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Although heavy-ion collisions generate strong magnetic 
fields, their direct measurement is a challenging task. A 
new observable, the baryon electric charge correlation, was 
recently found to be sensitive to the magnetic field strength 
and thus could be used as a magnetometer for heavy-ion 
collisions. Additionally, this observable may shed light on 
the equation of state and phase structure of quantum chro-
modynamics (QCD) under magnetic fields.

Determining and understanding the phase structure of 
quantum chromodynamics (QCD) is important in contem-
porary physics [1]. Owing to the confinement property of 
QCD, QCD matter at low temperatures and baryon densities 
is in the confined hadronic phase. To explore the decon-
fined phases, relativistic heavy-ion colliders have been con-
structed, such as the relativistic heavy-ion collider (RHIC) 
and Large Hadron Collider (LHC). These colliders can 
accelerate ions to relativistic energies and then make them 
collide to generate deconfined QCD matter in which quarks 
and gluons are the fundamental degrees of freedom. Such 
matter is usually referred to as quark–gluon plasma (QGP). 
Furthermore, relativistic heavy-ion collisions can generate 

very strong magnetic fields [2–4] because the moving ions 
form two strong transient electric currents that induce a 
strong magnetic field along the reaction plane. Several 
interesting physical effects can be induced by a strong mag-
netic field including the well-known chiral magnetic effect 
(CME), which is the induction of an electric current along 
the direction of a magnetic field if the QGP contains net 
chirality [5, 6]. This intriguing effect is crucial for detecting 
the possible parity violations of QCD in hot environments. 
Over the past 15 years, experimental efforts from both RHIC 
and LHC have focused on searching for the CME  [7–12]. 
Moreover, the strong magnetic field introduces new dimen-
sions into the QCD phase diagram, prompting questions 
regarding the phase structure of QCD on the temperature 
and magnetic field plane or on the baryon density and mag-
netic field plane. In this aspect, the magnetic catalysis of 
chiral symmetry breaking at low temperatures and inverse 
magnetic catalysis at temperatures near the QCD crossover 
temperature are perhaps the most interesting phenomena. 
Thus, magnetic fields can help us enrich and deepen our 
understanding of QCD matter [13–15].

However, despite theoretical calculations elucidating the 
strength of magnetic fields at the moment of collision, the 
complicated temporal evolution of the magnetic fields in the 
QGP hinders the estimation of the magnetic field strength 
in heavy-ion collisions  [16–20]. Hence, the availability of 
observables capable of detecting the strength of magnetic 
fields is invaluable. Recently, Ding et al.  [21] proposed 
that the baryon electric charge correlation could serve as an 
observable. Employing lattice QCD, the authors calculated 
various correlations among conserved charges, revealing 
that the baryon electric charge correlation, denoted as �BQ

11
 , 

is the most sensitive to the magnetic field, and thus can serve 
as a magnetometer for QCD.

The absence of a sign problem is notable in lattice QCD 
simulations conducted under strong magnetic fields. How-
ever, the necessity of discretizing the magnetic field using 
integer values of the magnetic flux limits the magnetic 
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field strength of the simulation. Specifically, the maximum 
achievable strength is constrained by the square of the 
inverse lattice spacing, whereas the minimum achievable 
strength is limited by the square of the inverse spatial lattice 
size. This study employed the largest magnetic flux of six, 
thereby making the discretization error associated with the 
magnetic field negligible. Furthermore, the analysis of the 
conserved charge fluctuations relies on continuum estimates 
derived from lattices with temporal sizes ( N� ) of 8 and 12. 
The consistency between these continuum estimates for both 
�
BQ

11
 and �Q∕�B (the ratio of the electric and baryon chemical 

potentials) was established through additional lattice QCD 
calculations performed on N� = 16 lattices. Thus, the find-
ings underscore the reliability of the continuum estimates 
based on N� = 8 and 12 lattices when applied to lattice QCD 
simulations in strong magnetic fields.

The fluctuations and correlations considered in this study 
are defined by

evaluated at �B = �Q = 0 . Here, P denotes the total pres-
sure of the system; T is the temperature; and �̂�B,Q = 𝜇B,Q∕T  . 
These quantities are generally functions of eB. However, the 
lattice simulations showed that the correlation �BQ

11
 exhib-

ited the highest sensitivity. The result of �BQ

11
 normalized 

by its value at zero magnetic field along the crossover tran-
sition line is shown in Fig. 1. The crossover temperature 
must be examined, because these fluctuations and correla-
tions exhibit critical behavior, leading to a peak near the 
crossover temperature [22–24]. A strong dependence on eB 
is observed; as eB grows from zero to 0.15  GeV2, the ratio 
�
BQ

11
(eB)∕�

BQ

11
(0) approximately doubles. The crossover 

temperature also depends on eB; however, this dependence 

(1)𝜒B
2
=
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2
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Q
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,

is very weak when eB < 0.15  GeV2, as shown in Fig. 2. 
The slowly decreasing behavior of Tpc versus eB is simply 
the inverse magnetic catalysis of the chiral phase transi-
tion which was discovered a decade ago in lattice simula-
tions [25, 26].

