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Abstract
To ensure agreement between theoretical calculations and experimental data, parameters to selected nuclear physics models 
are perturbed and fine-tuned in nuclear data evaluations. This approach assumes that the chosen set of models accurately 
represents the ‘true’ distribution of considered observables. Furthermore, the models are chosen globally, indicating their 
applicability across the entire energy range of interest. However, this approach overlooks uncertainties inherent in the mod-
els themselves. In this work, we propose that instead of selecting globally a winning model set and proceeding with it as if 
it was the ‘true’ model set, we, instead, take a weighted average over multiple models within a Bayesian model averaging 
(BMA) framework, each weighted by its posterior probability. The method involves executing a set of TALYS calculations 
by randomly varying multiple nuclear physics models and their parameters to yield a vector of calculated observables. Next, 
computed likelihood function values at each incident energy point were then combined with the prior distributions to obtain 
updated posterior distributions for selected cross sections and the elastic angular distributions. As the cross sections and 
elastic angular distributions were updated locally on a per-energy-point basis, the approach typically results in discontinuities 
or “kinks” in the cross section curves, and these were addressed using spline interpolation. The proposed BMA method was 
applied to the evaluation of proton-induced reactions on 58Ni between 1 and 100 MeV. The results demonstrated a favorable 
comparison with experimental data as well as with the TENDL-2023 evaluation.

Keywords Bayesian model averaging (BMA) · Nuclear data · Nuclear reaction models · Model parameters · TALYS code 
system · Covariances

List of symbols
j   Model index represents the index 

corresponding to a model set 
among many model sets

k   Parameter index denotes a specific 
parameter vector within a model 
set. Each k parameter set can be 
mapped to k cross sections at each 
incident energy, belonging to the k 
random nuclear data file

i   Index denotes a single experimen-
tal data point

c   Index represents a particular 
nuclear reaction channel or cross 
section

subscript w  Denotes weighted
var   Denotes variance
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cik

   Vector of TALYS calculated 
observables for channel, c, as a 
function of incident energy, i, and 
corresponding to the k parameter 
set

������⃗𝜎
exp

ci
   Vector of experimental observa-

bles (cross sections and angular 
distributions) for the channel c, and 
incident energy, i

��⃗𝜃k   represents the kth parameter set 
associated with model, �����⃗Mj

p
(
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)
   Prior probability for model j

p
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   Prior distribution of the parameter, 

�k , given model Mj

p
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)
  Likelihood function which 

represents the probability of 
observing experimental data, �exp

ci
 , 

given model, �����⃗Mj , and parameter, 
��⃗𝜃k

p
(
�����⃗Mj,

��⃗𝜃k

)
   Joint probability of model, �����⃗Mj , 

and parameter, ��⃗𝜃k , given experi-
mental data, �exp

ci

p
(
������⃗𝜎
exp

ci
|�����⃗Mj

)
   Marginal likelihood or evidence 

given model, Mj

 �2
cik

   The reduced chi-square computed 
at each considered incident energy, 
i, channel, c, and model parameter 
vector, k

Δ�
exp

ci
   Denotes the experimental uncer-

tainty at energy, i, for channel, c
�cal
cik

   Calculated average cross section 
over the models and parameters at 
incident energy, i, channel, c, and 
model parameter vector, k

var(�cal
ci
)   Denotes the variance of the dis-

tribution of the calculated cross 
sections at energy, i, for channel, c

wcik   Denotes Bayesian Monte Carlo 
(BMC) weights for the channel, c, 
at incident energy, i, and random 
nuclear data file, k

�cal
cikw

   Weighted mean of the TALYS 
calculated cross sections for the 
channel, c, at incident energy, i, 
and random nuclear data file, k

covw   Weighted covariance
 r    Correlation coefficient

�c
Ta

   Denotes TALYS (T) calculated 
cross sections at energy, a, for 
channel, c

�c
Tb

   Denotes TALYS (T) calculated 
cross sections at energy, b, for 
channel, c

var
(
�cal
cik,comb

)
   Combined variance of the calcu-

lated cross section at energy, i, for 
channel, c, obtained from the 
variation of both models and their 
parameters

 var
(
�cal
cik,M

)
   Variance of the calculated cross 

section obtained from the variation 
of many models ( M)

var
(
�cal
cik,�

)
   Variance of the calculated cross 

section obtained from the variation 
of only model parameters ( �)

U(�cal
cik,M

)   The uncertainty due to models for 
channel, c, at incident energy, i

p
(
�����⃗𝜎cal
cik
|������⃗𝜎

exp

ci

)
   Posterior distribution for the 

quantity of interest ( �����⃗𝜎cal
cik

 ) given 
experimental data

 p
(
�����⃗𝜎cal
cik
|�����⃗Mj,

��⃗𝜃k,
������⃗𝜎
exp

ci

)
  Joint posterior probability of our 

QOI given model, �����⃗Mj , and 
parameter, ��⃗𝜃k

1 Introduction

In a typical Monte Carlo method for nuclear data evaluation 
in the fast energy region as outlined in various references

[1–9], parameters to pre-selected models are adjusted to 
fit selected experimental data. In Refs. [7, 9], for example, 
a method based on the use of the minimum �2 was used to 
determine the best nuclear data file from a large set of ran-
dom files produced within a Total Monte Carlo framework 
[10]. In Ref. [8], a weighted �2 which assigned large weights 
to reaction channels with a large number of experimental 
data, to experimental data with smaller uncertainties as 
well as to channels with large cross sections, was presented. 
Other works, such as Refs. [1, 11], followed a ‘model selec-
tion’ process [12, 13], wherein the ‘best’ model combina-
tion, yielding the smallest reduced �2 value, was chosen 
from a pool of candidate models. These selected models 
were then treated as if they represented the ‘true’ models for 
subsequent parameter variation steps. In Refs. [1, 11], the 
reduced �2 was obtained by comparing model calculations to 
three different types of experimental data which included the 
reaction cross sections, the residual production cross section 
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and the elastic angular distributions, and particularly applied 
to the evaluation of proton-induced reactions. A more statis-
tically rigorous Monte Carlo approach is to base the entire 
evaluation on Bayes’ theory as presented in Refs. [2–5, 14, 
15]. This approach has the advantage that both posterior 
means and covariances can be obtained. In recent years, the 
Bayesian Monte Carlo (BMC) method has found application 
in the TALYS Evaluated Nuclear Data Library (TENDL) 
evaluations [16]. In Ref. [17], the iterative Bayesian Monte 
Carlo (iBMC) method presented in Ref. [1] was applied for 
the evaluation of p+111 Cd between 1 and 100 MeV. Here, a 
‘best’ model set was selected by comparing calculated cross 
sections produced by varying numerous models and their 
parameters within TALYS [18], with experiments from the 
EXFOR database [19] within a Bayesian framework and 
used as the starting point for new calculations in an iterative 
manner.

The Monte Carlo methods presented above, however, 
relied exclusively on the variation of parameters to pre-
selected models and are therefore limited by the constraints 
of these models. The underlying assumption in this approach 
has been that the chosen model set or combination accurately 
represents the ‘true’ distribution of the observables of inter-
est (the cross sections and the elastic angular distributions in 
this case). Additionally, the models were globally selected, 
implying that the chosen models were applicable across the 
entire considered energy range. The conventional belief here 
is that the uncertainty in nuclear data comes entirely from 
our imperfect knowledge of the parameters associated with 
these models [20]. However, this approach tends to ignore 
uncertainties coming from the models themselves. Conse-
quently, it often leads to a difficulty in achieving satisfac-
tory fits to experimental data within specific energy regions 
for certain channels as the evaluation is constrained by the 
shortcomings or deficiencies of the chosen models.

A similar observation was made in Ref. [21], where it was 
stated that ‘as long as a “near perfect model” is not avail-
able, a pure Monte Carlo solution based on model param-
eters alone cannot adequately combine theoretical results 
and microscopic experimental data’. To attest to the valid-
ity of this observation, we present more than 1000 random 
59Co(p,3n) cross section curves produced by exclusively 
varying model parameters within a single model combina-
tion in the TALYS code [18, 22] in Fig. 1. The cross section 
curves as presented in the figure were produced by executing 
the TALYS code with the following models [18, 22]: 

1. mass model 0: Duflo–Zuker formula,
2. level density 2: Back-shifted Fermi gas model, and,
3. strength 1: Kopecky–Uhl generalized Lorentzian
4. Other default models

From Fig. 1, it can be seen that the random cross section 
curves overlap some but not all of the experimental data 
presented. As expected, there was difficulty in reproduc-
ing cross sections at the threshold energies. Furthermore, 
there is a noticeable narrowing of the cross-section spread 
between approximately 50 and 100 MeV. This makes it 
difficult to overlap all the experimental data presented in 
the figure for this energy range. We note, however, that 
no outlier data were discarded in Fig. 1 as the goal was to 
observe visually, the cross section spread due to the varia-
tion of only model parameters around a selected model set. 
The inability to overlap some of the experimental data even 
with parameter variation can be attributed to the underlying 
deficiencies in the models used. It is instructive to note that 
experimental data from the EXFOR database [19] which 
were also used in this work have been efficiently verified in 
Ref. [23] by assigning qualify flags to experimental data sets 
through a systematic comparison with corresponding values 
in the major nuclear data libraries. As mentioned in Ref. [21] 
and observed also in this work (see Fig. 1), by varying only 
model parameters it is sometimes impossible to reproduce 
the experimental data due to the deficiencies and rigidity of 
the selected models. By model deficiency, we refer to the 
ability of our models to accurately predict the underlying 
data while model rigidity here relates to the flexibility of our 
models to capture relationships present in our data.

