonal transformation, 
U(s)UT(s) = U(s)U−1(s) = 1 , and the Hamiltonian H(s) can 
be transformed into a band or block diagonal form,

Correspondingly, the generator �(s) becomes

The G-IMSRG method can directly compute the ground 
state of a closed-shell nucleus by decoupling the Hamil-
tonian from the excitations above the closed-shell Fermi 
surface. To handle open-shell nuclei or excited states, we 
employed G-IMSRG using the equation-of-motion (EOM) 

(33)

⟨��U��⟩ =
A�

i=1

�

��

�
��

���v
NN�����

�
D∗

�i
D

�i

+
1

2

A�

i,j=1

�

����

�
���

���v
3N������

�
D∗

�i
D

�iD
∗
�j
D

� j,

(34)
ℏ
2k2

�

2�
�i

(
k
�

)
+
∑

�

�
�
k2
�

⟨
k
�
|U|k

�

⟩
�i

(
k
�

)
= ei�i

(
k
�

)
.

(35)�
�
i

�
k
�

�
= �i

�
k
�

�
k
�

√
�
�
.

(36)
∑

�

h
��
�

�
i

(
k
�

)
= ei�

�
i

(
k
�

)
,

(37)h
��

=
ℏ
2

2�
k2
�
�
��

+
√
�
�
�
�

�
k
�
�U�k

�

�
.

(38)H(s) = U(s)H(0)UT(s).

(39)�(s) =
dU(s)

ds
U

T(s) = −�T(s).

approach [119]. This approach offers a useful alternative to 
the shell model strategy for calculating excited states, espe-
cially when extended valence spaces lead to prohibitively 
large shell-model basis dimensions. Within the EOM frame-
work, the Schrödinger equation is rewritten using ladder 
operators, which create excited eigenstates from the exact 
ground state,

where X†
n
 is given by the dyadic product ��Ψn⟩⟨Ψ0

�� . Further 
rewriting Eq. (40) as EOM

The amplitudes of X†
n
 are determined by solving a general-

ized eigenvalue problem [120].
Coupling EOM methods with G-IMSRG is natural, as 

the reference state ��Φ0⟩ corresponds to the ground state of 
H̄ ≡ U(∞)HUT(∞) . Multiplying Eq.  (41) by U(∞) and 
recalling that

we obtain the similarity transformed EOM

where X̄†
n
≡ U(∞)X†

n
UT(∞) . The solutions X̄†

n
 can then be 

used to obtain the eigenstates of the unevolved Hamiltonian 
via

Currently, in our applications, we include up to 2p2h excita-
tions in the ladder operator [120]

In principle, the EOM ladder operator can include any exci-
tation rank up to ApAh, which would constitute an exact 
diagonalization of H̄ and can be computationally expen-
sive. In practical applications, the EOM-G-IMSRG method 
is commonly employed in an approximative systematically 
improbable form, referred to as EOM-G-IMSRG(m, n), 
where m and n denote the truncation level in EOM and 
G-IMSRG, respectively. The calculations in the present 
work were performed using the EOM-G-IMSRG(2,2) 
approximation.

2.5  The Gamow coupled‑channel method

To provide a thorough description of open quantum systems, 
the GCC method [67, 68, 70] has been advanced as an alter-
native approach, focusing on the few-body decay processes 

(40)H��Ψn⟩ = En�Ψ⟩ ⟶ HX†
n
��Ψ0⟩ = EnX

†
n
��Ψ0⟩,

(41)
�
H,X†

n

���Ψ0⟩ =
�
En − E0

�
X†
n
��Ψ0⟩ ≡ �nX

†
n
��Ψ0⟩.

(42)U(∞)��Ψ0⟩ = ��Φ0⟩,

(43)
�
H̄, X̄†

n

���Φ0⟩ = 𝜔nX̄
†
n
��Φ0⟩,

(44)��Ψn⟩ = UT (∞)X̄†
n
��Φ0⟩.

(45)X̄†
n
=
∑

ph

X̄
(n)

ph

{
a†
p
ah

}
+

1

4

∑

pp�hh�

X̄
(n)

pp�hh�

{
a†
p
a
†

p�
ah�ah

}
.



Progress in ab initio in‑medium similarity renormalization group and coupled‑channel method… Page 9 of 31 215

influenced by continuum and structural factors [121, 122]. 
The methodology involves constructing a robust three-body 
framework, utilizing the Berggren basis [55]. As elucidated in 
Sect. 2.4, the Berggren basis is specifically designed to incor-
porate continuum effects, thereby facilitating the analysis of 
weakly bound and unbound nuclear systems.

2.5.1  Spherical system with an inert core

In the context of the three-body GCC model, the nucleus com-
prises a core and two valence nucleons or clusters. The GCC 
Hamiltonian is formulated as follows:

where Vij denotes the interaction between clusters i and j, 
and T̂c.m. represents the kinetic energy of the center-of-mass. 
Each i-th cluster ( i = c, n1, n2 ) is characterized by its position 
vector r⃗i and linear momentum k⃗i . To accurately describe 
three-body asymptotics and eliminate the spurious center-
of-mass motion, it is advantageous to utilize the relative 
(Jacobi) coordinates:

where i1 = n1 , i2 = n2 and i3 = c for T-coordinates, whereas 
i1 = n2 , i2 = c and i3 = n1 for Y-coordinates, as depicted in 
Fig. 3. Here, Ai represents the mass number of the i-th clus-
ter; �x =

Ai1Ai2

Ai1
+Ai2

 and �y =
(Ai1

+Ai2
)Ai3

Ai1
+Ai2

+Ai3

 are the reduced masses 

associated with x⃗ and y⃗ , respectively. For analytical 

(46)H =

3∑

i=1

̂p⃗2
i

2mi

+

3∑

i>j=1

Vij(r⃗ij) − T̂c.m.,

(47)

x⃗ =
√
𝜇x(r⃗i1 − r⃗i2 ),

y⃗ =
√
𝜇y

�
Ai1

r⃗i1 + Ai2
r⃗i2

Ai1
+ Ai2

− r⃗i3

�
,

convenience, the hyperradius � =
√
x2 + y2 , which remains 

invariant across different Jacobi coordinate transformations, 
is introduced.

Experimental measurements in the momentum space 
necessitate the definition of relative momenta as follows:

In the absence of c.m. motion, it is evident that 
∑

i k⃗i = 0 , 
and notably, k⃗y is oriented in the opposite direction to ⃗ki3 . The 
angles �k and �′

k
 represent the opening angles of the vectors 

( ⃗kx , k⃗y ) in T- and Y-Jacobi coordinates, respectively (refer to 
Fig. 3). For example, in the scenario of two-nucleon decay, 
the kinetic energy associated with the relative motion of the 
emitted nucleons is expressed as Epp/nn =

ℏ
2k2

x

2�x

 , with Ecore-p/n 
pertaining to the kinetic energy of the core-nucleon pair. The 
distribution types T ( �k , Epp/nn ) and Y ( �′

k
 , Ecore-p/n ) elucidate 

the nucleon–nucleon correlations and provide insights into 
the structural dynamics of the progenitor nucleus. The total 

momentum k is defined as 
√

k2
x

�x

+
k2
y

�y

 , which asymptotically 

approaches 
√
2mQ2p/2n

ℏ
 as time progresses, where Q2p/2n is the 

two-nucleon decay energy derived from the binding energy 
difference between parent and daughter nuclei.

The presence of Pauli forbidden states in three-body mod-
els represents a challenge arising from the lack of antisym-
metrization between core and valence particles. To address 
this issue, the orthogonal projection method [123–125], 
which entails the inclusion of a Pauli operator in the GCC 
Hamiltonian, was adopted and formulated as:

where Λ is a large constant, and ��jcmc⟩ represents a two-
body state comprising forbidden single-particle (s.p.) states 
of core nucleons. By setting Λ to high values, Pauli forbid-
den states are elevated to higher energies, which effectively 
suppresses their influence within the physical spectrum of 
the system.

This standard projection technique [67] may introduce 
minor numerical errors in the asymptotic region because of 
coordinate transformations. The supersymmetric transforma-
tion method [125–127] offers an alternative solution for the 
exclusion of Pauli-forbidden states. This method employs 
an auxiliary repulsive “Pauli core” within the original core-
proton interaction, thereby effectively eliminating the influ-
ence of Pauli-forbidden states from the system.