Additionally, Fig. 1 presents the results from the hadron 
resonance gas (HRG) model, which explain the lattice data 
in the studied eB window. This demonstrates that the behav-
ior of �BQ

11
(eB)∕�

BQ

11
(0) has a thermodynamic basis.

Several interesting consequences can arise from these 
results, as discussed in the following section.

First, a STAR collaboration data analysis was recently 
performed primarily by a joint team of Fudan University, 
Brookhaven National Laboratory, University of Califor-
nia—Los Angeles, and Institute of Modern Physics of Chi-
nese Academy of Sciences, led by Jinhui Chen, Diyu Shen, 
Yu-Gang Ma, Aihong Tang, Gang Wang, Aditya Prasad 
Dash, Subhash Singha, and Dhananjaya Thakur. This anal-
ysis revealed a nontrivial sign change in the directed-flow 
splitting of charged hadrons, such as Δvp

1
= v

p

1
− v

p̄

1
 and 

Δv�
1
= v�

+

1
− v�

−

1
 , with increasing centrality  [27, 28]. This 

strongly indicates the presence of magnetic fields. How-
ever, precisely extracting the strength of the magnetic field 
from v1 splitting remains challenging, owing to the complex 
dynamic evolution of the hot medium and the magnetic field 
itself. This challenge stems largely from the absence of a 
robust model describing the coupled spacetime evolution of 
the hot medium and magnetic field. Now, the correlation �BQ

11
 

emerges as a complementary observable, which provides 
a model-independent approach to quantify the magnetic 
field strength. This is because �BQ

11
 can be solely determined 

from the final-state hadron spectra (although, naturally, this 
approach remains subject to considerations, such as kin-
ematic acceptance and detector corrections).

Fig. 1  (Color online) The ratio �BQ

11
(eB)∕�

BQ

11
(0) at the crossover tem-

perature. The result from the HRG model (dashed line) is also shown 
(Ref. [21])

Fig. 2  (Color online) Crossover temperature as a function of eB for 
eB ≲ 0.16  GeV2 (Ref. [21])
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Second, the results show that the fluctuations �B
2

 and �Q

2
 

exhibit a weaker dependence on the magnetic field within 

the studied parameter region. This is somewhat surpris-
ing, as the electric charge fluctuation is expected to be 
sensitive to electromagnetic fields. However, this behavior 
can be understood by considering the HRG model, which 
yields similar trends around the crossover temperature. 
Additionally, some insights can be gained from the high-
temperature limit, where the system should predominantly 
consist of massless free quarks (and free gluons that do 
not interact with magnetic fields). In this scenario, as eB 
approaches zero, it can be shown that �B

2
= �

Q

2
∕2 = 1∕3 

and �BQ

11
= 0 . Thus, when eB is turned on but remains 

weak (compared with the temperature), �BQ

11
 becomes 

sensitive to eB [29, 30].
Third, an intriguing insight is provided in Fig. 2 of 

Ref.  [21], which illustrates the contributors to �B
2

 , �Q

2
 , 

and �BQ

11
 . According to the HRG model, within the con-

sidered range of eB, the primary contribution to �Q

2
 stems 

from charged pions, whereas the largest contribution to 
�B
2

 originates from protons, although other hadrons also 
make significant contributions. However, in the case of 
�
BQ

11
 , protons dominate at eB ≲ 4m2

𝜋
 , whereas doubly 

charged Δ(1232) baryons surpass protons at eB ≳ 4m2
𝜋
 . 

Because the proton contribution remains approximately 
constant with eB, the eB dependence of �BQ

11
 is primarily 

controlled by Δ(1232) baryons. This hinders the practical 
utilization of �BQ

11
 as a magnetometer in heavy-ion colli-

sions, because Δ(1232) baryons are not directly measur-
able owing of their rapid decay into protons and pions. 
However, after accounting for such decays, the measure-
ment of �BQ

11
 become quite reliable if a proxy for �BQ

11
 is 

constructed [21].
Finally, several interesting future directions were 

obtained. The lattice results for �B
2

 , �Q

2
 , and �BQ

11
 can be 

used to construct the equation of state of QCD matter under 
finite magnetic fields, small baryons, and electric chemi-
cal potentials. Higher-order fluctuations and correlations 
are necessary for determining a more precise equation of 
state or extending it to larger chemical potentials. Moreover, 
higher-order fluctuations and correlations are often consid-
ered as sensitive indicators of critical phenomena. Therefore, 
investigating the magnetic field dependence of these higher-
order fluctuations and correlations near the crossover tem-
perature is of considerable interest. Furthermore, the lattice 
results require the calculation of �BQ

11
 in other models that 

may complement the HRG model. Such studies can provide 
deeper insight into the magnetic field dependence of vari-
ous fluctuations and correlations among conserved charges.
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