Another example is given in Fig. 2, where models param-
eters are varied around two distinct model sets in the TALYS 
code. For model set (A), the models used correspond to level 
density model ( 6 ): microscopic level densities from Hilaire’s 
combinatorial tables, alongside other default TALYS mod-
els. Conversely, for model (B), the generalized superfluid 
level density model ( 3 ) combined with the Exciton model 
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Fig. 1  (Color online) Random 59Co(p,3n) cross section curves com-
puted using a single set of models but with perturbed model param-
eters, compared with differential experimental data sourced from 
EXFOR [19]
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(Numerical transition rates with energy-dependent matrix 
element) of the pre-equilibrium model, along with other 
default TALYS models, was used. It can be seen that model 
set (A) generally follows the shape of the experimental data 
over the entire considered energy region while model set (B) 
was observed to only reproduce experimental data from the 
threshold to about 8 MeV. It is important to state here that in 
the case of model set (B), even with the variation of model 
parameters, it was still difficult to reproduce experimental 
data from about 8 to 20 MeV. This underscores the idea that 
different nuclear reaction models exhibit varying strengths in 
different energy regions and that, parameter variation alone 
is sometimes insufficient for overlapping experimental data.

As shown in Fig. 2, the ‘best’ file is a globally optimized 
file achieved by comparing the reaction and residual produc-
tion cross sections with differential experimental data for 
only model set (B). Additionally, in the case of the ‘Franken-
stein’ file, instead of comparing the model calculations with 
experimental data using a global �2 which took into consid-
eration other cross sections, comparisons were made instead, 
with only experimental data from the 59Co(p,n) cross section 
(single objective). The advantage of using a single objective 
function ( �2 value for the 59Co(p,n)) cross section in this 
case) is that it helps to reduce the challenges associated with 
Pareto optimality. Hence, this approach eliminates the need 
to address trade-offs between conflicting objectives. The 
gray random curves as shown in Fig. 2 were produced by 
perturbing model parameters around the chosen model sets.

As demonstrated earlier in Refs. [11, 16, 24], the incorpo-
ration of both models and parameter uncertainties to obtain 
a widened prior space results in a greater variability in the 
randomly generated cross-section curves. This would result 
in a larger number of the available experimental data fall-
ing within the spread of the combined model and parameter 

uncertainties. To illustrate this, in Fig. 3 (top left), we revisit 
the 59Co(p,3n) cross-section curves, this time, varying each 
of the six different level density (ld) models within the 
TALYS code individually while holding all other models 
constant as their default TALYS values. The ld models in 
TALYS are as follows [18, 22]:

• ld model 1—Constant temperature + Fermi gas model;
• ld model 2—Back-shifted Fermi gas model;
• ld model 3—Generalized superfluid model;
• ld model 4—Microscopic level densities (Skyrme force) 

from Goriely’s tables;
• ld model 5—Microscopic level densities (Skyrme force) 

from Hilaire’s combinatorial tables, and
• ld model 6—Microscopic level densities (temperature-

dependent Hartree–Fock–Bogolyubov (HFB), Gogny 
force) from Hilaire’s combinatorial tables.

It can be noticed from Fig. 3 that each ld model exhibits 
specific strengths with respect to reproducing the pre-
sented experimental data. For example, the cross section 
curves computed with ld model 3 and 4, compared favora-
bly with experimental data from about 60 to 100 MeV 
while ld model 2 and 5 exhibit more favorably agreement 
with experimental data in the 20 to 40 MeV range. In gen-
eral, it can be seen from the figure that most of the experi-
mental data lie within the model spread or uncertainties 
as expected. Similarly, cross section curves produced with 
the six different level density models for the 58Ni(p,� ) 
(top right of figure), 59Co(p,3n) (top left), 58Ni(p,� ) (bot-
tom left) and 58Ni(p,3n) (bottom right) are presented. By 
using different models, it can be observed that most of 
the experimental data fell within the model spread. In the 
case of the 58Ni(p,3n) cross section, no experimental data 
were  available in the EXFOR database, and hence, the 
cross section curves produced with the ld models are com-
pared with the TENDL-2023 and JENDL-5.0 libraries. It 
is important to highlight that the threshold energy for the 
TENDL and JENDL evaluations are different from that 
of the ld models, beginning at a higher energy of 40 MeV 
compared with 30 MeV obtained with the different ld 
models, as presented in the figure. In Fig. 4, the variations 
of the 58Ni(p,� ) cross section computed using the eight 
gamma-ray strength function models in TALYS are com-
pared with experimental data as well as the TENDL-2023 
and JENDL-5.0 evaluations. It is essential to point out 
that the gamma-ray strength function models are used in 
the description of the gamma emission channel. From the 
figure, strength 6 is observed to over predict the (p,� ) cross 
section from about 2 to 8 MeV. Strength 8 is observed 
to reproduce some experimental data from Cheng (1980) 
while strength 3, 6, and 7, reproduced better, experimental 
data from Hall (1975). It can be observed that the curves 

Fig. 2  (Color online) Random 59Co(p,n) cross section curves com-
puted using two TALYS model sets compared with experimental data 
from the EXFOR database. For each model set, model parameters 
were perturbed to obtained the random cross section curves in gray



Bayesian model averaging (BMA) for nuclear data evaluation  Page 5 of 26 205

from the JENDL-5.0 evaluation and that of strength 1 were 
similar. It is worth mentioning that there are cases where 
cross sections curves show low sensitivity to model vari-
ations,  resulting in minimal or no observable changes in 
the cross sections. An example is presented in Fig. 1 where 
the four different mass models in TALYS were varied 

one-at-a-time while keeping all other models as the default 
TALYS models to produce the (p,4n) cross section. The 
spread in the (p,4n) cross section curves due to the varia-
tion of the mass models was observed to be small.

 
A potential remedy for addressing model deficiencies has 

been to use Gaussian processes for treating model defects 
as proposed and presented in various references (see Refs. 
[25–27]) or related constructions, e.g., Refs. [28, 29]. This 
approach, however, treats the model defect using pre-
selected default TALYS models. In other studies presented 
in Refs. [2] and [1, 17], the models were selected from a 
pool of models globally for the entire considered energy 
range. However, due to limitations and inflexibility inherent 
in these selected models, achieving improvement in evalu-
ations concerning certain channels and energy regions can 
still pose challenges. In this work, however, in line with the 
search for a full Monte Carlo solution for combining theo-
retical and experimental data in nuclear data evaluations, we 
propose a departure from using a single fixed model set for 
the entire energy range, as done in the Bayesian Monte Carlo 
(BMC) approach [2] and the iterative Bayesian Monte Carlo 
(iBMC) outlined in Refs. [1, 17]. Rather, we propose to 

 0

 5

 10

 15

 20

 25

 0  20  40  60  80  100

C
ro

ss
 s

ec
tio

n 
(m

b)

Proton Energy (MeV)

ldmodel 1
ldmodel 2
ldmodel 3
ldmodel 4
ldmodel 5
ldmodel 6

Ditroi (2013)
Haasbroek (1976)

Johnson (1984)
Michel (1979)
Michel (1997)
Sharp (1956)
Sharp (1956)
Sharp (1956)
Sharp (1956)
Sharp (1956)

59Co(p,3n)57Ni

 0

 10

 20

 30

 40

 50

 60

 70

 5  10  15  20  25  30  35  40

C
ro

ss
 s

ec
tio

n 
(m

b)

Proton Energy (MeV)

58Ni(p,a) cross section
ldmodel 1
ldmodel 2
ldmodel 3
ldmodel 4
ldmodel 5
ldmodel 6

TENDL-2021
Brinkman (1977)

Ewart (1964)
Levkovski (1991)

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

 1  2  3  4  5  6  7  8

C
ro

ss
 s

ec
tio

n 
(m

b)

Proton Energy (MeV)

58Ni(p,g) cross section
ldmodel 1
ldmodel 2
ldmodel 3
ldmodel 4
ldmodel 5
ldmodel 6

JENDL-5.0
TENDL-2021

Cheng (1980)
Hall (1975)

Krivonosov (1977)
Krivonosov (1974)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

 10  20  30  40  50  60  70  80  90  100

C
ro

ss
 s

ec
tio

n 
(m

b)

Proton Energy (MeV)

58Ni(p,3n) cross section
ldmodel 1
ldmodel 2
ldmodel 3
ldmodel 4
ldmodel 5
ldmodel 6

JENDL-5.0
TENDL-2021

Fig. 3  (Color online) Cross sections curves computed with the six 
different level density models in TALYS, compared with differential 
experimental data from the EXFOR database [19] (where available): 

(1) top left: 59Co(p,3n) cross section, (2) top right: 58Ni(p,� ) cross 
section, (3) bottom left: 58Ni(p,� ) cross section, and (4) bottom right: 
58Ni(p,3n) cross section

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

 1  2  3  4  5  6  7  8

C
ro

ss
 s

ec
tio

n 
(m

b)

Proton Energy (MeV)

58Ni(p,g) cross section
Strength 1
Strength 2
Strength 3
Strength 4
Strength 5
Strength 6
Strength 7
Strength 8
Strength 9
JENDL-5.0

TENDL-2021
Cheng (1980)

Hall (1975)
Krivonosov (1977)
Krivonosov (1974)

Fig. 4  (Color online) 58Ni(p,� ) cross section curves computed using 
the eight gamma-ray strength function models in TALYS, compared 
the TENDL-2023 and JENDL-5.0 evaluations and experimental data



 E. Alhassan et al.205 Page 6 of 26

select models locally at each incident energy or angle. This 
approach gives more flexibility to the adjustment process by 
assigning weights to each model based on their proximity to 
experimental data. As a result, a weighted average was com-
puted over all the considered models at each incident energy 
within a Bayesian model averaging (BMA) framework 
[12, 13], using the likelihood function values as weights. 
It is important to note here that Bayesian model averaging 
has been applied to various fields (see, for example, Refs. 
[30–32]) as well as in nuclear physics [33], among others. 
In Ref. [34], the covariance matrices generated from model 
variations, in contrast to the conventional parameter varia-
tions, were subsequently applied to quantities in astrophys-
ics. In other studies such as in Ref. [35], machine learning 
techniques were applied in various aspects of nuclear phys-
ics such as nuclear structure, nuclear reactions, and proper-
ties of nuclear matter at low and intermediate energies. In 
Ref. [36], a prediction of nuclear charge density distribution 
with feedback neural networks was presented. In Ref. [37], 
a standardized procedure for adjusting parameters in reac-
tion modeling codes was proposed based on residual product 
excitation functions with the TALYS code. It is instructive to 
note that even though machine learning techniques could be 
used together with training data to obtain similar results, in 
the absence of experimental data, the accuracy and reliabil-
ity of machine learning predictions cannot be guaranteed.

