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Abstract
We report a comprehensive study on low-lying parity doublet states of 224Rn by mixing both quadrupole- and octupole-
shaped configurations in multireference covariant density functional theory, in which broken symmetries in configurations 
are restored using projection techniques. The low-lying energy spectrum is reasonably reproduced when the shape fluctua-
tions in both the quadrupole and octupole shapes are considered. Electric octupole transition strength in 224Rn is found to 
be B(E3;3−

1
→ 0

+

1
) = 43 W.u., comparable to that in 224Ra, whose data are 42(3) W.u.. Our results indicate that 224Rn shares 

similar low-energy structure with 224Ra despite the excitation energy of first 3− state of the former nucleus is higher than that 
of the latter. This study suggests 224Rn is a candidate for the search for permanent electric dipole moment.

Keywords Covariant density functional theory · Parity doublet bands · Octupole correlations · Electric transition strengths

1 Introduction

The majority of the nuclei on the nuclear chart are charac-
terized by reflection-symmetric shapes, either spherical or 
quadrupolar, in their ground states. However, atomic nuclei 
with a proton number Z or neutron numbers N ≃ 34, 56, 88 , 
and 134 possess strong octupole correlations exhibiting 

dynamical or static octupole deformations [1, 2]. Signa-
tures of the nuclei with the static octupole-deformed shape 
include the presence of a low-lying positive- and negative-
parity doublets as well as strong electric the dipole (E1) and 
octupole (E3) transition strengths. According to this crite-
rion, the observation of a low-lying 3− state and enhanced 
E3 transitions in the 144,146Ba [3–5], 222 Ra [6], 224Ra [7], and 
226Ra [8] suggest that these nuclei have a stable octupole 
deformation. By contrast, some atomic nuclei with slightly 
weaker E3 transitions but relatively larger excitation energy 
for the 3− state are usually interpreted as octupole vibrators 
such as 228Ra [6], as well as 208Pb and 220Rn [7]. Addition-
ally, low-lying negative-parity states or enhanced E1 transi-
tions were measured, indicating that 222-226Rn is vibrators 
[9] and 228Th is pear-shaped [10]. However, in suggested 
octupole-deformed nuclei, a strict alternation between posi-
tive and negative-parity energy levels are not observed. To 
draw a solid conclusion as to whether these nuclei belong 
to octupole rotors or vibrators, additional measurements, 
and comprehensive theoretical studies on these nuclei are 
required.

Atomic nuclei with octupole correlations have been 
extensively studied with various nuclear models [11–17], 
including self-consistent mean-field (SCMF) methods based 
on different energy density functionals (EDFs) [18–31] and 
beyond, in combination with the interacting boson models 
[32–35] or collective Hamiltonians [36–39]. In particular, 
the generator coordinate method (GCM) implemented using 
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quantum-number projection techniques, including parity, 
particle-number, and angular momentum projections have 
been developed for the low-lying states of the atomic nuclei 
with octupole correlations based on different EDFs [40–44]. 
Within this multireference density functional theory (MR-
DFT), it has been demonstrated that the low-lying states of 
208Pb are multioctupole-phonon excitations [43]. By con-
trast, for 144, 146Ba, and 224Ra, the octupole shapes of posi-
tive-parity states rapidly stabilize with an increase in spin, 
gradually drifting toward those of negative-parity ones [41, 
42]. Given this success, we extended the MR-DFT frame-
work to study the low-lying states of 224Rn, including the 
energy spectrum and electric multipole transition strengths 
based on relativistic energy density functional (EDF) to shed 
light on whether the nucleus belong to octupole rotors or 
vibrators.

The remainder of this paper is organized as follows. In 
Sect. 2, introduction to MR-DFT based on the relativistic 
EDF is presented. In Sect. 3, we discuss the calculation 
results for the low-lying states of 224Rn compared with those 
of 224Ra. Finally, a summary is presented in Sect.  4.