(48)

k⃗x = 𝜇x

(
k⃗i1

Ai1

−
k⃗i2

Ai2

)
,

k⃗y = 𝜇y

(
k⃗i1 + k⃗i2

Ai1
+ Ai2

−
k⃗i3

Ai3

)
.

(49)Q̂ = Λ
�

c

�𝜑jcmc⟩⟨𝜑jcmc �,

Fig. 3  (Color online) Illustration of the coordinate and momen-
tum configurations in a core + nucleon + nucleon system: a Jacobi 
T (solid lines) and Y (dashed lines) coordinates, where the former 
is used to describe the interactions between the nucleons ( n1 and n2 ) 
and the latter for interactions involving the core (c). b Correspond-
ing momentum scheme within the c.m. frame. Here, A denotes the 
mass number; �ij represents the reduced mass between clusters i and 
j; and k1 , k2 , and kc indicate the momenta of nucleons n1 , n2 , and core 
c, respectively. The figure is taken from [70]
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The total wave function is expressed using hyperspherical 
harmonics as:

where K denotes the hyperspherical quantum number. The 
set � = {s1, s2, s3, S12, S,�x,�y,L} encapsulates the quantum 
numbers other than K. Here, s represents spin and � denotes 
orbital angular momentum. The function �J�

�K
(�) specifies 

the hyperradial wave function, and YJM
�K
(Ω5) represents the 

corresponding hyperspherical harmonic [125].
The resulting Schrödinger equation for the hyperradial 

wave functions can be written as a set of coupled-channel 
equations:

where

and

is the non-local potential generated by the Pauli projection 
operator, as defined in Eq. 49.

To properly treat the positive-energy continuum space, 
the Berggren expansion technique is utilized for the hyper-
radial wave function:

where BJ�
�n
(�) denotes an s.p. state within the Berggren 

ensemble [55] (detailed in Sect. 2.4). To compute radial 
matrix elements using the Berggren basis, exterior complex 
scaling [128] is employed, whereby integrals are evaluated 
along a complex radial trajectory:

For potentials that decay as O(1∕�2) (such as the centrifugal 
potential) or more rapidly (such as the nuclear potential), 
R should be large enough to circumvent all singularities, 

(50)ΨJM�(�,Ω5) = �
−5∕2

∑

�K

�
J�
�K
(�)YJM

�K
(Ω5),

(51)

[
−
�
2
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−

(K + 3∕2)(K + 5∕2)
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− Ẽ
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𝜓

J𝜋
𝛾K
(𝜌)

+
∑

K�𝛾 �

VJ𝜋
K�𝛾 �,K𝛾

(𝜌)𝜓J𝜋
𝛾 �K� (𝜌)

+
∑

K�𝛾 �
∫

∞

0

WK�𝛾 �,K𝛾 (𝜌, 𝜌
�)𝜓L𝜋

𝛾 �K� (𝜌
�)d𝜌� = 0,

(52)VL𝜋
K�𝛾 �,K𝛾

(𝜌) = ⟨YJM
𝛾 �K� �

3�

i>j=1

Vij(r⃗ij)�YJM
𝛾K
⟩

(53)WK�𝛾 �,K𝛾 (𝜌, 𝜌
�) = ⟨YJM

𝛾 �K� �Q̂�YJM
𝛾K
⟩

(54)�
J�
�K
(�) =

∑

n

CJ�M
�nK

BJ�
�n
(�),

(55)
⟨Bn�V(�)�Bm⟩ = ∫

R

0

Bn(�)V(�)Bm(�)d�

+ ∫
+∞

0

Bn(R + �ei�)V(R + �ei�)Bm(R + �ei�)d�.

with the scaling angle � selected to ensure that the inte-
grals converge (see [129] for further details). Since the Cou-
lomb potential is not square-integrable, its matrix elements 
diverge when the complex momenta kn = km . To address 
this, the “off-diagonal method” introduced in [130], where 
a slight offset ±�k is added to the linear momenta of the 
involved scattering wave-functions, was applied to facilitate 
the convergence of the resulting diagonal Coulomb matrix 
elements. The complex-momentum representation has also 
been adopted in other methods, e.g., in mean-field calcula-
tions [131, 132], to describe the continuum effect.

2.5.2  Deformed core

The fact that the open-shell nuclei are often accompanied by 
deformation, particularly around the dripline region, sub-
stantially changes the corresponding nuclear structure and 
affects the decay process. To this end, GCC method was 
extended to the deformed system by allowing the pair of 
nucleons to couple to the collective states of the core. Con-
sequently, the wave function of the parent nucleus can be 
written as ΨJ𝜋 =

∑
Jp𝜋pjc𝜋c

�
ΦJp𝜋p ⊗𝜙

jc𝜋c
�J𝜋 , where ΦJp�p and 

�
jc�c are the wave functions of the two valence protons and 

the core, respectively. Similar to the spherical case, the wave 
function ΦJp�p for the valence nucleons is constructed in 
Jacobi coordinates using the hyperspherical harmonics 
Y
JpM

�K
(Ω) for the hyperangle part, and the hyperradial part 

�
�K(�) is expanded in the Berggren ensemble [67, 133].

In the deformed case, the core+p+p Hamiltonian of GCC 
is

This definition is similar to Eq. 46, except that Ĥc is the 
core Hamiltonian represented by excitation energies of the 
core Ejc�c . For nuclei exhibiting small shape deformations, 
the vibrational coupling model is utilized, following the 
methodologies outlined in [134, 135]. Conversely, for large 
quadrupole deformations, rotational coupling is employed, 
consistent with the non-adiabatic approach to deform proton 
emitters as in  [136, 137]. This approach allows for the dif-
ferentiated treatment of nuclear dynamics depending on the 
extent of deformation, thereby enhancing the accuracy of 
theoretical predictions in nuclear structure analysis.

By employing hyperspherical harmonics and the Berg-
gren basis, the Schrödinger equation can be formulated as a 
coupled-channel equation. This formulation incorporates 
couplings not only among the hyperspherical basis states but 
also among the collective states of the core. The resulting 
complex eigenvalues provide information about the reso-
nance energies and decay widths. However, in the case of 

(56)H =

3∑

i=c,p1,p2

̂p⃗2
i

2mi

+

3∑

i>j=1

Vij(r⃗ij) + Ĥc − T̂c.m..
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medium-mass nuclei, proton decay widths typically fall 
below the numerical precision of calculations. Nevertheless, 
decay widths can be estimated using the current expression 
presented in [138], as demonstrated in previous works [67, 
139, 140]. According to R-matrix theory, if the contribution 
from the off-diagonal part of the Coulomb interaction in the 
asymptotic region is neglected, the hyperradial wave func-
tion of the resonance, �

�K(�) , is proportional to the outgoing 
Coulomb function H+

K+3∕2
(�

�K , kp�) [141–143]. By assuming 
a small decay width and adopting the expression 
�

�∕� = kpH
+�
∕H+ [136, 137], the numerical derivative of 

the small-wave function in the asymptotic region that 
appears in the original current expression can be avoided, 
thereby significantly enhancing numerical precision [144].

2.6  Time‑dependent approach

To tackle the decay process, a time-dependent formalism 
was developed, to allow precise, numerically stable, and 
transparent investigations of a broad range of phenomena, 
such as configuration evolution [145], decay rates [146], and 
fission [147]. For two-nucleon decay, the measured inter-
particle correlations can be interpreted by propagating the 
solutions over long times. Despite previous efforts in this 
direction [148–150], capturing the asymptotic correlation 
of emitted particles still requires a precise description of the 
resonance wave function at large distances. To this end, we 
utilized the complex-momentum state ΨJ�

0
 obtained using 

the GCC method. This state can be decomposed into real-
momentum scattering states using the Fourier–Bessel series 
expansion in the real-energy Hilbert space [151]. The result-
ing wave packet is propagated by the time evolution operator 
through the Chebyshev expansion [152, 153]:

where Jn are the Bessel functions of the first kind and Tn are 
the Chebyshev polynomials.

The time evolution was limited to the real momentum 
space, to restore the Hermitian property of the Hamiltonian 
matrix and ensure conservation of total density. Our imple-
mentation of the time-dependent approach is based on the 
integral equation, which allows maintaining high numerical 
precision by utilizing the Chebyshev expansion’s good con-
vergence rate [153, 154]. Furthermore, the evolving wave 
packet has an implicit cutoff at large distances, prevent-
ing the divergence of the Coulomb interaction in momen-
tum space. In practice, we considered interactions within 
a sphere of radius of approximately 500 fm, and the wave 
function remained defined in momentum space beyond this 
cutoff, preventing unwanted reflections at the boundary.