It is crucial to note that since the updates of the cross sec-
tions and angular distributions as proposed in this work were 
carried out locally on a per-energy-point basis, this approach 
typically results in discontinuities or “kinks” in the curves of 
the cross sections or angular distributions produced. By car-
rying the adjustments of the cross sections and elastic angular 
distributions at specific incident energies, we are better able 
to represent the behavior of the reactions at the considered 
energies. To address the kinks produced, a smoothing function 
using spline interpolation was applied. The approach aims to 
leverage the advancements made in nuclear reaction modeling 
by averaging across multiple models. In this way, we are able 
to quantify the uncertainties inherent in the models themselves, 
as well as the uncertainties related to their parameters, thereby 
providing a more comprehensive understanding of the uncer-
tainties involved. As proof of concept, the proposed method 
has been applied for nuclear data evaluation of p+58 Ni in the 
fast energy region between 1 and 100 MeV (Fig. 5).

2  Methods

The flowchart in Fig. 6 outlines the proposed Bayesian 
model averaging (BMA) methodology for nuclear data 
evaluation in this study. From the figure, we begin with 
a careful selection of experimental data from the EXFOR 
database [19]. Treating outlier experiments is particularly 

important in BMA for several reasons. Firstly, outliers can 
significantly skew the model averages resulting in inaccu-
rate predictions. Second, by properly addressing outliers, 
we ensure that the model average is not unduly biased by 
anomalous data points which could lead to potential dis-
tortions in the shapes of the updated cross section curves.

An alternative approach to selecting experiments would 
involve assigning weights to each experimental data set 
based on a quality criteria as carried out in Ref. [23]. In 
this work, however, we adopted a binary accept/reject 
approach for accepting and rejecting experimental data as 
outlined in Refs. [1, 11]. For example, experiments lack-
ing reported uncertainties were penalized with a binary 
value of zero, except in cases where these experiments 
were the sole experiments available for the considered 
channel. In such cases, a 10% relative uncertainty was 
assigned to each data point of the experimental data set. 
Additionally, if an experimental data set was found to be 
systematically inconsistent with other experimental data 
sets for a particular energy range, the inconsistent data set 
was excluded.

Next, as can be seen from Fig. 6, we define the prior 
model and parameter spaces. As proof of concept, similar 
to Ref. [1], a total of 52 different nuclear reaction model 
types in the TALYS code were considered in this work. A 
list of the selected nuclear reaction models are itemized in 
Table 1. It is important to clarify that, in the context used in 
this work, the term “models” encompasses sub-models and, 
at times, components of models or sub-models. The table 
shows that the parameter uncertainties are generally smaller 
than the model uncertainties, as expected,ranging from 23.6 
to 59.8, which corresponds to 3.4% to 7.4% of the cross sec-
tion at the respective energies. It is instructive to note here 
that each nuclear reaction calculation involves a combination 

0.0e+00

1.0e-06

2.0e-06

3.0e-06

4.0e-06

5.0e-06

6.0e-06

7.0e-06

8.0e-06

 40  50  60  70  80  90  100

C
ro

ss
 s

ec
tio

n 
(m

b)

Proton Energy (MeV)

58Ni(p,4n) cross section
massmodel 0
massmodel 1
massmodel 2
massmodel 3

JENDL-5.0
TENDL-2021

Fig. 5  (Color online) 58Ni(p,4n) Cross section curves computed using 
the four mass models in TALYS, compared with the evaluations from 
the TENDL-2023 and JENDL-5.0 libraries. No experimental data 
were available



Bayesian model averaging (BMA) for nuclear data evaluation  Page 7 of 26 205

of several of these models interconnected within a nuclear 
reaction code such as TALYS. Model calculations were per-
formed using TALYS version 1.9 [22].

In the case of the parameters, Table 1 provides the 
parameter widths (or uncertainties) which define the 
parameter space along with a comprehensive list of the 

parameters to the nuclear reaction models considered. The 
parameter widths given in the table were obtained from 
the TENDL library [16]. It is important to emphasize that 
these parameter widths or uncertainties were obtained by 
comparing random cross-section curves produced through 
parameter variation with scattered experimental data. In 
Table 2, the model parameters are grouped under phe-
nomenological and semi-microscopic optical models, 
level density and pre-equilibrium models, and gamma-ray 
strength functions. The parameter widths or uncertainties 
as presented in the table are relative uncertainties (in %) 
except in the case of the level density parameter a, and the 
g� and g� parameters, where the uncertainties are given 
in terms of the mass number A. Where g� and g� are the 
single-particle state densities used in the pre-equilibrium 
model. Similar tables have been provided in Refs. [22] and 
[1]. A more complete list of all the model parameters can, 
however, be found in Refs. [18, 22].

Next, we assign prior probabilities to our models as 
well as their parameters. We assumed here that all models 
as well as the parameters have equal prior probabilities and 
hence the uniform distribution was assigned to both the 
models and the parameters. Using uniform distributions 

Fig. 6  Flowchart outlining the proposed BMA method for nuclear 
data evaluation. In the chart, �exp

ci
 and �cal

cik
 respectively, are the experi-

mental and calculated cross sections (our Quantity Of Interest (QOI)) 
for channel, c, at incident energy, i, corresponding to the kth model 
parameter vector in the kth TALYS input file. �k denotes the kth 
model parameter vector and Mj is the model set or combination, j. 
The reduced chi-square, �2

cik
 (see Eq. 11), is given at incident energy, 

i, for channel, c, and model parameter vector, k 

Table 1  List of considered nuclear reaction models showing the num-
ber of the different models per model type

Note: PE denotes the pre-equilibrium model and JLM refers to the 
Jeukenne–Lejeune–Mahaux optical model [38]. These models are 
available in the TALYS code

TALYS keywords Number of 
models

Model name

preeqmode 4 Pre-equilibrium (PE)
ldmodel 6 Level density models
ctmglobal 1 Constant Temperature
massmodel 4 Mass model
widthmode 4 Width fluctuation
spincutmodel 2 Spin cut-off parameter
gshell 1 Shell effects
statepot 1 Excited state in Optical Model
spherical 1 Spherical Optical Model
radialmodel 2 Radial matter densities
shellmodel 2 Liquid drop expression
kvibmodel 2 Vibrational enhancement
preeqspin 3 Spin distribution (PE)
preeqsurface 1 Surface corrections (PE)
preeqcomplex 1 Kalbach model (pickup)
twocomponent 1 Component exciton model
pairmodel 2 Pairing correction (PE)
expmass 1 Experimental masses
strength 8 Gamma-strength function
strengthM1 2 M1 gamma-ray strength function
jlmmode 4 JLM optical model
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for our priors ensures that the posterior distribution is pre-
dominantly shaped by the influence of the experimental 
data used.

Additionally, in order to estimate the uncertainty due to 
only parameter variation, a set of random ENDF nuclear 
data files were generated by varying only model param-
eters around default TALYS models. For this, a total of 
3030 random nuclear data files were produced for p+58 Ni 
for the considered energy region. In Fig. 7, random curves 
for the following cross sections: 58Ni(p,non-el), 58Ni(p,2p), 
58Ni(p,np) and 58Ni(p,� ), are presented. These curves depict 
the variability due to the combined variation of both models 
and their parameters (shown in purple) as well as the vari-
ability arising solely from the variation of model parameters 
(shown in orange).

Figure 7 shows, in the case of the 58Ni(p,2p) cross sec-
tion, that the exclusive variation of model parameters failed 
to capture several experimental data points from Levkovski 
(1991) and Ewart (1964). However, it can be seen that all the 
experimental data presented lie within the large combined 

prior spread of both the models and their parameters, as 
expected.

It is worth bearing in mind that a situation may arise 
where a considered data point or data set falls outside the 
spread of both the model and parameter uncertainties. 
This could be due to the fact that the model space (and/
or parameter) was not fully explored. A possible solution 
to this problem would be to increase either the parameter 
widths or uncertainties (as presented in Table 2) in order 
to expand the parameter space. Alternatively, the model 
space can be enlarged further by introducing additional 
model (if available). However, if the considered experi-
mental data point is deemed an outlier, it is generally rec-
ommended to exclude such data points. This precaution is 
particularly crucial as outlier experimental data can dis-
tort the overall shape of the final cross-section curves pro-
duced. Likewise, scenarios may arise where no experimen-
tal data are available for a given channel. This problem is 
discussed in more detail in Sect. 2.2. In Fig. 8, prior curves 
for the residual production cross section, 58Ni(p,x)57Ni, 
are presented. It is important to note from the figure that 
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Fig. 7  (Color online) 58Ni(p,non-el), 58Ni(p,2p), 58Ni(p,np) and 
58Ni(p,� ) cross sections showing the combined spread due to both 
models and parameters (in purple) as well as the spread due to only 
parameter variation (in orange). Note: all the 3030 random cross sec-
tion curves produced by only parameter variation are plotted here. In 

the case of combined model + parameter variation, however, only 
3000 files out of the over 9000 files produced were plotted. The 
model average represents the average taken over all the cross section 
curves produced through the simultaneous variations of both models 
and their parameters
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a specific combination of models produced 'unphysical' 
cross section curves, which in turn, distorted the model 
average between 45 and 70 MeV.  How to treat these ‘bad’ 
models is presented in more detail in Sect. 3.4.

In Fig. 9, we present the prior random 59Co(p,3n) cross 
section curves showing the model average value obtained 
by simply taking the mean over all the considered models. 
It can be observed that the model average produced without 
the inclusion of experimental information, performed com-
parably well with the TENDL evaluation as well as with 
the experimental data. This can be attributed to the fact that 
averaging over multiple models could reduce individual 
model biases and uncertainties leading to favorable results. 
However, it should be pointed out that this heavily depends 
on the diversity and accuracy of the models involved since 
without experimental data to calibrate the models, model 

predictions could lead to inaccurate results. Zhuraviev 
(1984) dataset at about 22 MeV appears to be an outlier 
and, hence, was excluded.