2  Theoretical framework

In MR-DFT, the nuclear wave functions of the low-lying 
parity doublet states are constructed as linear combinations 
of sets of quantum numbers projected nonorthogonal mean-
field states �q⟩ around the equilibrium shape,

where � denotes the different quantum states corresponding 
to a given J� . The symbol q represents the quadrupole, and 
octupole deformation parameters for each mean-field state. 
The operators P̂J

MK
 , P̂N,Z , and P̂𝜋 are used to select the com-

ponents of configurations with specific quantum numbers, 
namely the angular momentum J, neutron (proton) number 
N(Z), and parity � = ± [45].

The mean-field states �q⟩ are generated from the point-
coupling relativistic mean-field and BCS (PC-RMF+BCS) 
calculations with constraints on the average nucleon num-
bers and quadrupole-octupole moments using the variational 
principle

with Lagrange multipliers �� determined by the constraints 
⟨q�N̂𝜏 �q⟩ = N(Z) . The position of the center-of-mass coor-
dinate is fixed at the origin to decouple the spurious states 
using the constraint ⟨q�Q̂10�q⟩ = 0 . N̂𝜏 and Q̂𝜆0 ≡ r𝜆Y𝜆0 
are the particle-number and multipole moment operator, 

(1)�ΨJ𝜋
𝛼
⟩ =

�

q

f J𝜋
𝛼
(q)P̂J

MK
P̂NP̂ZP̂𝜋�q(𝛽2, 𝛽3)⟩,

(2)𝛿⟨q�Ĥ −

�

𝜏=n,p

𝜆𝜏N̂𝜏 −

�

𝜆=1,2,3

C𝜆(Q̂𝜆0 − q𝜆)
2�q⟩ = 0

respectively. q� is the constrained value of the multipole 
moment and C� is the corresponding stiffness constant [45]. 
Deformation parameters �� ( � = 2, 3 ) are defined as follows:

with R0 = r0A
1∕3 and A represents the mass number of the 

nucleus and r0 = 1.2 fm.
The weight function f J�

�
(q) is given by Eq. (1) is deter-

mined by solving the Hill-Wheeler-Griffin: (HWG) equation 
[46, 47].

where the kernels are expressed as

with operators Ô representing Ĥ and 1 for the the Hamilto-
nian kernel HJ�

(qa, qb) and the norm kernel NJ�
(qa, qb).

The electric multipole transition probabilities B(E�) 
obtained from the initial state (Ji�i�i) into the final state 
(Jf�f�f ) are calculated according to the Wigner–Eckart 
Theorem:

with a reduced transition matrix element,

where Q̂𝜆M ≡ er2Y𝜆M denotes the electric multipole moment 
operator of rank � . More details on the MR-DFT for quadru-
pole-octupole nuclei can be found in Refs. [41–44, 48, 49].

3  Results and discussions

The Dirac spinors of the nucleons are expanded in a set of 
harmonic oscillator basis with 14 major shells. In the PC-
RMF+BCS calculations, the relativistic EDF PC-PK1 [50] 
was employed. Only the degrees of freedom of the axial 

(3)𝛽𝜆 ≡ 4𝜋

3AR𝜆
0

⟨q�Q̂𝜆0�q⟩

(4)
∑

qb

[
H

J�
(qa, qb) − EJ�

�
N

J�
(qa, qb)

]
f J�
�
(qb) = 0,

(5)O
J𝜋
(qa, qb) = ⟨qa�ÔP̂J

KM
P̂𝜋P̂NP̂Z �̂qb⟩

(6)

B(E𝜆;Ji𝜋i𝛼i → Jf𝜋f𝛼f)

=

e2

2Ji + 1

�����

�

qi ,qf

�
f Ji𝜋i
𝛼i

(qi)
�
∗
�
f Jf𝜋f
𝛼f

(qf)
�

× ⟨ΦJf𝜋f
𝛼f

(qf)��Q̂𝜆��ΦJi𝜋i
𝛼i

(qi)⟩
�����

2

(7)

⟨ΦJf𝜋f
𝛼f

(qf)��Q̂𝜆��Φ
Ji𝜋i
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(qi)⟩
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2