(57)e
−i

Ĥ

�
t =

∞∑

n=0

(−i)n
(
2 − 𝛿n0

)
Jn(t)Tn(Ĥ∕�),

3  The calculations and discussions

In this section, we primarily review the calculations by our 
developed D-IMSRG, G-IMSRG, and GCC. Section 3.1 
presents the ground-state energies of 8,10Be isotopes as 
benchmark, along with the ground-state energies and 
charge radii of even–even nuclei from light beryllium to 
medium-mass magnesium isotopes using D-IMSRG. In 
Sect. 3.2, using VS-IMSRG, the residual proton–neutron 
interaction �Vpn values in the upper fp shell were inves-
tigated, indicating the important role played by 3NF in 
explaining the experimental observations. Resonant states 
observed in the neutron-dripline 24O and the halo struc-
ture of the known heaviest Borromean nucleus 22C are 
presented in Sect. 3.3 for G-IMSRG. Furthermore, the 
low-lying resonant excited states in 22C are also predicted. 
Section 3.4 presents the applications of the GCC method, 
focusing on the exotic few-body decay beyond the dripline 
and the intriguing phenomena in open quantum systems. 
Specifically, the decay dynamics and properties of exotic 
two-proton (2p) emissions are discussed, including the 
impact of structure, deformation, and continuum effects.

3.1  The D‑IMSRG calculations of deformed light 
nuclei

In [53], Yuan and his collaborators developed D-IMSRG, 
as formulated in Sect.  2.2, which better reflects the 
intrinsic structure of the deformed nucleus and captures 
more correlations through symmetry restoration. As a 
test ground, the D-IMSRG was first performed to cal-
culate the ground-state energies of 8Be and 10Be, which 
are exotic nuclei with 2 � cluster structure or elongated 
shapes, benchmarked against NCSM and VS-IMSRG. Sub-
sequently, D-IMSRG was applied to describe the ground-
state properties of even–even nuclei ranging from light 
beryllium to medium-mass magnesium isotopes. The opti-
mized chiral NN  interaction NNLOopt [156, 157], which 
gives good descriptions of nuclear binding energies, exci-
tation spectra and neutron matter equation of state without 
the inclusion of the 3N force, was used during the calcula-
tion in [53] with ℏ� = 24MeV.

The ground-state energies of 8Be and 10Be were first 
studied though D-IMSRG, as shown in Fig. 4, with and 
without the approximate angular momentum projection. 
It was found out that the trend of calculated energy by 
D-IMSRG is similar to those of NCSM [16, 84–87] and 
multi-reference IMSRG  [19] calculations, exhibiting 
an exponential convergence with respect to the basis-
space size Nshell . The energies extrapolated to infinite 
model space using an exponential fit based on Eq. (22) 
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are depicted in Fig. 4. The extrapolated "Extrap" results 
fitted with different data points are provided in Fig. 4 
along with their uncertainties, verifying that the calcula-
tion results of D-IMSRG converge exponentially with an 
increase in Nshell , thereby demonstrating the reliability of 
the calculations.

In Fig. 4, the angular momentum projection corrections 
are −7.2MeV and −5.9MeV for 8Be and 10Be , respectively. 
These significant corrections are caused by the large defor-
mations of these two nuclei. The results of NCSM and VS-
IMSRG and the experimental data are also shown in Fig. 4.

The results of VS-IMSRG underestimate the ground-state 
energy in 8,10Be , which may be attributed to the omission 
of higher-order collective excitations that are not handled 
well in VS-IMSRG at the IMSRG(2) level, as discussed 
in  [158, 159]. However, this omission can be compensated 
by the angular momentum projection correction through 
D-IMSRG, as illustrated in Fig. 4.

The ground-state energies and two-neutron separation 
energies calculated by D-IMSRG for 6−16Be are shown in 
Fig. 5 (top panel and bottom panel, respectively), along with 
VS-IMSRG calculations and experimental data. The angu-
lar momentum projection lowered the ground-state ener-
gies of 8−16Be by about 5–6MeV , making the calculated 
energies closer to the data. Both D-IMSRG and VS-IMSRG 
calculations indicated that the neutron dripline of beryllium 
isotopes was at 12Be , contrary to the experimental position 
of 14Be , which may be due to the absence of a continuum 
effect [57, 105, 107, 160].

In [53], the heavier nuclei of C, O, Ne, and Mg isotopes 
were also calculated by D-IMSRG, as shown in Fig. 6 
along with VS-IMSRG calculations and experimental data. 
The D-IMSRG calculations with the projection correc-
tion agreed well with VS-IMSRG results and experimen-
tal data. The angular momentum projection corrections 

were zero for the closed-shell nuclei 14 C and 14,16,22,24,28 O, 
indicating the spherical characteristics of these nuclei. 
However, for the expected closed-shell nuclei of 12,22 C, 
the angular momentum projection corrections were not 
zero but −5.5MeV and −2.7MeV , respectively, indicating 
their deformation. For Ne and Mg isotopes, the projection 
results provided energy gains of about 3–6MeV near the 
neutron number N = 20 island of inversion [161, 162]. 

Fig. 4  (Color online) Ground-state energies for 8Be and 10Be cal-
culated by D-IMSRG, with and without projection correction, 
are shown as a function of basis-space size Nshell . Symbols below 
“Extrap” represent the energies extrapolated to the infinite basis space 
using an exponential fit, based on different data points: Nshell = 3–7, 

3–10, and 6–10. The fitting uncertainties are indicated by error bars. 
Extrapolation uncertainties in NCSM and VS-IMSRG calculations 
are also represented by error bars. Experimental data were taken from 
AME2020 [155], and the figure was taken from [53]

Fig. 5  (Color online) Ground-state energies (upper panel) and two-
neutron separation energies S2n (lower panel) of 6−16Be calculated by 
D-IMSRG with and without projection correction. The VS-IMSRG 
results and experimental data  [155] are also presented for compari-
son. The figure is taken from [53]
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There is strong configuration mixing between sd and pf 
shells in nuclei located in the region of the island of inver-
sion. This cross-shell mixing is missing in the VS-IMSRG 
calculations although a multi-shell VS-IMSRG has been 
proposed [163]. Therefore, it can be concluded that defor-
mation effectively brings the deformation orbitals into the 
wave function of the state in D-IMSRG calculations.

For nuclei, another important observable is the charge 
radius. The radii of the studied isotopes were also cal-
culated in  [53]. Compared with the calculation of the 
ground-state energy, the convergence of the radius calcu-
lation showed a different trend with increasing basis-space 
size, as discussed in [32, 87, 168] and as also observed in 
the D-IMSRG calculations [53], indicating that the expo-
nential fit was not applicable to the radius. Therefore, the 
authors in [53] did not use extrapolation to fit the radius 
in the calculations. The angular momentum projection 
correction was also estimated by the HF wave function 
in the study. As shown in Fig. 7, the charge radii of Be, 
C, O, Ne, and Mg isotopes were investigated, along with 
the VS-IMSRG calculations and experimental data. The 
projection correction to the charge radius is small, mak-
ing the D-IMSRG radii with and without the projection 
correction close to each other and in good agreement with 
the VS-IMSRG calculations except for 8Be, where the 

D-IMSRG radius is larger. This difference can be attrib-
uted to the large deformation of 8Be. Therefore, it can be 
concluded that the calculated charge radii by D-IMSRG 
and VS-IMSRG are reasonable compared with experiment 
data, as shown in Fig. 7 although the NNLOopt interaction 
tends to underestimate the nuclear radii, as noted in [157].

3.2  ıVpn bifurcation by the VS‑IMSRG

The VS-IMSRG was first introduced by Tsukiyama et al. 
in 2012 [39]. This method combines the SM and IMSRG 
to non-perturbatively derive effective valence-space Ham-
iltonians and operators, as detailed in Sect. 3.2. Recently, it 
has been applied to describe the �Vpn values in the upper fp 
shell, incorporating a chiral three-nucleon force (3NF), as 
reported in  [169].