Following the generation of the random cross sections, we 
compute the likelihood function by combining model predic-
tions with experimental data at each data point, denoted by 
i, for the channel, c. The likelihood function values are then 
combined with the prior distributions to derive weighted 
averages and variances at each incident energy or angle. 
Finally, a smoothing function using spline interpolation was 
utilized to smoothing-out any “kinks” or discontinuities in 
the cross section curves produced. The final product of the 
evaluation includes a central value accompanied by the cor-
responding prior and posterior variances and covariances.
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Fig. 8  (Color online) Prior 58Ni(p,x)57Ni cross section showing dis-
tortion in the curves produced by ‘unphysical’ models. Note that both 
models and their parameters were varied altogether simultaneously
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Fig. 9  (Color online) Prior 58Ni(p,np) cross section curves showing a 
combined spread due to both model and parameter variation and the 
corresponding model averaged value

Table 2  List of selected model parameters with their corresponding 
uncertainties (or parameter widths). Except for the level density a 
parameter, and the g� and g� parameters, where the parameter uncer-
tainties are given in terms of the mass number A, the uncertainties of 
all the other parameters are given as a fraction (%) of their absolute 
values. For a complete list of the parameters, see Ref. [22]

Parameter Uncertainty (%) Parameter Uncertainty (%)

OMP-phenomenological
r
p

V
2.0 a

p

V
2.0

v
p

1
2.0 v

p

2
3.0

v
p

3
3.0 v

p

4
5.0

w
p

1
10.0 w

p

2
10.0

w
p

3
10.0 w

p

4
10.0

d
p

1
10.0 d

p

2
10.0

d
p

3
10.0 r

p

D
3.0

a
p

D
2.0 r

p

SO
10.0

a
p

SO
10.0 v

p

SO1
5.0

v
p

SO2
10.0 w

p

SO1
20.0

w
p

SO2
20.0 r

p
c 10.0

OMP-semi-microscopic optical model (JLM)
�V 5 �V1 5
�W 5 �W1 5

Level density parameters
a 11.25-0.03125.A �2 30.0
E0 20.0 T 10.0
krot 80.0 R� 30.0

Pre-equilibrium
R� 50.0 M2 30.0
g� 11.25-0.03125.A g� 11.25-0.03125.A
Cbreak 80.0 Cknock 80.0
Cstrip 80.0 Esurf 20.0
R�� 30.0 R�� 30.0
R�� 30.0 R�� 30.0

Gamma ray strength function
Γ� 5.0 �E� 20
ΓE� 20 EE� 10
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2.1  BMA in the presence of experimental data

Let’s assume that we have only one model set or com-
bination ( ����⃗M ) for describing a set of experimental data 
( ������⃗𝜎

exp

ci
 ) for channel (c) and incident energy (i), as is the 

case of the Bayesian Monte Carlo (BMC) approach pre-
sented in Refs. [1, 2, 4]. In the case of the elastic angular 
distributions, since they measurements are carried out at 
designated incident energies for different angles, i denotes 
the angle. If we further assume that our single model is 
a vector made-up of several nuclear reaction models and 
sub-models ( ����⃗M ) which is further characterized by a set 
of input model parameters denoted by ��⃗𝜃k  for the kth ran-
dom parameter vector. In the BMC approach, the model 
vector, ����⃗M , comprises of pre-selected models which come 
with each release of the TALYS code [18]. These models 
are normally selected through methods such as chi-square 
minimization and/or likelihood penalization, and some-
times, through visual comparison between model calcu-
lations and experimental data. Within a Bayesian frame-
work, our posterior distribution which is defined as the 
updated probability distribution of our input parameters 
( ��⃗𝜃k  ) after the inclusion of experimental data ( ������⃗𝜎

exp

ci
 ) can be 

expressed as:

where p
(
��⃗𝜃k

)
 is the prior distribution of the parameters ( �k ). 

The likelihood function, p
(
������⃗𝜎
exp

ci
| ��⃗𝜃k

)
 , is the sampling distribu-

tion of �exp

ci
 given the kth random parameter vector, �k . �k 

represents the parameters to the basic physics models in the 
TALYS code which together with other codes are used to 
create random ENDF (Evaluated Nuclear Data File) files. 
( ������⃗𝜎

exp

ci
 ) is a vector of differential experimental data obtained 

from the EXFOR database while ��⃗M is a vector of nuclear 
reaction models, and p

(
������⃗𝜎
exp

ci
| ��⃗M

)
 is the marginal likelihood. 

From Eq. 1, p
(
������⃗𝜎
exp

ci
|����⃗M

)
 , is the marginal likelihood given our 

model vector, ��⃗M . Since the marginal likelihood is a normali-
zation constant, we can neglect this term. Once the param-
eters (including their widths or uncertainties) to these mod-
els are identified, the parameters were varied all-together 
within a Total Monte Carlo (TMC) [10] framework to pro-
duce a large number of random cross sections for compari-
son with experimental data. The posterior distribution for 
our quantity of interest, �����⃗𝜎cal

cik
 ( p

(
�����⃗𝜎cal
cik
|������⃗𝜎

exp

ci

)
 ), can be given as:

(1)p
(
��⃗𝜃k|������⃗𝜎

exp

ci

)
=

p
(
������⃗𝜎
exp

ci
| ��⃗𝜃k

)
p
(
��⃗𝜃k

)

p
(
������⃗𝜎
exp

ci
|����⃗M

) ,

In situations involving two or more computational models 
where no single model set can be designated as the ‘best’ 
model set as is often the case with nuclear reaction models, 
this work recommends a departure from the conventional 
approach of obtaining the posterior distribution for param-
eters, and hence covariances, based on a single model vector. 
Instead, we propose computing a weighted combination of 
the posterior distributions derived from the variation of dif-
ferent models as well as their parameters.

Let’s suppose we have J computing models, M1, ...,MJ . 
M in this case denotes a vector of nuclear reaction models 
such as the Exciton model of the pre-equilibrium model, or 
the constant temperature in combination with the Fermi gas 
model of the level density models. For our BMA approach, 
we begin with assigning prior probabilities to each model 
( p(Mj)). In this work, the models were all drawn from uni-
form distributions. By using a uniform prior distribution, we 
assign the same exante probability to each model as follows:

In a simple form, the Bayesian Model-Averaged can be given 
as:

where p(model|data) denotes the likelihood function given 
experimental data, while the Model Prediction denotes the 
prior distribution or model prediction. The average of the 
posterior distribution under each considered model, M , 
for the quantity of interest, �����⃗𝜎cal

cik
 in our case, can then be 

expressed as:

with p(�����⃗Mj|������⃗𝜎
exp

ci
) , the posterior probability distribution for 

model �����⃗Mj given the data, ������⃗𝜎
exp

ci
 , expressed within Bayes’ 

theorem as:

where p
(
������⃗𝜎
exp

ci

)
 is the marginal likelihood of the data and 

p
(
�����⃗Mj

)
 is the prior probability of model, �����⃗Mj.

p
(
��⃗𝜃k|�����⃗Mj,

������⃗𝜎
exp

ci

)
 , the posterior distribution of parameter 

�k given model �����⃗Mj and data ������⃗𝜎
exp

ci
 , is expressed as:

(2)p
(
�����⃗𝜎cal
cik
|������⃗𝜎

exp

ci

)
∝ p

(
������⃗𝜎
exp

ci
| ��⃗𝜃k, �����⃗𝜎cal

cik

)
p
(
�����⃗𝜎cal
cik
| ��⃗𝜃k

)
.

(3)p(Mj) =
1

J

(4)Prediction =
∑

all models

p(model|data) ×Model Prediction

(5)p
(
�����⃗𝜎cal
cik
|������⃗𝜎

exp

ci

)
=

J∑

j=1

p
(
�����⃗𝜎cal
cik
|�����⃗Mj,

��⃗𝜃k,
������⃗𝜎
exp

ci

)
p
(
�����⃗Mj|������⃗𝜎

exp

ci

)

(6)p
(
�����⃗Mj|������⃗𝜎

exp

ci

)
=

p
(
������⃗𝜎
exp

ci
|�����⃗Mj

)
p
(
�����⃗Mj

)

p
(
������⃗𝜎
exp

ci

) ,
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Since the prior formulation induces a joint probability dis-
tribution ( p

(
�����⃗Mj,

��⃗𝜃k

)
 ), the joint posterior distribution of 

model, �����⃗Mj , and parameter, ��⃗𝜃k , p
(
�����⃗Mj,

��⃗𝜃k|������⃗𝜎
exp

ci

)
 , can be given 

as:

where the denominator of Eq. 8 is the marginal (integrated) 
likelihood which is the probability of the observed data 
given the model and parameter sets, integrated over all pos-
sible models and parameter values. Since the marginal likeli-
hood is a normalization constant, it is usually neglected. 
From Eq. 8, p

(
�����⃗Mj

)
 is the prior probability of the model, 

Mj , and p
(
��⃗𝜃k|�����⃗Mj

)
 is the prior distribution of the parame-

ters, ��⃗𝜃k , given the model, �����⃗Mj . Since the models and param-
eters were varied altogether simultaneously, the joint poste-
rior distribution of the models and parameters in Eq. 8 for 
our quantity of interest, �����⃗𝜎cal

cik
 , can be re-written as:

The likelihood function, which represents the probability of 
our observed data given the parameter values, ��⃗𝜃k , and model, 
�����⃗Mj , is expressed as:

(7)p
(
��⃗𝜃k|�����⃗Mj,

������⃗𝜎
exp

ci

)
=

p
(
������⃗𝜎
exp

ci
|�����⃗Mj,

��⃗𝜃k

)
p
(
��⃗𝜃k|�����⃗Mj

)

p
(
������⃗𝜎
exp

ci
|�����⃗Mj

) .

(8)p
�
�����⃗Mj,

���⃗𝜃k�������⃗𝜎
exp

ci

�
=

p
�
������⃗𝜎
exp

ci
� �����⃗Mj,

���⃗𝜃k

�
⋅ p

�
���⃗𝜃k� �����⃗Mj

�
⋅ p

�
�����⃗Mj

�

∑
j p
�
������⃗𝜎
exp

ci
����⃗𝜃k , �����⃗Mj

�
⋅ p

�
���⃗𝜃k� �����⃗Mj

�
⋅ p

�
�����⃗Mj

� ,

(9)p
(
�����⃗𝜎cal
cik
| �����⃗Mj ,

���⃗𝜃k ,
������⃗𝜎
exp

ci

)
∝ p

(
������⃗𝜎
exp

ci
| �����⃗Mj ,

���⃗𝜃k ,
�����⃗𝜎cal
cik

)
⋅ p

(
�����⃗𝜎cal
cik
| �����⃗Mj ,

���⃗𝜃k

)
.