�
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Ji∗
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(𝜃)⟨Φ(qf )�Q̂𝜆Me

i𝜃Ĵy P̂𝜋P̂NP̂Z�Φ(qi)⟩,
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symmetry deformation were considered in the current study. 
Pairing correlations between nucleons are treated within 
the BCS approximation using a density-independent � force 
with smooth cutoffs [51]. Strength parameters of the pairing 
force are set to Vn = −349.5 MeV fm3 for the neutrons and 
Vp = −330.0 MeV fm3 for protons. In the calculation of the 
projected kernels, N� = 16 mesh points are used for the rota-
tion angle � , and N� = 7 for the gauge angle � , both within 
the interval [0,�] . Since the low-lying parity doublet bands 
of 224Rn are primarily characterized by prolate deformed 
configurations with 𝛽2 > 0 , the oblate deformed configura-
tions with 𝛽2 < 0 are excluded in the final configuration-
mixing GCM calculations to reduce computational costs. 
The Pfaffian method [52, 53] is implemented to avoid the 
sign problem when calculating the norm kernel overlap.

Figure 1 presents the energies of the mean-field states for 
224Rn normalized to the energy minimum in �2-�3 deforma-
tion plane. It is shown that, although the energy minimum 
is at �3 = 0 , the energy surface is soft along the �3 direc-
tion around the minimum, which is similar to the findings 
in study using the relativistic Hartree–Bogoliubov (RHB) 
method [26]. The softness of the energy surface in 224Rn is 
attributed to the coupling of the proton orbitals i13∕2 − f7∕2 
and the neutron orbitals j13∕2 − g7∕2 around the the Fermi 
surfaces [54]. The soft behavior indicates that the dynamic 
correlation effects, including symmetry restoration and 
quadrupole-octupole shape fluctuations, can be significant 
in the low-lying states of 224Rn.

Figure  2 shows the energy surfaces of 224Rn with 
projections to good nucleon numbers and spin parity 
J� = 0+, 1−, 2+ , and 3− . Since the mean-field configura-
tions with very small values of �3 are predominated by 

components with positive parity, the energies of the 
negative-parity states projected from these mean-field 
configurations are not shown. The energy minimum of 
the 0+ state shifts to an octupole-deformed shape with 
�2 = 0.1, �3 = ±0.05 . The energy gained from the restora-
tion of broken symmetries for the energy-minim state is 
∼ 4.23 MeV. The energy surface of the 2+ state is similar 
to that of the of 0+ state, except that it is softer along 
the quadrupole deformation �2 ≃ [0.10, 0.20] with octu-
pole deformation �3 ≃ [−0.10,+0.10] . A similar result 
was observed in the potential energy surfaces (PESs) 
with J = 1 (cf. Fig. 2c), and J = 3 (cf. Fig.  2d), where the 
absolute minima are well separated along �3-direction. The 
projected PESs with J = 1 and J = 3 show the soft struc-
tures in octupole �3 ≃ ±0.15 with a quadrupole deforma-
tion ranging from �2 ≃ 0.10 to 0.25.

The quadrupole-octupole-deformed configurations with 
good quantum numbers serve as the basis for expanding 
the wave functions of the low-lying state within the GCM. 
Figure 3 shows the excitation energies of the positive- and 
negative-parity bands calculated by solving the HWG equa-
tions (4) for three different configuration-mixing schemes. 
Calculation results are compared with data from Ref. [9]. 
The calculation by mixing configurations with different �2 
and fixed �3 = 0.05 provides very spread energy spectrum. 
In particular, the negative-parity states are very high in 
energy. By contrast, by mixing configurations with differ-
ent �3 values but fixed �2 = 0.15 , the energy spectrum were 
significantly compressed. In the full quadrupole-octupole 
configuration-mixing calculation, the negative-parity states 
shift and approached the data.

Fig. 1  (Color online) The mean-field energy surface of 224Rn in �
2
-�

3
 

deformation plane normalized to the energy minimum. Two neigh-
boring contour lines are separated by 0.4 MeV

Fig. 2  (Color online) The energies of states in 224Rn with projections 
onto good nucleon numbers, different spin parities with (a) J� = 0