Nuclear binding energy B(Z, N) represents the total inter-
action energy of interacting nucleons in the nucleus with Z 
protons and N neutrons. Differences in binding energy can 
isolate specific types of interactions and provide insights into 
modifications in nuclear structure [170, 171]. The double 
binding energy difference denoted as �Vpn , has been used as 
an important mass filter to extract the residual proton–neu-
tron (pn) interaction [172–174], particularly for the N = Z 

Fig. 6  (Color online) Ground-state energies of C, O, Ne, and Mg iso-
topes. D-IMSRG results are extrapolated to the infinite basis space 
using the Nshell = 6−10 data points, whereas the VS-IMSRG results 
are extrapolated based on Nshell = 8−13 . In VS-IMSRG calculations, 
the model space includes both protons and neutrons in 0p3∕2,1∕2 for 

6−14C ; protons in 0p3∕2,1∕2 and neutrons in 1s1∕20d5∕2,3∕2 for 14−22C ; 
and both protons and neutrons in 1s1∕20d5∕2,3∕2 for O, Ne, and Mg iso-
topes. The experimental data were taken from AME2020 [155]. The 
figure was taken from [53]
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nuclei. The residual proton–neutron interaction �Vpn can be 
extracted using

for the nucleus with N = Z = an even number, and

for the nucleus with N = Z = an odd number.
Weakly bound proton-rich nuclei are attracting interest in 

novel structure [175]. In  [169], the masses of 62Ge , 64As , 
66Se , and 70 Kr were measured for the first time. Additionally, 
the masses of six N = Z − 1 nuclides 61Ga, 63Ge , 65As, 67Se, 
71Kr , and 75Sr were redetermined with improved accuracy, 
using a novel method of isochronous mass spectrometry con-
ducted at the Heavy Ion Research Facility in Lanzhou 
(HIRFL). These newly measured masses provide updated 
�Vpn values, which offer great test ground for state-of-the-art 
theoretical calculations. The updated �Vpn values show a 
clear increasing trend in �Voo

pn
 beyond Z = 28 , which is inter-

preted as an indication of the restoration of pseudo-SU(4) 
symmetry in the fp shell, as suggested in [176, 177]. In con-
trast, �Vee

pn
 shows a decreasing trend that was previously 

observed in the lower mass region [173, 178]. These �Vpn 
values were extracted using predicted masses from fre-
quently used mass models; however, none of these models 

(58)
�V

ee
pn
(Z,N) =

1

4
[B(Z,N) − B(Z,N − 2) − B(Z − 2,N)

+ B(Z − 2,N − 2)],

(59)
�V

oo
pn
(Z,N) =[B(Z,N) − B(Z,N − 1) − B(Z − 1,N)

+ B(Z − 1,N − 1)],

successfully reproduce the bifurcation in �Vpn values [169], 
except for the ab initio VS-IMSRG calculations. Within the 
ab initio VS-IMSRG calculation, a chiral 2NF plus 3NF, 
labeled by EM1.8/2.0 [24], is adopted, which can reproduce 
well the ground-state energies up to A ≈ 100 region 

Fig. 7  (Color online) Charge radii calculated by D-IMSRG in a basis space with Nshell = 10 and using VS-IMSRG with Nshell = 13 for Be, C, O, 
Ne, and Mg isotopes. Experimental data were taken from [157, 164–167]. The figure was taken from [53]

Fig. 8  (Color online) Experimental �Vpn for a N = Z and b 
N = Z + 2 nuclei beyond A = 56 , compared with the ab  initio VS-
IMSRG calculations. Data uncertainties are indicated by the size of 
symbols. �Vpn values from ab  initio calculations using 2NF + 3NF 
and only 2NF plotted as red and blue lines (solid lines for even–
even and dashed lines for odd–odd), respectively. The figure is taken 
from  [169]
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nuclei [7, 28, 179]. The effective Hamiltonian in the full fp-
shell above the 40 Ca core was derived using the VS-IMSRG, 
and the final diagonalization of the valence-space Hamilto-
nian was realized using KSHELL [95].

As shown in the lower panel of Fig. 8, VS-IMSRG calcu-
lations with chiral 2NF plus 3NF reproduce the experimental 
�Vpn for the N = Z + 2 nuclei exceptionally well. For the 
odd–odd N = Z nuclei, 62Ga,66 As,70 Br and 74Rb , the ground 
states have been identified as (T , J�) = 

(
1, 0+

)
 [155]. VS-

IMSRG calculations, which inherently incorporate both 
T = 0 and T = 1 pn correlations, achieve a commendable 
match with the experimental �Voo

pn
 values for nuclei ranging 

from 58Cu to 70Br . Particularly noteworthy is that the calcu-
lation successfully reproduces the observed increasing trend 
in �Voo

pn
 with an increase in nucleon number A. Our calcula-

tions consistently attributed an isospin of T = 1 to the ground 
states of these odd–odd nuclei, aligning with experimental 
results, with the exception of 58Cu . Moreover, the decreased 
trend in the even–even �Vee

pn
 was also well reproduced by our 

VS-IMSRG calculations.
In mass regions with extremely asymmetric N/Z ratios, 

3NF usually provides a repulsive effect on the neutron–neu-
tron (nn) and proton–proton (pp) interactions [28, 180], 
which is essential for the emergence of new magic num-
bers [180] and also for reproducing the neutron or proton 
dripline [28]. To understand the role played by 3NF in the 
�Vpn of upper fp-shell nuclei, we performed calculations 
using only a chiral 2NF at N3LO. The results using only 
2NF show significant deviations from those calculated with 
3NF included, as demonstrated in Fig. 8. Specifically, the 
agreement with experimental �Vpn values was markedly poor 
in the calculations without the 3NF included. Additionally, 
the predicted isospins of ground states for odd–odd nuclei 
ranging from 62Ga to 74Rb were all erroneously identified as 
T = 0 in the calculations with the 3NF included, contradict-
ing experimental data. Furthermore, without the inclusion 
of 3NF, the calculated �Voo

pn
 values of N = Z nuclei were 

lower than �Vee
pn

 calculated with 3NF included. The 3NF 
enhances the pn correlations in N = Z nuclei favoring a 
T = 1 isospin coupling, which changes the �Vpn behavior.

3.3  The G‑IMSRG with the coupling 
to the continuum

A novel G-IMSRG [57] was developed by Hu et al., using 
the complex-energy Berggren representation, as introduced 
in Sect. 2.4. This advanced G-IMSRG is capable of describ-
ing the weakly bound and unbound nature of nuclei in the 
vicinity of nuclear driplines. We applied G-IMSRG to oxy-
gen and carbon isotopes. Recent experiments [181–184] 
highlight that 22 C is a Borromean halo nucleus, with an 
experimentally deduced root-mean-squared matter radius 

of 3.44 ± 0.08 fm [184]. The continuum coupling plays a 
vital role in generating the extended density distribution. 
Notably, experimental information about the excited states 
of 22 C, which can offer additional insights into its halo 
structure, is lacking. In this study, we performed an ab ini-
tio G-IMSRG calculation of the halo 22 C, using both chiral 
2NF NNLOopt and 2NF plus 3NF NNLOsat interactions. The 
NNLOopt interaction matrix elements were expanded within 
12 major HO shells at a frequency of ℏ� = 20 MeV, whereas 
the NNLOsat interaction was truncated at 13 major HO shells 
with ℏ� = 22MeV [158, 185]. The NNLOopt potential pro-
vides a good description of nuclear structure, including 
binding energies, excitation spectrum, and dripline position 
without the need for 3NF [156]. The NNLOsat interaction 
can provide accurate descriptions of charge radii in light- 
and mid-mass isotopes [186].

For the sd shell, the neutron 0d3∕2 is a narrow-resonance 
orbital. With no centrifugal barrier of the l = 0 s partial 
wave, a weakly bound 1s1∕2 orbital can significantly affect 
the spatial distribution of the wave functions of weakly 
bound nuclei. Therefore, the 0d3∕2 and 1s1∕2 orbitals should 
be treated in the Berggren basis, which includes coupling 
to the continuum, whereas other orbitals can be treated in 
the real-energy HF basis to reduce the computational cost, 
as in [57].