(10)p
(
������⃗𝜎
exp

ci
|�����⃗Mj,

��⃗𝜃k,
�����⃗𝜎cal
cik

)
∝ exp

[
−
1

2
�����⃗𝜒2
cik

]

with the reduced chi-square denoted by �2
i
 , at each con-

sidered incident energy, i, channel, c, and model parameter 
vector, k, expressed as:

The terms �exp

ci
 and Δ�exp

ci
 represents, respectively, the experi-

mental cross sections and its corresponding uncertainty, and 
�����⃗𝜎cal
cik

 is the calculated cross sections for channel, c, and inci-
dent energy, i. �k denotes the kth model parameter vector 
and Mj is the model, j. It is instructive to highlight that this 
work does not take into account uncertainties from nuisance 
parameters in the calculation of the chi-square as carried 
out, for example, in Ref. [39]. Hence, this could lead to a 
relatively narrow posterior uncertainty band.

To standardize the weights, we normalize the likelihood 
function presented in Eq. 10 to have a maximum of 1 as 
follows:

where p
(
������⃗𝜎
exp

ci
| ��⃗Mj,

��⃗𝜃k,
�����⃗𝜎cal
cik

)

max
 is the maximum likelihood 

and the p
(
������⃗𝜎
exp

ci
| ��⃗Mj,

��⃗𝜃k,
�����⃗𝜎cal
cik

)

R
 is the relative likelihood.

If we let the relative likelihood function equal to the file 
weight ( wcik ), also called Bayesian Monte Carlo (BMC) 
weights, the weights for each considered channel (c), inci-
dent energy (i) and for the file k can be given as:

where �2
cik
(min) denoted the minimum �2 , and wcik is the file 

weight at energy, i, for channel, c, and in the random file, k. 
Then, we can compute a weighted cross section at energy, 
i, for channel, c, averaged over all the models (i.e., over 
all the K random cross sections and angular distributions 
produced) as:

where �cal
cikw

 is the weighted mean of the TALYS calculated 
cross sections ( �����⃗𝜎cal

cik
 ) taken from K files, w denotes weighted 

and wcik represents the weights at energy, i, for channel, c, 
in random file, k.

It is important to note here that instead of using the 
reduced �2 for the computation of the weights as presented 

(11)�����⃗𝜒2
cik

=

⎛
⎜
⎜
⎝

�����⃗𝜎cal
cik

− ������⃗𝜎
exp

ci

Δ������⃗𝜎
exp

ci

⎞
⎟
⎟
⎠

2

.

(12)p
(
�
exp

ci
|����⃗M, ��⃗𝜃k,

�����⃗𝜎cal
cik

)

R
=

p
(
�
exp

ci
|�����⃗Mj,

��⃗𝜃k,
�����⃗𝜎cal
cik

)

p
(
������⃗𝜎
exp

ci
|�����⃗Mj,

��⃗𝜃k,
�����⃗𝜎cal
cik

)

max

,

(13)wcik =
e
−

1

2
�2
cik

e
−

1

2
�2
cik
(min)

,

(14)𝜎cal
cikw

=

∑i

i=1
�����⃗wcik.

�����⃗𝜎cal
ci

∑K

k=1
�����⃗wcik

,

Fig. 10  (Color online) 58Ni(p,2n) cross section showing spread 
between three evaluations from the ENDF/B-VIII.0, JENDL-5.0 and 
TENDL-2023 libraries as well as the BMA average over the libraries
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in Eg. 13, other weight specifications such as the Bayesian 
information criterion (BIC) [40] or the Akaike Informa-
tion Criterion (AIC) [41] which are used within the BMA 
approach could have been used. These weights were, how-
ever, not utilized in this work.

The corresponding weighted variance at incident energy, 
i, and channel, c ( varw

(
�cal
cikw

)
 ) over the models and param-

eters can be expressed as:

Similarly, a weighted or the posterior covariance matrix 
between cross sections at energy a ( ����⃗𝜎c

Ta
 ) and b ( ����⃗𝜎c

Tb
 ) can be 

given as:

Finally, a sample weighted correlation coefficient ( rw ) can 
be obtained using the following expression [1]:

It is important to highlight here that the correlations were 
obtained based on the cross sections and not on the model 
parameters, as presented for example, in Refs. [1, 2]. Hence, 
the final evaluation includes a central file for each cross sec-
tion with the corresponding covariance information for the 
nuclide and incident particle of interest.

(15)varw

�
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�2

.

2.2  BMA in the absence of experimental data

In the absence of experimental data, the Bayesian model 
averaging (BMA) solution for a joint model and parameter 
distribution involves combining only the prior information 
from multiple models and their parameters without rely-
ing on observed data. As an example, the 58Ni(p,2n) cross 
section showing evaluations from three different libraries 
(ENDF/B-VIII.0, JENDL-5.0 and TENDL-2023) is pre-
sented in Fig. 10. The ENDF/B-VIII.0 p+58Ni evaluation 
was produced using the GNASH code system [42] which 
utilizes the Hauser–Feshbach statistical model, pre-equilib-
rium and direct-reaction theories. For the evaluation, the 
particle transmission coefficients used for the Hauser–Fesh-
bach calculations, as well as for the elastic proton angu-
lar distributions, were obtained from the spherical optical 
model calculations. The Gamma-ray transmission coef-
ficients were calculated using the Kopecky–Uhl model. 
Similar to TENDL evaluation, the ECIS95 code was used 

Fig. 11  (Color online) 58Ni(p,2n) cross section showing spread 
between the six level density models in TALYS compared with the 
evaluations from the ENDF/B-VIII.0, JENDL-5.0 and TENDL-2023 
libraries

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10  20  30  40  50  60  70  80  90  100

C
ro

ss
 s

ec
tio

n 
(m

b)

Proton Energy (MeV)

Random files
Model average

TENDL-2023
Auce (2005)

Bearpark (1965)
Bulman (1965)
Dicello (1967)

EliyakutRoshko (1995)
Ingemarsson (1999)

Menet (1971)
Menet (1969)
Turner (1964)

58Ni(p,non-el) cross section
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for the optical model calculations. For the JENDL-5.0 evalu-
ation, the CCONE code system [43] which integrates vari-
ous nuclear reaction models needed to describe nucleon, 
light charged nuclei up to alpha-particle and photon-induced 
reactions, was used. For the JENDL-5.0 p+58Ni evaluation, 
the two-component exciton model with global parametriza-
tion of Koning–Duijvestijn was used. For the level density, 
the constant temperature and Fermi-gas model with shell 
energy corrections were used. In the case of the gamma-
ray strength functions, the enhanced generalized Lorentzian 
form was used for E1 transition. For M1 and E2 transitions 
the standard Lorentzian form was adopted. For the calcula-
tion of angular distribution for emitted particles, Kalbach 
Systematics was used. For the TENDL-2023 evaluation, the 
TALYS code system was used with TALYS default models 
and parameters.

From the figure, a wide spread between the evaluations 
presented can be observed indicating a lack of a comprehen-
sive understanding of the cross section. The Bayesian model 
averaging approach, assuming that each evaluation from the 
different libraries shown in the figure represents a distinct 
model set, and further assuming that all models are assigned 
equal weights, would involve averaging the three evaluations 
and using this as the best estimate (see Fig. 10). 

The posterior distribution of our quantity of interest, 
�����⃗𝜎cal
cik

 , given our model vector, �����⃗Mj and parameters, ��⃗𝜃k , in the 
absence of experimental data, can be given as:

where p
(
�����⃗𝜎cal
cik
|�����⃗Mj,

��⃗𝜃k

)
 is the posterior distribution of our 

quantity of interest, �����⃗𝜎cal
cik

 , given our model, �����⃗Mj  , and 

(18)p
(
�����⃗𝜎cal
cik
|�����⃗Mj,

��⃗𝜃k

)
∝ p

(
�����⃗Mj|�����⃗𝜎cal

cik
, ��⃗𝜃k

)
⋅ p

(
�����⃗𝜎cal
cik
| ��⃗𝜃k, �����⃗Mj

)
,

parameters, ��⃗𝜃k  . The likelihood function in this case, 
p
(
�����⃗Mj|�����⃗𝜎cal

cik
, ��⃗𝜃k

)
 , is the probability of the model, �����⃗Mj , given 

our quantity of interest, �����⃗𝜎cal
cik

 , and the parameters, ��⃗𝜃k  . 

p
(
�����⃗𝜎cal
cik
| ��⃗𝜃k, �����⃗Mj

)
 , is the prior distribution which represents 

our prior knowledge about the distribution of our quantity 
of interest ( �����⃗𝜎cal

cik
 ) given the model and parameters.

In the absence of experimental data, the posterior distri-
bution is significantly shaped by the prior distribution and 
any assumptions made about the considered models. Hence, 
the likelihood function may be constructed based on our 
prior beliefs regarding the models in the absence of experi-
mental data. Hence, we could assume that all the considered 
models have equal weights or weigh each model based on 
prior information about the models. In nuclear reaction mod-
eling, for example, it is generally accepted that microscopic 
models have superior predictive power than their phenom-
enological counterparts. Consequently, in the absence of 
experimental data, relatively larger weights can be assigned 
to the microscopic models, reflecting their strong predic-
tive capabilities, and lower weights to the phenomenological 
models because of their known limited predictive power. In 
this work, however, all models were assumed to have equal 
weights for the channels where experimental data were 
unavailable.