+ , 
(b) J� = 2

+ , (c) J� = 1
− , and (d) J� = 3

− in �
2
-�

3
 deformation plane 

normalized to the energy minimum of each J state
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Figure 4 shows a detailed comparison of the low-lying 
parity doublet states including electric multipole transition 
strength B(E�) . It can be observed that the results calculated 
using the configuration-mixing GCM (Fig.  4b) and a single 
energy-minimum configuration (Fig.  4c) show similar par-
ity doublet bands with rotational characteristics. In contrast 
to the results of GCM calculations, the positive-parity band 
is more compressed in single-configuration calculations, 
where the negative-parity band becomes slightly lower than 
that obtained from GCM calculation. Quantitatively, the 
excitation energy E(1−) of the negative-parity band head is 
0.47 MeV and 0.39 MeV from the GCM and single-config-
uration calculations, respectively. For the 3− state, the cal-
culated excitation energy E(3−) from the GCM is 0.63 MeV, 
which is in good agreement with the data of E(3−) = 0.65 
MeV. The electric octupole transition strength of 224Rn is 
B(E3;3− → 0+) = 43 W.u., which is comparable to that for 
224Ra B(E3;3− → 0+) = 42(3) W.u.. This provides evidence 
for the increased strength of octupole correlations in the area 

surrounding A = 224 mass nuclei, even though the negative-
parity 3− state of 224Rn has a much higher excitation energy. 
These results are obtained for 224Ra; however, the transi-
tion strengths are reproduced perfectly [41]. In the future 
experiments, it is important to further verify the calculated 
intraband E2 transitions in the same parity band, as well as 
the interband E1 and E3 transitions connected to the ground-
state band of 224Rn. This investigation indicates that the cal-
culated energies for the excited states are slightly higher than 
expected. The discrepancy is likely due to the omission of 
triaxial and time reversal symmetry-breaking components 
in the model calculations, as discussed in previous studies 
on other nuclei with different GCM approaches [55, 56], 
however, when considering these symmetry breaks require 
consideration of the GCM calculations with cranking or 
particle-hole excitation configurations and the inclusion of 
three-dimensional angular momentum projection (3DAMP), 
which is beyond the framework of our proposed model.

Fig. 3  (Color online) The 
energy spectra of low-lying 
states in 224Rn obtained from 
the GCM calculations with b 
(�

2
 , �

3
) , c (�

2
= 0.15, �

3
) , and 

d (�
2
, �

3
= 0.05) as generating 

coordinates, respectively. The 
data from Ref. [9] are shown 
in a 

Fig. 4  (Color online) Low-lying energy spectra for 224Rn. The avail-
able data are collected from Ref. [9] and the results calculated from 
configuration-mixing GCM and single energy-minimum configu-
ration are shown in a–c columns, respectively. The numbers on the 

arrows are intraband E2 (blue color for positive-parity and red color 
for negative-parity bands) and interband E1 (green color) or E3 (vio-
let color) transition strengths connecting to the ground-state band. All 
transition strengths are in Weisskopf units



Static or dynamic pear shapes in radioactive nucleus 224Rn?  Page 5 of 10 202

Figure 5 shows the collective nuclear wave functions |gJ�
�
|2 

for low-lying parity doublet states of the angular momentum 
and parity in 224Rn, where the orthonormal collective wave 
function gJ�

�
 is constructed as

The distribution of the collective wave functions in the �2
-�3 plane is usually adopted to analyze staggering behav-
iors in low-lying parity doublet states. The wave functions 
of the states become increasingly concentrated in a quad-
rupole-octupole-deformed configuration with an increase 
in angular momentum, demonstrating a picture of rotation-
induced shape stabilization. Similar to 224Ra [41], from the 
perspective of collective nuclear wave functions, the radioac-
tive nucleus 224Rn exhibits a transition from a gentle octu-
pole deformation to a stable pear shape. We examined the 

(8)gJ�
�
(qa) =

∑

qb

[N
J�
]

1∕2
qa,qb

f J�
�
(qb).

nuclear wave functions of 224Rn and found that the calcula-
tions involving configurations with different �3 and a fixed 
�2 yield results similar to those of 224Ra (cf. Fig. 4(e) and (f) 
in Ref. [41]). As the spin increases, the dominant configura-
tion for the positive-parity states gradually shifted from weak 
octupole configurations to those with large octupole shapes. 
Conversely, for the negative-parity states, the collective wave 
functions are zero at �3 = 0 and become concentrated around 
large octupole-deformed configurations. This corresponds 
with the evolution trend of the collective wave functions with 
the spins from the full GCM calculations, as shown in Fig. 5.