Although the Hamiltonian (5) is intrinsic, the IMSRG 
wave functions are expressed in laboratory coordinates. 
Therefore, considering center-of-mass (CoM) motion cor-
rections may be necessary. Our previous work has indicated 
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Fig. 9  (Color online) 24 O spectra calculated using NNLOopt and 
NNLOsat interactions. The first two columns display the results 
from real-energy EOM-IMSRG calculations (denoted as R-IMSRG) 
without and with CoM treatment �HCoM , using the multiplier � = 
5. The subsequent three columns present the EOM-G-IMSRG cal-
culation (denoted as G-IMSRG), which are compared with the data 
from   [188, 189]. Resonant states are highlighted by shading, and 
their widths (in MeV) are annotated nearby. The gray shading indi-
cates the continuum region above the particle emission threshold. The 
figure is taken from  [57]
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that the CoM effect on an intrinsic Hamiltonian is small for 
low-lying states [105]. Thus, the approximation method sug-
gested in  [37, 187] can be adopted to estimate the CoM 
effect in IMSRG calculations. Figure 9 presents real-energy 
EOM-IMSRG calculations without and with the CoM mul-
tiplication term �HCoM = 𝛽

(
P2

2mA
+

1

2
mA�̃�2R2 −

3

2
��̃�

)
 . Note 

that the value of the CoM vibration frequency �̃� can differ 
from the � frequency of the HO basis [187]. As illustrated 
in Fig. 9, the CoM effect remains negligible for these low-
lying states.

As described in Sect.  2.4, the equation-of-motion 
approach can be used to calculate nuclear excited states. Fig-
ure 9 presents the calculated spectrum of 24 O, showing reso-
nant excited states. The EOM Gamow IMSRG (indicated by 
EOM-G-IMSRG) calculations reproduced the experimental 
excitation energies and resonance widths of the observed 
states well. A high excitation energy of the first 2 + state 
supports the shell closure at N = 16 in the oxygen chain. 
Additionally, the calculation predicted three resonant states 
around the excitation energies of 8MeV with J� = 2+ − 4+ , 
aligning with the experimentally ambiguous states observed 
around 7.6MeV [189]. This finding is consistent with the 
complex coupled cluster calculation which uses a schematic 
3NF [18].

The Borromean halo nucleus 22 C poses significant chal-
lenges for many theoretical models  [58–60]. Our GHF 
calculations suggested that the neutron �1s1∕2 orbital is 
weakly bound. Therefore, the two-neutron configuration (
�1s1∕2

)2 is responsible for the formation of the halo struc-
ture [181–184]. Figure 10 presents the ground-state densities 
of 22 C calculated by the real-energy R-IMSRG and complex-
energy G-IMSRG using two different chiral interactions. The 

density was computed by an effective density operator evolv-
ing within the Magnus framework (16, 17). The G-IMSRG 
calculation revealed a long tail in the density distribution, 
supporting the halo structure of 22C.

To assess the continuum effect of the s channel on the 
properties of 22 C, we performed two types of G-IMSRG 
calculations using: (i) discrete s states obtained from the 
real-energy HF calculation, and (ii) Berggren s states 
obtained from the complex-energy GHF calculation. In 
both calculations, the neutron d3∕2 channel remained in the 
GHF basis. Calculations using NNLOopt with discrete real-
energy HF s states yielded a radius of 2.798 fm for the 22 C 
ground state, which increased to 2.928 fm upon incorporat-
ing the continuum s wave. Similarly, the calculations using 
NNLOsat yielded a radius of 2.983 fm for the real-energy 
discrete s states and 3.139 fm for the continuum GHF s wave. 
The experimentally estimated radius was reported to be 
5.4 ± 0.9 fm in an earlier work [181], and later works found 
it to be 3.44 ± 0.08 fm [184] and 3.38 ± 0.10 fm [190]. These 
findings highlight the crucial role of the continuum s wave in 
predicting the radius and understanding the halo structure.

Currently, no experimental data are available for the 
excited states in 22 C. Figure 11 displays the EOM-G-IMSRG 
predictions of low-lying states, benchmarked against results 
from complex CC calculations. Both methods yielded con-
sistent results. The first 2 + excited state was bound in both 
G-IMSRG and coupled cluster calculations. We found that 
the 2+

1
 state was dominated by the proton 1p1h excitation 

from the proton 0p3/2 hole to proton 0p1/2 particle orbits. 
The proton 2 +

1
 excited state was lower in energy than the 

neutron 2 + state calculated by the real-energy SM with the 
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Fig. 11  Excited states in 22 C predicted by R-IMSRG and G-IMSRG 
using two different chiral interactions compared with complex cou-
pled cluster results. The channels listed at the top of the panel indi-
cate that the partial waves are treated in the resonance and continuum 
Berggren representation. The other labels are the same as those in 
Fig. 9. The figure is taken from  [57]
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14 C core [191, 192]. The real-energy R-IMSRG results in 
Fig. 11 show a neutron 2 + energy similar to that in  [191, 
192]. Additionally, there were superposed resonant states 
with J� = 1+ − 4+ at energies of 3.5–4.0MeV and widths of 
0.15 − 0.25MeV . The NNLOsat calculations yielded slightly 
higher excitation energies and broader resonant widths for 
these states, as illustrated in Fig. 11. The resonances were 
primarily characterized by neutron 1p1h excitations from 
the �0d5∕2 hole to �0d3∕2 particle orbitals. Structure and 
decay modes of loosely bound nuclei are of interest in many 
respects [193, 194].

3.4  Few‑body decay by GCC 

In this section, the discussion centers on the decay proper-
ties of open quantum systems, with a particular focus on 
two-proton (2p) emitters, exploring how deformation and 
continuum effects influence the decay dynamics of these sys-
tems. Previous research highlighted the significant role that 
these factors play in shaping the decay characteristics of 2p 
emitters. A critical aspect of our analysis involves extract-
ing structural information from these systems through the 
measurement of asymptotic nucleon–nucleon correlations, 
which are experimentally accessible.

In analyzing these correlations, the objective is to deepen 
our understanding of the universal properties inherent to 
open quantum systems. This approach not only elucidates 
the fundamental interactions within these systems but also 
provides a framework for interpreting experimental results 
in terms of underlying nuclear structure and dynamics. Such 
insights are invaluable for advancing our comprehension of 
the complex behaviors exhibited by open quantum systems 
under various conditions.

3.4.1  Impact of structure on the decay process

As the heaviest 2p emitter identified to date, 67 Kr serves as 
a pivotal case study for examining the influence of structure 
on decay properties. Notably, shape coexistence is often 
observed with Kr isotopes. In addition, the deformation 
effects can significantly impact the lifetime of a decaying 
system, as evidenced by prior research on one-proton (1p) 
emitters [135–137, 144, 195–199]. This offers a good oppor-
tunity to study how the 2p decay properties change as a func-
tion of deformation.

As discussed in  [68], Fig.  12a illustrates the proton 
Nilsson levels (labeled by asymptotic quantum numbers Ω
[NnzΛ ]) within the core-p potential. At modest deforma-
tions, specifically |�2| ≤ 0.1 , the valence protons predomi-
nantly occupy the f5∕2 shell. The half-life predicted under 
vibrational conditions, calculated as T1∕2 > 218ms , sig-
nificantly surpasses the experimentally observed value by 

more than an order of magnitude, as depicted in Fig. 12b. 
This discrepancy underscores the need for further theoreti-
cal refinement and is consistent with prior theoretical esti-
mates [200, 201], suggesting an intricate interplay between 
nuclear structure and decay dynamics in 67Kr.

As the core deformation increases, a notable oblate gap 
at Z = 36 emerges due to the descending 9/2[404] Nilsson 
level, which stems from the 0g9∕2 shell. This gap plays a 
crucial role in shaping the oblate ground state (g.s.) con-
figurations of proton-deficient Kr isotopes [202–204]. As the 
oblate deformation intensifies, the structure of the valence 
proton orbital transitions from the 9/2[404] ( � = 4 ) state 
to the 1/2[321] orbital, featuring a significant � = 1 com-
ponent. The precise level crossing between 1/2[321] and 
9/2[404] is contingent on the specifics of the core-proton 
parametrization, yet the overarching pattern remains consist-
ent as depicted in Fig. 12a: a shift from the 2p wave function 
dominated by � = 4 components toward � = 1 components 
as the oblate deformation progresses.

Fig. 12  Top: Nilsson levels Ω[NnzΛ ] of the deformed core-p potential 
as a function of the oblate quadrupole deformation �2 of the core. The 
dotted line indicates the valence level primarily occupied by the two 
valence protons. Bottom: Decay width (half-life) of the 2p ground 
state radioactivity of 67Kr. The solid and dashed lines mark the results 
for the rotational and vibrational couplings, respectively. The rota-
tional-coupling calculations were carried out by assuming that the 
1/2[321] orbital is either occupied by the core (9/2[404]-valence) or 
valence (1/2[321]-valence) protons. The figure is taken from [68]
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Figure 12b illustrates the predicted 2p decay width within 
the rotational model for two scenarios: (i) the 1/2[321] level 
is integrated into the core with the valence protons predomi-
nantly residing in the 9/2[404] level, and (ii) the valence 
protons primarily occupy the 1/2[321] level. Consequently, 
the reduction in � content within the 2p wave function mark-
edly enhances the decay width.