The average cross section over the models and param-
eters at incident energy, i, and channel, c, in the absence of 
experimental data ( �cal

cik
 ) can be given as:

It should be highlighted here that by taking a simple aver-
age across models and their parameters, we assigned equal 
weights to the models (as well as their parameters). This 
approach is, however, highly sensitive to the presence of 
‘bad’ models, which have the potential of distorting the aver-
age cross-section curves as well as the elastic angular dis-
tributions. Therefore, identifying and discarding these ‘bad’ 
models is important in model averaging for cases where no 
experimental data are available (see Figs. 8 and 22). Also, as 
mentioned, arbitrary weights, reflecting their strong predic-
tive capabilities, can be assigned to each model. In this way, 
model combinations considered as ‘bad’ models would be 
assigned low weights and hence contribute little to the BMA 
estimate in the absence of experimental data (Fig. 11).

The unbiased estimate of the variance which is a measure 
of how spread out the distribution of the cross section at each 
energy, i, for channel, c ( var(�cal

ci
) ), can be expressed as:

(19)𝜎cal
cik

=
1

K

K∑

k=1

�����⃗𝜎cal
cik
.

Table 3  Step by step algorithm for computation of model and param-
eter uncertainties

Algorithm

1: Choose distribution from which models and their parameters
    would be sampled

2: Vary multiple models and their parameters simultaneously to
    produce a large number of random cross sections

3: Determine the total variance at incident energy i ( 
var

(
�cal

ci,comb

)

)
    for each considered channel (c)

6: Vary only model parameters around a single model set
    combination using uniform distributions

7: Compute the variance at energy i due to only model parameters
    for each channel c

8: Extract the uncertainty due to only models ( U(�cal
ci,M

)):

    
U(�cal

ci,M
) =

√
var(�cal

ci,comb
) − var(�cal

ci,�
)
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where K represents the total number of random cross section 
(or samples) curves produced. Note that each random cross 
section curve was calculated with a set of TALYS models 
and unique parameters. It is also instructive to note that by 

(20)
var

�
�cal
cik

�
=

∑K

k=1

�
�cal
cik

− �cal
cik

�2

K − 1
,

dividing Eq. 20 by K − 1 instead of K, we obtain an unbi-
ased estimate of the variance. From Eq. 20, the unbiased 
estimate of the standard deviation at each energy point, i, 
which denotes the uncertainty, can be extracted. To verify 
the predictive power of this approach, the model average 
over the prior distribution as discussed is compared with 
experimental data for the 58Ni(p,non-el) cross section in 
Fig. 12. The non-elastic cross section is made up of all 
interactions between a particle (a proton in this case) and a 
target nucleus, excluding the elastic scattering cross section. 
This includes processes such as the inelastic scattering and 
capture reactions.

It can be observed from the figure that the BMA average 
(in the absence of experimental data) slightly over predicted 
most of the experimental data available but compared quite 
favorably with the TENDL evaluation over the entire energy 
region. This gives an indication that the Bayesian Model 
Average Prediction (BMAP) can give relatively good evalu-
ations even in the absence of experimental data. As men-
tioned earlier, averaging over multiple models could lead 
to a reduction in individual model biases and uncertainties, 
hence, leading to favorable results. It was further observed 
that the experimental data fell within the model-parameter 
uncertainty or spread as expected. In Fig. 13, the 58Ni(p,� ) 
cross section showing the Bayesian model average over the 
prior spread in the absence of experimental data of cross sec-
tion curves is presented. It can be observed from the figure 
that even though the model average value over estimated the 
experimental data between about 12 and 16 MeV, it com-
pared relatively well with experimental data for the rest of 
the energy range considered.

2.3  Extracting model and parameter uncertainties

A step by step algorithm for the extraction of model uncer-
tainties at each incident energy is outlined in Table 3. As 
mentioned earlier, we start by selecting the distribution from 
which the models and their parameters were sampled. Next, 
we vary the models and their parameters simultaneously 
using the TALYS code system to generate a large set of ran-
dom cross section curves as a function of incident energy 
and the elastic angular distributions as a function of both 
energy and angle. From the combined spread due to the vari-
ation of the models and their parameters, a distribution in 
the cross section of interest can be obtained at each incident 
energy, i, in the case of the reaction and residual production 
cross sections, or in angle, in the case of the elastic angular 
distributions. The total spread from this distribution can be 
attributed to the simultaneous variations of both the models 
and their parameters.

Next, we determine the variance due to only parameter vari-
ation at a considered energy, i. To achieve this, more than 3000 
random cross section curves were produced while varying 
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Fig. 14  Scatter plot illustrating no significant correlation between 
random cross sections generated solely through model parameter 
variations and those produced with the simultaneous variation of 
both models and their parameters for the 58Ni(n,np) cross section at 
29.1  MeV. A total of 3030 random cross sections were utilized in 
both cases

Table 4  An example of a list of some models in random file number 
2025

Model combination in random file: 2025

1: ldmodel 1: constant temperature + Fermi gas model (CTM)
2: ctmglobal y: Flag to enforce global formulae for the Constant

    Temperature Model (CTM)
3: strength 8: Gogny D1M HFB+QRPA
4: widthmode 0: no width fluctuation, i.e. pure Hauser-Feshbach
5: preeqmode 3: Exciton model: Numerical transition rates with

    optical model for collision probability
6: preeqspin 3: the pre-equilibrium spin distribution is based

    on particle-hole state densities
7: kvibmodel 1: Model for the vibrational enhancement of

    the level density
8: spincutmodel 2: Model for spin cut-off parameter for

    the ground state level densities
9: strengthm1 2: Normalize the M1 gamma-ray strength function

    with that of E1 as fE1/(0.0588A0.878)
10: preeqcomplex y: Flag to use the Kalbach model for pickup,

    stripping and knockout reactions, in addition to the
    exciton model, in the pre-equilibrium region.
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only model parameters, around a single (fixed) set of mod-
els. The following model vector, alongside other models not 
explicitly listed here, was used [22]: ld model 2: Back-shifted 
Fermi gas model; strength function model 6: Goriely Time 
(T)-dependent Hartree–Fock–Bogolyubov (HFB); pre-equi-
librium model 3: Exciton model using numerical transition 
rates with optical model for collision probability; preeqspin 
2: spin distribution from total level densities is adopted; pair 

model 2: Compound nucleus pairing correction; width mode 
2: Hofmann–Richert–Tepel–Weidenmüller (HRTW) model.

From the distribution of cross sections or angulation distri-
butions at each incident energy of interest, the variance can be 
calculated. If we assume that there are no strong correlations 
between the models and the parameters, the total or combined 
variance of the calculated cross section at energy, i, for chan-
nel, c ( var(�cal

ci,comb
) ) can be expressed as a quadratic sum of 

the model ( var(�cal
ci,M

) ) and the parameter variance ( var(�cal
ci,�

)):

where �cal
ci,M

 and �cal
ci,�

 represents the cross sections of chan-
nel c at energy i, obtained from the variation of models 
and parameters, respectively. The correlation between the 
models and the parameters was investigated, and no signifi-
cant correlation was observed. For example, in Fig. 14, we 
present a scatter plot illustrating no significant correlation 
between random cross sections generated solely through 
model parameter variations and those produced with the 

(21)var
(
�cal
ci,comb

)
= var

(
�cal
ci,M
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+ var

(
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simultaneous variation of both models and their parameters 
for the 58Ni(n,np) cross section at 29.1  MeV. Note that, 
in the case involving only model parameter variations, the 
models were kept constant, while their parameters were 
simultaneously varied. In the other case, both the models 
and their parameters were simultaneously varied altogether.

Since we can compute the uncertainty due to only param-
eter variations, the model uncertainties can easily be extracted 
from Eq. 21 as follows:

where U(�cal
ci,M

) is the uncertainty due to models for channel, 
c, at incident energy, i.

3  Application of BMA methodology

3.1  Prior distribution of models and parameters

In this work, we adopted a uniform distribution for the prior 
models and parameters distributions. By using the uniform 

(22)U
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�cal
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)
=

√
var

(
�cal
ci,comb

)
− var

(
�cal
ci,�

)
,

distribution to each model type, we assign a constant prob-
ability to each model within the lower and upper bounds of 
each model type under consideration. For example, in the 
case of the level density model type, the six available ld 
models were each assigned unique identifiers (ld1, .., ld6). 
These models were drawn randomly many times within 
the assigned lower and upper bounds of each model type. 
In Figs.  15 and 16, the distribution of the gamma-ray 
strength functions and the level density models for about 
9000 random samples are presented, respectively. To assess 
whether our model distributions, as shown in Figs. 15 and 
16, conformed to uniform distributions, we computed the 
p value for each distribution based on a 95% confidence 
interval. The obtained p values for each distribution were 
below 0.05, leading us to reject the null hypothesis (H0 is: 
The model prior distributions are not uniform) within 95% 
confidence interval. Applying the same methodology to the 
different model types resulted in different model vectors 
and similar conclusions. A total of 100 different model 
combinations, each used as input to the TALYS code, were 
produced. An example of a list of models contained in ran-
dom file number, 2025, is provided in Table 4.
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Thereafter, TALYS parameters to each model combi-
nation, as listed, for example, in Table 4, were varied 
within their widths or uncertainties (see Table 2) using 
the TALYS code system. This process generated approxi-
mately 100 random nuclear data files per model combina-
tion, resulting in more than 9000 random ENDF-format-
ted nuclear data files for p+58Ni. It is worth noting that 
the incident energies considered for p+58Ni ranged from 
1 to 100 MeV. In Fig. 18, the prior distribution of the 
geometrical parameters ( rp

V
 ) which denotes the radius of 

the real central potential of the optical model is presented. 
Prior distribution for the �-decay parameter ( R� ) for the 
pre-equilibrium model is presented in Fig. 19. Addition-
ally, in Fig. 17, we present the prior distribution for the 
v1 , an adjustable parameters used in the computation of 
the depth of the real central potential of the optical model. 
The values presented are TALYS’ multipliers drawn from 

a uniform distribution within the minimum and maximum 
parameter values. It is important to note, however, that 
due to the large number of parameters considered, not 
all the parameter prior distributions converged well to 
the desired uniform distribution for the total number of 
samples considered in this work. It is important to point 
out that the default central value for most optical model 
parameter multipliers in TALYS is 1.0. For each batch 
calculation, the TALYS code system normally begins 
with default model parameters, and hence, these must 
be removed in order to prevent multiple counting of the 
parameter values as presented in Figs. 17, 18, 19.    