Figure 6 shows the energy ratio RJ∕2 of the excitation 
energy of each state with an angular momentum J relative 
to that of positive-parity 2+ states for 224Rn. For compari-
son, the experimental data for 224Ra are also provided. The 
ratio is defined as RJ∕2 = Ex(J

�
)∕Ex(2

+

) , where � = + and 
− indicate positive and negative parity, respectively. The 

Fig. 5  (Color online) Col-
lective wave functions of the 
parity doublet states a with 
J
�
= 0

+

, 2
+

,⋯ , 8
+ and b with 

J
�
= 1

−

, 3
−

,⋯ , 9
− in the �

2
-�

3
 

deformation plane. See text for 
details
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phenomenon of interleaving the positive- and negative-par-
ity bands is a common method used to study the nuclei with 
octupole correlation. In idealized interleaving parity doublet 
bands, the ratio RJ∕2 shows a quadratic-like function as angu-
lar momentum J increases. First, the energy levels of posi-
tive- and negative-parity bands remain decoupled, resulting 
in odd-even staggering and the staggering amplitude glob-
ally decreases with increasing J in 224Rn. This feature is 
similar to that obtained from the GCM calculations for 224Ra 
[41] and Ba isotopes [42]. The tendency of the staggering 
amplitude of RJ∕2 as a function of the angular momentum is 
reproduced qualitatively for 224Rn. However, the staggering 
amplitude deviates from the experimental data. The single 
energy-minimum configuration overestimates the staggering 
amplitude of ratio RJ∕2 resulting from the lower E(2+) value 
of positive-parity 2+ state obtained (cf. Fig. 4c). However, 
after considering the configuration-mixing effects, as shown 
in Fig. 4b, an overestimation of the excitation energy 2+

1
 state 

results in an underestimation of the RJ∕2-staggering ampli-
tude in the GCM calculations. The inset panel of the Fig. 6 
shows the normalized staggering SJ∕2 between the positive- 
and negative-parity bands. It is defined as [57]

Superscripts denote the parity of the two bands. This quan-
tity reflects the octupole deformation stability changing 
with angular momentum J(ℏ) . It is clear that the normal-
ized staggering SJ∕2 decreases as the angular moment J(ℏ) 
increases. In brief, variations in the staggering RJ∕2 and SJ∕2 
with increasing angular momentum J(ℏ) show a behavior 
characteristic from octupole vibration at a lower J(ℏ) to 
octupole rotation at a higher J(ℏ) in 224Rn.

Figure 7 shows the correlation between the excitation 
energies of 224Rn and 224Ra. Both the calculated and the 
experimental data deviated slightly from the diagonal line. 
As the spin increases, the excitation energies of the posi-
tive- and negative-parity states in 224Rn and 224Ra increased 
at a similar rate. In Fig. 7a, it is clear that our calculations 
overestimate the excitation energies of positive-parity states. 
However, a linear relationship of the excitation energies 
between 224Rn and 224Ra is consistent with that of experi-
mental data. This phenomenon has also been observed in 
negative-parity bands, as shown in Fig. 7b. Furthermore, 
we plot Fig. 8 to demonstrate the relationship of the elec-
tric transition strengths between 224Ra and 224Rn. A linear 
increasing relationship is also found in the intraband tran-
sitions B(E2;L± → (L − 2)±) or the interband transition 
B(E3;L− → (L − 3)+) and B(E1;L− → (L − 1)+) in the parity 
doublet bands. Moreover, for the interband B(E1) and B(E3) 
transitions between the positive- and negative-parity doublet 
bands, the linearity gradually deviates from the diagonal 
line as the spin increases, as shown in Fig. 8b. However, the 
intraband transitions B(E2) of positive- and negative-parity 
bands tend to exhibit a diagonal distribution with increas-
ing spin in Fig. 8a. It appears that the fundamental structure 
associated with the quadrupole-octupole correlations in 
224Rn exhibits similar behavior to that of 224Ra.

The transi t ion octupole moment Q3(3
−

→ 0+) 
can be derived from the transition matrix elements: 

(9)SJ∕2 =
|||Ex(J

±

) −

(J+1)Ex(J−1)
∓

−JEx(J+1)
∓

2J+1

|||∕Ex(2
+

).