At a deformation of �2 ≈ −0.3 , aligned with estimates 
from mirror nuclei and various theoretical models [202, 205, 
205–208], the calculated 2p ground state half-life of 67 Kr is 
24+10

−7
 ms. This estimation not only concurs with experimen-

tal findings [209] but also underscores the significant impact 
of nuclear shape and structural dynamics on the decay prop-
erties of 67Kr.

3.4.2  Dynamics of two‑proton decay

For the light 2p emitters, both direct and sequential decays 
are possible [210, 211], providing a good opportunity to 
study the decay dynamics as well as the interplay between 
nucleon–nucleon correlation and single-particle emission.

An illustrative example is the decay of 6Be, where the 
neighboring g.s. of 5 Li exists as a broad resonance, charac-
terized by a proton decay width of Γ = 1.23MeV [212]. The 
complex three-body decay dynamics of 6 Be remain an area 
of active research and debate, with existing studies indicat-
ing unresolved aspects of the decay [141, 211, 213–219]. 
Theoretical predictions of a diproton structure and experi-
mental observations of broad angular correlations between 
emitted protons lead to conflicting interpretations.

Based on the time-dependent approach, Fig.  13a, b 
depicts the temporal evolution of the 2p density and momen-
tum distribution in the ground state of 6 Be across an exten-
sive time frame. Initially, at t = 0 , the wave function inside 
the nucleus shows a localized character with a density dis-
tribution exhibiting two maxima. These maxima represent 
diproton (compact) and cigar-like (extended) configura-
tions based on the relative distances between the valence 
protons [220].

As the decay progresses, Fig. 13b highlights two pre-
dominant flux branches. The primary branch shows protons 
emitted at narrow angles, indicating the presence of a dipro-
ton structure during the tunneling phase. This phenomenon 
is interpreted through nucleonic pairing, which favors low 
angular momentum states, reducing the centrifugal barrier 
and enhancing the 2p tunneling likelihood [149, 150, 216, 
220]. The secondary branch illustrates protons emitted in 
nearly opposite directions. Despite their spatial separa-
tion, these protons exhibit simultaneous decay, suggesting 
three-body decay dynamics characterized by correlated 
decay pathways of the protons with respect to the core. This 
configuration reveals intricate interplays within the decay 

process, shedding light on the multifaceted nature of three-
body decays in light 2p emitters.

After tunneling through the Coulomb barrier, the two 
emitted protons tend to gradually separate due to Coulomb 
repulsion. This is reflected in the bent trajectory of the dipro-
ton decay branch and gradual reduction of the momentum 
alignment observed in Fig. 13a, b. Eventually, the 2p density 
becomes spatially diffuse, which is consistent with the broad 
angular distribution measured in [217]. One may notice that 
even beyond 100 fm (at t ≈ 2 pm∕c ), the Coulomb repulsion 
tends to reduce the inter-proton correlation. According to 
our calculations, the angular correlation starts to stabilize 
only after very long times greater than 9 pm/c. Therefore, 

Fig. 13  The density and momentum distributions of two-nucleon 
decays from the g.s. of 6 Be (left) and 6He ′  (right) for four differ-
ent time slices. The density distributions are shown in the Jacobi-T 
coordinates (see Fig.  3). The momentum distribution of the sec-
ond nucleon is depicted with respect to the momentum of the first 
nucleon. To clearly show the asymptotic wave function, all the parti-
cle densities (in fm−1 ) are multiplied by the polar Jacobi coordinate � . 
The dimensionless momentum (angular) distributions are divided by 
the total momentum k. The figure is taken from [70]
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to obtain meaningful estimates of asymptotic observables, 
very long propagation times are required.

After the protons tunnel through the Coulomb barrier, 
the Coulomb repulsion between them leads to an increasing 
spatial separation, impacting their trajectories and momen-
tum alignment. This dynamic is depicted in the bending 
trajectory of the diproton decay branch, and a reduction in 
momentum alignment is observed in Fig. 13a, b. Over time, 
the 2p density distribution becomes increasingly diffuse, 
aligning with the broad angular distributions reported in 
experimental studies such as  [217].

To provide insights into the nuclear-Coulomb interplay in 
two-nucleon decay processes, an artificially unbound variant 
of 6He, denoted as 6He′ , was built to study its two-neutron 
decay. Initially, the density distributions of 6He′ and 6 Be 
display similarities, as depicted in Fig. 13, a consequence of 
the isospin symmetry inherent in the nuclear force.

However, the absence of Coulomb repulsion in the 6
He′ scenario significantly influences the decay dynamics. 
In the case of 6He′ , the dineutron decay branch is more 
pronounced, with the emitted neutrons maintaining their 
spatial correlations over time more robustly than their pro-
ton counterparts in 6Be. This differential behavior leads to 
distinct nucleon–nucleon correlation patterns in the asymp-
totic regime. As a result, the nucleon–nucleon correlations 
observed in 6He′ , as illustrated in Fig. 14, diverge markedly 
from those in 6Be, underscoring the critical role of Coulomb 
forces in shaping the decay pathways and final-state interac-
tions in these mirror nuclei.

3.4.3  Nucleon–nucleon correlations

The experimental measurements of nucleon–nucleon cor-
relations among emitted nucleons provide data pertinent to 
the nuclear structure. This methodology serves as a distinc-
tive avenue for investigating the internal structure and decay 
mechanisms of 2p emitters. However, the nucleon–nucleon 
correlations recorded by detectors are influenced by final-
state interactions and distort the original nuclear correla-
tions. Consequently, self-consistent theoretical frameworks 
are urgently required to establish a linkage between the 
nuclear structure and observed asymptotic correlations. In 
this section, we elucidate how the GCC method and time-
dependent (TD) approach have been effectively employed to 
address such challenges.

Compared to the neutron dripline, the proton dripline 
is relatively closer to the line of �-stability, facilitating the 
acquisition of 2p correlation data in several instances, as 
evidenced by the findings reported in studies [222, 223]. 
Remarkably, the energy correlation of protons emitted from 
the ground state of 12 O closely resembles those observed 
in other sd-shell 2p emitters, such as 16 Ne and 19Mg. This 
resemblance suggests potential structural similarities in 
the configurations of valence protons across these isotopes 
despite their differing proton numbers. This observation 
underscores the intricate interplay between nuclear struc-
ture and decay processes, hinting at underlying uniformities 
in the spatial and energetic distributions of valence protons 
within this specific shell.

To elucidate the 2p correlation patterns observed in 12 O 
and its isotonic neighbor 11 O, a time-dependent approach 
was employed, as detailed in recent research [71]. The ini-
tial 2p density configurations in 11,12 O exhibit a prominent 
diproton arrangement alongside a secondary, cigar-like 
structure [220, 224], bearing resemblance to configurations 
typical of p-shell nuclei. However, in the case of 12 O, the 
protons emerging from these configurations coalesce, lead-
ing to a broad distribution as reported in [71]. This pattern 
contrasts starkly with the decay dynamics of 6Be, as shown 
in Fig. 13 and [70]. These observations align with the flux 
current calculations presented in [220], which indicate a 
competitive interplay between diproton and cigar-like decay 
modes, culminating in a so-called democratic decay process. 
This comparative analysis underscores the complex interde-
pendencies within nuclear decay pathways and highlights the 
distinctive decay characteristics of 12 O relative to its nuclear 
peers.