3.2  Experimental data

The experimental data used in this work were selected from 
the threshold up to 100 MeV. The Bayesian model averaging 
(BMA) method proposed was applied to the following cross 
sections and the elastic angular distributions:

• Reaction cross sections: (p,non-el), (p,n), (p,np), (p,p), 
(p,� ), (p,2p).

• Residual production cross sections: 58Ni(p,x)55Co, 
58Ni(p,x)56Co, 58Ni(p,x)56Ni, 58Ni(p,x)57Ni.

• Elastic angular distributions at the following incident 
energies: 9.51, 16.00, 20.00, 21.30, 35.20, 39.60, 40.00, 
and 61.40 MeV between 1 and 180 degrees.

The experimental data for each of the categories listed were 
obtained from the EXFOR database.

3.3  Case of one and two experimental point

To illustrate the practical implementation of the BMA 
method, we consider a single experimental data point for the 
58Ni(p,np) cross section at the incident energy, i = 24 MeV. 
The prior distribution at this energy is made up of more 
than 9000 random cross section values (in mb) generated 
through the variation of numerous TALYS models and their 
parameters. Subsequently, we compared the calculated cross 
sections with the experimental data at this incident energy 
by computing a reduced �2 . The resulting file weights for 
each random file at the given energy are then combined with 
the prior distribution to obtain the posterior distribution, 
from which the updated mean and 1 � standard deviations 
were extracted. In Fig. 20, we present an illustrative example 
showcasing the prior (upper left), and prior and posterior 
(bottom) distributions, and distribution of file weights (lower 
left) for each random 58Ni(p,np) cross section value com-
puted at 24 MeV. In the bottom right panel of the figure, a 
plot illustrating the convergence of the mean and 1� standard 
deviation of the prior distribution is presented. We note here 
that, in the case presented in Fig. 20, both models and their 
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parameters were varied. The prior distribution reflects the 
cross section extracted from the cross section curves before 
the inclusion of experimental information, while the poste-
rior distribution represents the cross section distribution at 
24 MeV after taken experimental data into consideration.

From Fig. 20, a relatively large prior can be observed as 
expected. This large prior then narrows around the mean 
of the experimental data for the posterior distribution. The 
large prior distribution observed from the figure can be 
attributed to the relatively large non-informative prior used. 
It can also be observed that the prior distribution is slightly 
skewed to the right of the distribution where larger cross 
section values were obtained. The skewed prior distribution 
was then shaped into a normal distribution after combin-
ing experimental data through the likelihood function (see 
upper right panel of Fig. 20). Since the prior involve vari-
ations of many models and parameters, achieving conver-
gence of the random cross sections at each incident energy 
can be difficult. From the convergence plot (bottom right 
of Fig. 20), it can be observed that both the mean and the 
1 � standard deviation converges after about 7000 random 
samples. The final mean value of 252.58 Mb is observed to 
be close to the experimental cross section value of 247 Mb 
for the 58Ni(p,np) cross section at 24 MeV as expected. It is 
important to note that this value falls within the experimen-
tal uncertainty of ±24.7. It can also be observed that there 
is a significant reduction in the 1 � uncertainty of the prior 
uncertainty of 109 to a posterior uncertainty of 25. From 
the weight distribution presented in the figure, it can be 
observed that a considerable number of files were assigned 
with low and insignificant weights between 0 and 0.2. This 
is expected as the use of a large informative prior resulted 
in many cross section curves to be positioned far from the 
experimental data and hence, resulted in large chi square 
values. In Fig. 21, the BMA methodology is applied to two 
experimental data points of the 58Ni(p,p)58Ni cross section at 
80 and 100 MeV. From the figure, the prior values reflect the 
simple average over the models, while the posterior values 
denote the BMA values after inclusion of experimental data. 
The prior uncertainty band is a combination of both model 
and parameter uncertainties.

3.4  Treating ‘bad’ models in the absence 
of experimental data

As previously discussed, the presence of ‘bad’ models for 
the computation of the prior mean and in the case where 
no experimental data are available can lead to significant 
distortions in the shape of the cross section or angular distri-
bution curves as well as in the corresponding updated uncer-
tainty bands. It is instructive to note, however, that the BMA 
approach (in the presence of experimental data) inherently 
handles the issue of ‘bad’ models by assigning them lower 

weights compared to experimental data, thereby, minimizing 
their impact on the posterior distribution.

In Fig. 22, for example, we present the 58Ni(p,2p) cross 
section, highlighting non-smooth curves in the energy range 
between 17 and 25 MeV. These curves look ‘unphysical’ 
and, hence, are assumed to have been generated with a ‘bad’ 
model combination. The spread in the cross section curves 
is due to the variation of parameters around the ‘bad’ model 
combination. The curves were compared against experi-
mental data from EXFOR and the TENDL evaluation. The 
prior mean in the figure was calculated by averaging over 
all models at each energy point (see 58Ni(p,2p) cross sec-
tion in Fig. 7). It can be observed that the non-smooth cross 
sections deviated from the observed trend of the experi-
mental data as well as the TENDL evaluation. Despite the 
non-smoothness in the prior mean curve, it was observed 
that it was in favorable agreement with some experimental 
data, particularly at threshold energies and at higher ener-
gies, especially with data from Reimer (1998) and Kauf-
man (1960). The non-smoothness in the prior mean curves 
is attributed to the inclusion of both ‘good’ and ‘bad’ models 
in the computation of the averaged cross section values. A 
potential solution to ‘bad’ models involves implementing 
the Occam’s razor as suggested in Ref. [44]. This approach 
eliminates models that globally perform poorly in their pre-
diction of experimental data for the considered channels. 
The non-smooth cross section curves as depicted in Fig. 22 
were produced with the following model combination, 
among other models in the TALYS code [22]: 

1. level density model 6: Microscopic level densities (tem-
perature-dependent Hartree–Fock–Bogolyubov (HFB), 
Gogny force) from Hilaire’s combinatorial tables;

2. gamma strength function model 5: Goriely’s hybrid 
model;

3. width fluctuation correction model 2: Hofmann–Rich-
ert–Tepel–Weidenmüller (HRTW);

4. pre-equilibrium model 4: Multi-step direct/compound 
model;

5. Jeukenne–Lejeune–Mahaux (JLM) model 0: standard 
Jeukenne–Lejeune–Mahaux (JLM) imaginary potential;

6. mass model 3: HFB-Gogny D1M table;
7. Other default models.

This specific model combination was therefore treated as a 
‘bad’ model and consequently, excluded from subsequent 
analyses. It is noteworthy to point out that in the case of 
the optical model, the Jeukenne–Lejeune–Mahaux (JLM) 
semi-microscopic model was utilized instead of the default 
local and global parameterizations of Koning and Delaroche 
which are typically used as the default optical model param-
eterizations in TALYS for non-actinides (as applicable also 
in this case). Additionally, it is essential to recognize here 
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that certain model combinations may not exert a significant 
impact or sensitivity to cross sections or angular distribu-
tions of interest. For instance, it has been observed in Ref. 
[1] that the use of the HRTW model instead of the Moldauer 
model has no noticeable impact on proton-induced reaction 
cross sections for p+59Co between 1 and 100 MeV.

For consistency in the evaluated files, it is important that 
each complete evaluation obeys the cross section sum rules. 
Typically, the total cross section is the sum of the different 
partial cross sections for all possible interactions between 
a projectile and a nuclide. For neutron-induced reactions, 
the total cross section is a well-defined concept since neu-
trons interact mainly through the nuclear force. In the case 
of charge particle interactions such as protons (as is the 
case of this work), however, the computation of the total 
cross section is not straight forward since; in addition to 
the nuclear force, we have to deal with the electromagnetic 
force. Hence, the current version of TALYS does not give 
the total cross sections for proton-induced reactions. In this 
work, as suggested in Ref. [21], we proposed to reassign any 
excess cross sections to “less important channels” with no 
experimental data. By “less important channels,” we refer 
to channels with relatively small cross sections, and whose 
products hold minimal significance for the scientific com-
munity and for which no experimental data are available.

4  Results

Table 5 presents 1� model and parameter uncertainties for 
selected incident energies ranging from 15 to 30 MeV in 
the case of the 58Ni(p,np) cross section. From the table, 
relatively smaller parameter uncertainties can be observed 
from threshold up to about 18 MeV. This observation can 
be made also from Fig.  7 where a narrow spread was 
observed in the low energy region in the case of only 

Table 5  1� model and parameter uncertainties for selected incident 
energies for the 58Ni(p,np) cross section

The model uncertainties were extracted using Eq. 22

 Incident energy 
(MeV)

Total uncer-
tainty (1�)

Model uncer-
tainty (1�)

Parameter 
uncertainty 
(1�)

15.7 46.5 46.44 2.5
16.0 52.9 52.84 2.9
16.2 54.4 54.27 3.0
16.8 62.5 62.35 3.7
17.1 66.1 66.00 4.1
17.3 66.9 66.81 4.3
17.7 72.0 71.86 4.8
17.9 76.0 75.87 5.1
18.2 80.9 80.72 5.5
18.4 83.9 83.73 5.9
19.0 90.3 90.05 7.0
19.1 87.9 87.57 7.2
19.3 85.1 84.76 7.7
19.5 85.4 85.01 8.3
20.0 98.7 98.18 9.9
20.3 99.6 99.05 10.6
20.5 101.2 100.64 11.0
20.9 104.1 103.44 11.9
21.0 105.4 104.75 12.1
21.2 108.8 108.06 12.5
21.4 108.9 108.12 12.8
21.5 107.2 106.40 12.9
22.1 101.5 100.61 13.7
22.6 97.9 96.93 13.9
23.4 99.4 98.42 14.1
24.0 107.6 106.67 14.3
24.5 118.2 117.28 14.5
25.3 120.1 119.27 14.4
25.8 109.4 108.43 14.2
26.3 103.2 102.27 14.0
27.0 97.8 96.85 13.8
27.5 96.6 95.59 13.7
27.9 97.2 96.23 13.6
28.7 102.6 101.74 13.5
29.1 107.2 106.38 13.5

Table 6  1� model and parameter uncertainties for selected incident 
energies for the 58Ni(p,non-el) cross section

The model uncertainty was computed using Eq. 22

 Incident energy 
(MeV)

Total uncer-
tainty (1�)

Model uncer-
tainty (1�)

Parameter 
uncertainty 
(1�)

9.14 137.5 135.42 23.6
22.70 182.9 178.95 38.0
25.10 188.0 183.28 41.9
30.00 197.4 192.08 45.3
30.10 197.5 192.24 45.4
34.80 205.0 199.02 49.3
39.70 211.2 204.47 53.0
40.00 211.5 204.74 53.2
45.20 216.0 208.66 55.9
47.90 217.5 209.93 56.9
49.50 218.5 210.77 57.5
60.80 221.3 213.02 59.8
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parameter variation. In contrast, the model uncertainties 
exhibit relatively larger uncertainties across the entire con-
sidered energy region, ranging from 46.44 to 108.12 as can 

be seen in Table 5. It is generally known that TALYS has 
difficulty in reproducing experimental data at the threshold 
energies [18]. However, the sensitivity of cross sections 
to parameter variation at threshold energies in TALYS has 
been observed to be small which normally results in the 
inability of the code to overlap some experimental cross 
sections at these energies.