Consequently, the asymptotic 2p correlations for 12 O, 
as depicted in Fig. 15, demonstrate robust alignment with 
the empirical data  [223] and corroborate prior theoreti-
cal investigations [225]. Notably, the subtle discrepancies 
between the experimental results and theoretical predic-
tions, enhanced via Monte Carlo simulations incorporating 

Fig. 14  Asymptotic energy (left) and angular (right) correlations of 
emitted nucleons from the g.s. of 6 Be (top) and 6He ′  (bottom) calcu-
lated at t = 15 pm∕c with different strengths of the Minnesota inter-
action [221]: standard (solid line), strong (increased by 50%; dashed 
line), and weak (decreased by 50%; dash-dotted line). Also shown are 
the benchmarking results obtained using the Green’s function method 
(GF; dotted line) with standard interaction strength; �k is the opening 
angle between k⃗x and k⃗1 in the Jacobi-Y coordinate system, and Epp/nn 
is the kinetic energy of the relative motion of the emitted nucleons 
(see Fig. 3 for definitions). The figure is taken from [70]
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experimental acceptance and resolution, might be mitigated 
by refining the Minnesota force initially utilized for mode-
ling the nucleon–nucleon interactions. More importantly, the 
absence of distinct diproton emissions during the temporal 
evolution suggests that a low-Epp correlation does not inher-
ently imply a diproton decay. Moreover, recognizing that the 
2p system may manifest as a subthreshold resonance char-
acterized by a broad decay width around 1 MeV [226], is 
critical. This continuum characteristic potentially influences 
the energy correlation observed in 2p emitters possessing 
minimal decay energies, underscoring the complex interplay 
between nuclear structure and decay dynamics.

To further illustrate, the lightest oxygen isotope, 11 O, has 
been characterized as a broad structure encompassing multi-
ple resonances [224, 227–230]. Utilizing GCC calculations, 
four low-lying states with quantum numbers J� = 3∕2−

1
 , 

5∕2+
1
 , 3∕2−

2
 , and 5∕2+

2
 were predicted within the experi-

mental energy range [220]. Each state exhibits a substantial 
decay width ranging from 1MeV to 2MeV . In the time-
dependent calculations [71], these states were propagated 
individually, effectively disregarding potential interference 
effects. This approach underscores their significant decay 
widths, which foster robust continuum coupling, resulting 
in a more homogeneous density distribution throughout the 
decay process compared to 12 O, as noted in [71].

The emergent Y-type correlations exhibit a pronounced 
dependency on angular momentum, which can be instru-
mental in experimentally determining spin assignments. To 
simulate the asymptotic correlations of the emitted valence 
protons, the correlations of these four states were amalga-
mated, utilizing the weights derived from resonance-shape 

Fig. 15  Asymptotic a energy and b angular correlations of the pro-
tons emitted from the two-proton unbound 12 O isotope. Also shown 
is c the momentum scheme for three-body system. Theoretical distri-
butions were obtained within the time-dependent approach (TD, red 
line) at t = 15 pm∕c . MC (green line chart) labels the Monte Carlo 
simulation of TD results which include experimental resolution and 
efficiency  [223]. The calculated 2p correlations (TD and MC) are 
compared with experimental data (Exp, blue histogram) of [223]. A is 
the mass number and k1 , k2 , and kc are the momenta of the nucleons n1 
and n2 , and the core c, respectively, in the c.m. coordinate frame. The 
figure is taken from [71]

Fig. 16  a Theoretical and b experimental Jacobi-Y correlations of the 
two protons emitted from the broad low-energy structure in 11 O; c–f 
the corresponding contributions predicted from each low-lying state. 
The experimental resolution and efficiency have been considered in 
(a) Monte Carlo simulations. Also shown are the corresponding g 
energy and h angular correlations obtained in the time-dependent 
(TD) calculations (red line), Monte Carlo (MC) simulations (green 
step chart), and experiments (Exp, blue histogram). The figure is 
taken from [71]
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fitting  [224]. This composite correlation, depicted in 
Fig. 16a, closely aligns with the experimental observations 
shown in Fig. 16b, lending credence to the hypothesis that 
the observed broad structure integrates states with J� = 3∕2− 
and 5∕2+ [224, 227]. Moreover, Fig. 16g, h illustrates the 
energy and angular correlations, respectively, adjusted for 
experimental resolution and efficiency. The qualitative 
agreement between these corrected simulations and experi-
mental data provides additional support for the multi-reso-
nance composition within the observed peak, further validat-
ing the complex resonance structure of 11O.

3.4.4  Exotic decays in open quantum systems

In addition to 2p decay, there exist several other exotic 
decay modes in nuclear physics, such as two-neutron decay, 
two-alpha decay, and multi-particle emission. These decay 
processes exhibit intriguing behaviors that are unique to 
the quantum realm. The classical understanding of radioac-
tive decay is based on the principle that the rate of decay 
is directly proportional to the quantity of the radioactive 
substance present. This model fundamentally assumes that 
the decay is a stochastic process at the level of individual 
particles, meaning that the probability of decay is independ-
ent of the system’s previous history.

However, this classical perspective is challenged within 
the quantum framework due to phenomena such as memory 
effects and quantum entanglement. These effects introduce 
deviations from the exponential decay law, traditionally used 
to describe radioactive decay. Notably, quantum mechanics 
reveals that decay probabilities can exhibit non-exponential 
behavior at very short and very long timescales. Theoretical 
and experimental studies have demonstrated that quantum 
systems do not always follow the expected exponential decay 
pattern [151, 231–241].

These findings underscore the complex nature of decay 
processes in quantum systems, where the inherent properties 
of the particles and their interactions can lead to observable 
departures from classical predictions. The implications of 
these quantum behaviors are profound, impacting our under-
standing of fundamental decay processes and the predictive 
models used in nuclear physics.

In analyzing the non-exponential decay in quantum sys-
tems, one crucial concept is the survival amplitude A(t) . 
This amplitude is defined as the overlap between the ini-
tial quantum state Ψ(0) and the state at a later time Ψ(t) . 
Mathematically, the survival amplitude can be expressed and 
computed using the Fourier transform of the spectral func-
tion �(E) , as illustrated in [242]:

In this formulation, �(E) , which is the probability density of 
finding a system with energy E, is derived from the squared 
modulus of the projection of the state vector Ψ onto the real-
energy eigenstates ⟨E�Ψ⟩ . Thus, �(E) = �⟨E�Ψ⟩�2 represents 
the distribution of the initial state over the various energy 
eigenstates.

The survival probability S(t) , which is a measure of the 
likelihood that the system remains in its initial state at time 
t, is then calculated in a straightforward manner from the 
survival amplitude:

This probabilistic measure reflects how the state evolves over 
time, deviating from its initial configuration. This deviation 
is a key indicator of quantum mechanical effects in decay 
processes and provides insight into the complex nature of 
quantum dynamics.

Non-exponential decay of a threshold resonance. The 
survival probability of a quantum state is intrinsically 
linked to the energy distribution described by the spectral 
function of the system. Typically, for a system exhibit-
ing exponential decay, the spectral function is expected 
to follow a Breit–Wigner distribution, characterized by a 
Lorentzian shape centered around the resonance energy 
with a width corresponding to the decay rate. However, 
this does not hold for near-threshold states, particularly 
those with large decay widths [151, 233, 240, 241, 243].

These near-threshold states often display significant 
deviations from the exponential decay law. The temporal 
evolution of resonance states has been shown to involve 
both exponential and non-exponential components [244, 
245]. The exponential components, characterized by a 
rapid decrease in probability, dominate the early time 
behavior of the decay process. However, as these compo-
nents decay, the non-exponential elements become more 
prominent.

Over time, as the influence of the exponential decay 
wanes, a transition to a power-law regime becomes inevita-
ble. This regime is indicative of the long-time tail behavior 
common to quantum systems with broad spectral distribu-
tions. Such transitions are crucial for understanding the full 
dynamics of decay processes, particularly in scenarios where 
classical exponential decay laws fail to capture the complexi-
ties introduced by quantum mechanical principles.

Figure 17a, c illustrates this transition, highlighting how 
the decay initially follows an exponential decrease before 
transitioning to a power-law decay. This behavior under-
scores the complex nature of quantum decay processes 
and the need for a deeper exploration into the underlying 

(60)A(t) = ⟨Ψ(0)�Ψ(t)⟩ = ∫
+∞

0

�(E)e−i
E

ℏ
t
dE.

(61)S(t) = |A(t)|2.
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physics, particularly for states near the energy threshold 
or those with significant quantum mechanical interactions.

The universality of the transition from exponential to 
non-exponential decay is a key characteristic of quantum 
decay processes, the specific dynamics of which are deeply 
influenced by several factors. These include the structure 
of the initial state, the chosen decay channel, and notably, 
the nature of the scattering continuum which drives the 
post-exponential decay behavior [246].

To provide a concrete example of these dynamics, the sur-
vival probability of the 1∕2− resonant state in 9 He has been 
analyzed by adjusting the depth of core-nucleon potential 
used in the calculations [246]. This adjustment affects the 
resonant states, which can be characterized in the complex-
k plane. The positioning of these states is determined using 
the polar angle � = − cot−1(2E∕Γ)∕2 , which offers insights 
into the relative contributions of the exponential and non-
exponential decay components in state evolution.

In this analysis, as depicted in Fig. 17a, the deviations 
from exponential decay become increasingly pronounced 
as � shifts toward −45◦ . This angular movement suggests 
a strengthening of the non-exponential decay component, 

particularly in threshold resonances where the resonant 
energy Er is approximately equal to the decay width Γ . This 
result is consistent with [240, 247, 248], which indicate 
that post-exponential decay features tend to dominate more 
rapidly in systems where the resonance lies near the decay 
threshold. Such resonances provide a clearer and more read-
ily observable transition to non-exponential decay, making 
them ideal subjects for experimental and theoretical studies 
aiming to explore quantum decay dynamics beyond the con-
ventional exponential model.

Interference between near-lying states. Besides the 
threshold effect, the decay dynamics of quantum systems 
can also be significantly influenced by the interaction 
between closely lying resonances, particularly when these 
states share the same spin-parity configuration. This sce-
nario leads to an intricate interplay due to the interference 
between overlapping resonances, which in turn modify the 
decay characteristics [249–251].

The mechanism underlying this behavior is related to the 
quantum interference effects, whereby the wavefunctions of 
the resonant states overlap and coherently interact with the 
continuum states. This interplay can lead to a redistribution 
of decay widths among the resonances, with one or more 
states experiencing an enhancement in decay widths due to 
the increased coupling [252–255]. This enhanced coupling is 
a critical factor in the non-exponential decay characteristics 
observed in such systems, as it directly impacts the decay 
pathways and probabilities.

To provide a detailed examination of how continuum 
coupling affects the spectral functions of overlapping reso-
nances, a hypothetical study was conducted on a two-level 
0 + system in an artificial nucleus labeled as 6He′ [246]. This 
recent study [246] explored how two 0 + states, lying close 
in energy, interact with each other and the continuum, high-
lighting that the interference between these states not only 
affects their individual decay rates but also alters the overall 
spectral shape of the system. This interaction leads to one of 
the resonances showing a collective enhancement in decay 
width, which is a direct manifestation of the increased cou-
pling with the continuum.

In this scenario, the excited state �1⟩ predominantly 
features a d2 configuration, whereas the ground state �2⟩ 
mainly consists of a p2 configuration. Figure 18 illustrates 
the evolution of the spectral functions and the correspond-
ing survival probabilities for different energy splittings, 
ΔE = |Er(1) − Er(2)| , of the doublet states.

When the energy splitting ΔE is large, only a minor sup-
pression occurs at the tail of the spectral function for state 
�2⟩ , and both states exhibit comparable decay widths. How-
ever, as the states begin to overlap, significant interference 
effects arise, which dramatically impact the spectral func-
tions of the doublet (Fig. 18e, f). This interference leads to 

Fig. 17  Survival probability S(t) as a function of time (relative to 
T1∕2 ) for a the 1/2− state of 9 He for different depths V0 of the Woods–
Saxon (WS) potential, and c the low-lying states of 9 N. The near-
threshold behavior of the spectral function � (relative to the Breit–
Wigner distribution) is shown for b neutron and d proton s,  p,  d 
partial waves. The polar angle � indicates the location of the resonant 
state in the complex-k plane. Also shown is the survival probability 
for the virtual 1/2+ state in 9He. For this state, T1∕2 was assumed to be 
20 fm∕c . The figure is taken from [246]
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pronounced deviations from the exponential decay regime 
in survival probabilities.

Specifically, state �1⟩ decays much more rapidly than its 
intrinsic decay width would suggest, whereas state �2⟩ exhib-
its a remarkably slow decay. These observations are consist-
ent with the findings of previous studies [253, 255], which 
discuss how such exponential deviations during the decay 
process can occur between any near-lying resonances of the 
same spin-parity. This phenomenon is driven by virtual tran-
sitions governed by the scattering continuum and differing 
orbital angular momentum structures of the doublet states.

This behavior highlights the complex dynamics that can 
arise from interference effects in quantum decay processes, 
particularly when closely spaced resonances are involved. 
The interplay between the initial state configurations, decay 
channels, and the nature of the continuum coupling leads 
to non-trivial modifications in decay rates and survival 
probabilities, underscoring the intricate nature of quantum 
mechanical decay processes.

4  Summary

In this paper, recent developments in IMSRG were reviewed, 
focusing on our work on deformed IMSRG and Gamow 
IMSRG. The developed IMSRG approaches were suc-
cessfully applied to nuclei which are elongated in shape 
or exhibit weakly bound or even unbound resonance. The 
reaction-related GCC method and its extensions to deformed 
systems and time-dependent approaches are also summa-
rized. Starting with the axially deformed HF reference state, 

the D-IMSRG enables the IMSRG to compute open-shell 
nuclei and includes important deformed configurations. The 
valence-space IMSRG was first developed by Tsukiyama 
et al. to derive an ab initio shell-model effective interaction 
in a non-perturbative way. We used this method to inves-
tigate the residual neutron–proton interaction �Vpn in the 
upper fp shell with chiral 3NF included. The bifurcation of 
even–even and odd–odd �Vpn values were found experimen-
tally in this region.

Without 3NF, we could not reproduce the bifurcation in 
this region, which in turn means that 3NF plays a vital role 
on the behavior of �Vpn by enhancing the pn correlations 
with a stronger T = 1 isospin coupling. The G-IMSRG uses 
the Berggren basis to include effects from continuum cou-
pling and describes the resonance and non-resonant con-
tinuum properties of weakly bound and unbound nuclei.

There are still many challenges on the path to developing 
IMSRG. The IMSRG(2) approximation is computationally 
efficient and capable of accurately capturing dynamic cor-
relations. However, when treating observables character-
ized by strong static or collective correlations, such as E2 
transition probabilities, IMSRG(2) usually fails to precisely 
reproduce experimental values. This is typically attributed 
to the lack of contributions from many-particle many-hole 
excitations [256] and the large uncertainty of the nuclear 
force [165]. IMSRG(3) was developed by [257]; however, 
its computational demands are so immense that it cannot 
be applied to medium- and heavy-mass nuclei. Several new 
approximations have been proposed that aim to capture as 
many of the essential IMSRG(3) correlations as possible 
while minimizing the computational cost [258, 259] and it 

Fig. 18  Interference between 
two close-lying 0+ resonances 
in 6He ′  for the three values of 
the doublet ΔE (in MeV) energy 
splitting. Left: Spectral func-
tions versus decay energy. The 
arrow indicates the suppression 
of the spectral function of �2⟩ . 
Right: Time dependence of the 
corresponding survival prob-
abilities. The decay widths (in 
keV) of the doublet ( Γ1 , Γ2 ) are 
(34, 60), (30, 52), and (6, 68) 
for large, moderate, and small 
values of ΔE , respectively. The 
figure is taken from [246]
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is still an open problem. G-IMSRG is a powerful tool to treat 
weakly bound and unbound nuclei but is currently limited to 
closed-shell nuclei. New methods that combine G-IMSRG 
and VS-IMSRG are on the way to broaden the applicability 
of G-IMSRG to open-shell nuclei.

Notably, methods such as GSM-CC and GCC are dedi-
cated to providing a unified description of the structure, 
decay, and reactions within open quantum systems. These 
developments enable a meticulous study of exotic decays 
in the dripline region. Deformation and continuum effects 
have been demonstrated to significantly influence the 2p 
decay process. Additionally, the observed nucleon–nucleon 
correlations serve as a valuable tool for probing the inter-
nal structure of dripline nuclei. These studies enhance our 
understanding of the complex dynamics and universal prop-
erties within open quantum systems.

Meanwhile, the existing framework of GCC remains 
incomplete at a microscopic level; the description of the 
core wave function is relatively simplistic, capturing only 
the collective motions. Thus, advancements toward a more 
detailed, microscopic framework are anticipated in future 
developments. Another avenue can involve extending the 
model to multi-particle decay studies near or beyond the 
dripline, which have garnered significant interest recently. 
Their applications to reaction-related problems, such as ana-
lyzing cross sections and reaction mechanisms, would be 
invaluable in providing structural and reactive insights in 
both theoretical and experimental studies.
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