A similar table showing the model and parameter uncer-
tainties extracted for energies from 9 to 60 MeV in the 
case of the 58Ni(p,non-el) cross section is presented in 
Table 6. The table shows that the parameter uncertain-
ties are generally smaller than the model uncertainties, as 
expected, ranging from 23.6 to 59.8, which corresponds 
to 3.4% to 7.4% of the cross section at the respective 
energies.  As expected, the model uncertainties are gen-
erally large ranging from 19.56 to 26.40% of the cross 
section. An observed trend in the table is the increase 
in both model and parameter uncertainties with increas-
ing energy. Additionally, both the model and parameter 
spreads are narrow in the lower energy regions, widening 
as the energy increases.

In Fig. 23, we present the Bayesian model averaging 
(BMA) results for a selected cross sections: 58Ni(p,np)57Ni, 
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Fig. 23  (Color online) Prior and posterior means with their corresponding uncertainties compared with experimental data for the following cross 
sections: 58Ni(p,np)57Ni, 58Ni(p, � ), 58Ni(p,� ), 58Ni(p,2p). Note: the prior and posterior uncertainty bands are ±1� uncertainties
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58Ni(p, � ), 58Ni(p,� ), 58Ni(p,2p) illustrating the prior and 
posterior means along with their corresponding ±1� 
uncertainties. For the (p,� ) and (p,� ) cross sections, the 
prior means appear inaccurate in specific energy ranges 
where the model uncertainties are large. This is, however, 
different for the (p,np) cross section where the uncertain-
ties appear relatively constant over the considered energy 
region, with the prior mean comparing favorably with the 
experimental data. The posterior means for all channels 
presented consistently reproduce experimental data; how-
ever, localized adjustments at each energy point as car-
ried out in this work introduce discontinuities or kinks 
in the cross section curves, particularly noticeable in the 
58Ni(p,non-el) cross section. These kinks can be attrib-
uted to the imperfections in our experimental data and the 
absence of experimental correlation considerations in the 
computation of the chi-square. To smoothing-out the cross 
section curves, cubic spline interpolation was employed. It 
can be observed that generally smaller posterior uncertain-
ties were obtained after experimental data were taken into 
account. This can be attributed to a number of reasons. 
First, this gives an indication that perhaps, the model vec-
tors used have similar performance with respect to the 
experimental data and hence resulted in similar weights 

being assigned to each model vector. Additionally, if one 
of the model vectors (and parameters as well) is supported 
by strong evidence in the data, this could result in this 
model set being assigned with large weights compared to 
the other model vectors. Consequently, this would result 
in a reduction in the uncertainty associated with the choice 
of the model (and/or parameters) leading to a small poste-
rior spread. Furthermore, since a large uninformed prior 
was used in this work, it can be observed that the poste-
rior distribution was dominated by the experimental data 
through the likelihood function and hence, the impact of 
the prior is less insignificant when experimental data are 
available. It should also be noted that since similar nuclear 
reaction models were used, correlations in model predic-
tions could result in similar weights. In such cases, the 
uncertainty in model selection diminishes, resulting in 
smaller posterior spreads. Although posterior uncertain-
ties are generally small and, in some instances, smaller 
than experimental uncertainties, it is important to note that 
only 1 � uncertainties are reported here. For example, in 
Fig. 24, the experimental data at 10 MeV appears outside 
the prior uncertainty band of the models. However, if the 
prior uncertainty was extended to 3 � , the experimental 
data would fall within the expected uncertainty band as 
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Fig. 25  (Color online) Prior and posterior means with their cor-
responding uncertainties compared with experimental data for 
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expected (see 58Ni(p,non-el) cross section in Fig. 7, for 
example). Visible kinks in the posterior curve, as shown 
in Fig. 24, necessitate the use of a smoothing function. It 
is crucial to acknowledge that the smoothing process could 
skip some experimental data points, as can be observed in 
Fig. 24. The posterior uncertainties, which took the dif-
ferential data into account, are small, and the weighted 
average cross sections are in close agreement with experi-
mental data.

In Fig. 25, we compare the prior and posterior means, 
along with their corresponding uncertainties, to experimen-
tal data and the ENDF/B-VIII.0 evaluation for the residual 
production cross sections: 58Ni(p,x)55Co, 58Ni(p,x)56Co, 
58Ni(p,x)56Ni, and 58Ni(p,x)57Ni. It is observed that the 
prior mean, representing the average values over all mod-
els without incorporating experimental data, outperformed 
the ENDF/B-VIII.0 evaluation for all the considered cross 
sections. This is particularly surprising as the prior does 
not account for experimental data. Additionally, both the 
smoothed and non-smoothed versions of the posterior were 
observed to reasonably agree with experimental data. In 

Figs. 26 and 27, we present the prior and posterior means 
along with their corresponding uncertainties, for the elas-
tic angular distributions at selected incident energies 
for p+58Ni. As expected, it is observed that the posterior 
mean compares favorably with experimental data. Gener-
ally, small uncertainties are observed at smaller angles, but 
they increase particularly at high angles. This is consistent 
with what was observed in Ref. [1] where it was noted that 
TALYS had difficulties in reproducing experiments at high 
angles. In Fig. 28, we present an example of 58Ni(p,np) cor-
relations based on the variation of only model parameters 
and on the variations of both models and their parameters. 
Similar correlation plots are presented in Fig. 29 for the 
58Ni(p,2p) cross section. Additionally, in Fig. 30, correlation 
matrices are presented for the following residual production 
cross sections: 58Ni(p,x)57Ni (left) and 58Ni(p,x)56Ni (right) 
based on the variations of both models and their parameters.

As expected, high correlations are observed in both cases, 
especially close to the diagonal. The correlations observed in 
the variation of only model parameters can be attributed to 
the use of the same models but with varying parameters. In 
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Fig. 26  (Color online) Prior and posterior means with their corresponding uncertainties for the elastic angular distributions at selected incident 
energies: a 21.30 MeV, b 9.51 MeV, c 16.0  MeV and d 20.0 MeV for p+58Ni
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Fig. 27  (Color online) Prior and posterior means with their corresponding uncertainties for the elastic angular distributions at selected incident 
energies: a 35.20 MeV, b 39.60 MeV, c 40.0  MeV and d 61.40 MeV for p+58Ni
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Fig. 28  (Color online) Example of 58Ni(p,np) correlations based on (A) the variation of only model parameters and (B) based on the variations 
of both models and their parameters
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the case of the variation of both models and their parameters, 
although different models were used, it is known that the 
models in each combination, made use of the same or similar 
model parameters, inputs, and approaches in their solutions. 
These factors introduce energy–energy correlations in the 
prior distribution. It must be noted that these prior correla-
tions are taken into account through the simultaneous vari-
ations of both the models and the parameters. Additionally, 
as a consequence of the method, posterior correlations and 
covariances can be obtained. These prior and posterior cor-
relations can be utilized for sampling and subsequent genera-
tion of random cross sections for the purpose of nuclear data 
uncertainty propagation to applications [45].

Since we select models at each incident energy point 
rather than globally, the proposed BMA method naturally 
accounts for over-fitting as well as for under-fitting as over-
fitted (and under-fitted) models would normally be assigned 

with lower posterior probabilities, and hence, their contri-
butions to the final evaluation are addressed by the model 
averaging process. It is, however, important to note that 
the choice of models and their distributions is important as 
overly complex models risk over-fitting.

5  Conclusion

In traditional BMC approach, a single “best” model is 
often chosen to make predictions. However, this approach 
has been observed to be sensitive to the specific choice of 
the model. Additionally, the uncertainties related to model 
selection are not explicitly considered. In this work, we pro-
posed a nuclear data evaluation method based on Bayesian 
model averaging (BMA) tailored to the fast energy region. 
Our proposed approach involves the use of a very large 
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Fig. 29  (Color online) Example of 58Ni(p,2p) correlations based on a the variation of only model parameters and b based on the variations of 
both models and their parameters
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Fig. 30  (Color online) Example of correlations computed for the following residual production cross sections: 58Ni(p,x)57Ni (left) and 
58Ni(p,x)56Ni (right) based on the simultaneous variations of many models and their parameters
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non-informative prior derived from sampling numerous 
models along with their parameters. In addition, instead of 
selecting a single “winning” model set for the entire energy 
range of interest, we select the models locally at each inci-
dent energy based on comparison with experimental data. 
The final evaluation is a weighted average over all consid-
ered models, with weights determined by the likelihood 
function values. Since the cross sections and angular distri-
butions were updated on a per-energy-point basis, the BMA 
approach typically results in discontinuities, or “kinks,” in 
the cross sections or angular distributions curves. To address 
these kinks, a smoothing function was applied. In future, 
we intend to explore other methods for smoothing the cross 
section curves such as the Nadaraya–Watson kernel regres-
sion using energy-dependent weights. Furthermore, both 
prior and posterior covariances were obtained for the evalu-
ations carried out in this work. The proposed method has 
been applied to the evaluation of p+58Ni from 1 to 100 MeV 
energy range. The results demonstrate favorable compari-
sons with experimental data, as well as with the TENDL-
2023 evaluation.
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