Fig. 7  (Color online) a 
Theoretical and experimental 
excitation energies of positive-
parity states in 224Ra against the 
values in 224Rn. b Same as a but 
for negative-parity states. The 
results of calculations for 224Ra 
are taken from Ref. [41] and the 
available data are taken from 
Refs. [7, 9]

Fig. 6  (Color online) Ratio R
J∕2

 of the excitation energy of each J± 
state to that of positive-parity 2+ state as a function of the angular 
momentum J(ℏ) for 224Rn. The inset panel is the normalized stag-
gering amplitude S

J∕2
 as a function of the angular momentum J(ℏ) . 

The results are calculated from configuration-mixing GCM and single 
energy-minimum configuration. Experimental data of 224Ra [7] are 
also given for comparison
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⟨3−��M̂(E3)��0+⟩ , which corresponds to the 3− → 0+ tran-
sitions. We plot Fig. 9 to show the relationship between the 
transition octupole moment Q3(3

→0+) and the energy E(3−) 
of the negative-parity state in 224Rn, which is denoted by 
an open square. The solid squares show the measured Q3 
values with error bars for the nuclei with mass A > 200 
in the Z ≃ 88 and N ≃ 134 regions, as reported in [6, 7]. 
For comparison, we have also included the calculated Q3 
value for 224Ra, as given in Ref. [41]. 208Pb has a typical 
dynamic pear-shaped octupole vibrator is characterized by 
the highest E(3−) energy with a minor Q3 value. For the 
nuclei such as 220Rn, 230, 232Th, and 234U with similar Q3 
values to that of 208Pb are considered octupole vibrators. 
Larger Q3 and smaller E(3−) values for 222Ra, 224Ra, and 
226Ra indicate an enhancement in octupole collectivity that 
is consistent with the onset of octupole deformation in this 
mass region. Although a more stretched negative-parity 
band is obtained, our results indicate that the E(3−) energy 
of the experimental data is reproduced very well for 224Rn 
[cf. Fig. 4]. The predicted transition octupole moment Q3 
of 224Rn shows as larger as that of 224Ra, indicating that 

224Rn is likely to exhibit strong octupole correlations. 
Therefore, 224Rn has a high probability of being a rotor 
in our theoretical calculations. Further measurements of 
Q�(� = 1 or 3) are required to confirm the possibility of 
enhanced octupole collectivity for 224Rn.

4  Summary

In this study, we present a beyond-mean-field study of the 
low-lying parity doublet bands in 224Rn with a multiref-
erence covariant density functional theory, in which the 
dynamic correlations related to symmetry restoration and 
quadrupole-octupole shape fluctuations were treated using 
the generator coordinate method, combined with the parity, 
particle-number, and angular momentum projections. The 
low-lying energy spectrum is reasonably reproduced when 
the shape fluctuations in both the quadrupole and octupole 
shapes are considered. Collective nuclear wave functions 
and the low-lying spectrum-related energy ratio RJ∕2 and the 
normalized staggering SJ∕2 suggest a transition from gentle 
octupole deformation to a stable pear-shaped structure. The 

Fig. 8  (Color online) a Same as Fig.  7 but for electric multipole 
transition strengths. a Intraband transitions B(E2;L± → (L − 2)

±

) 
with even L = 2, 4, 6, 8 and odd L = 3, 5, 7 stand for positive- 

and negative-parity bands, respectively. b Interband transition 
B(E3;L

−

→ (L − 3)
+

) or B(E1;L− → (L − 1)
+

) with L = 3, 5, 7 con-
nect to parity doublet bands

Fig. 9  (Color online) Relation-
ship between the transition 
octupole moment Q

3
(3

−

→ 0
+

) 
and the energy E(3−) of the 
negative-parity state in 224Rn, 
denoted by an open square. 
The solid squares indicate 
the measured Q

3
 values with 

error bars for nuclei with mass 
A > 200 reported in [6, 7]. The 
calculated Q

3
 value for 224Ra 

[41] (open square) have been 
included for comparison. The 
horizontal dashed line repre-
sents the Q

3
 value of octupole 

vibrator 208Pb
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results of 224Rn were compared to those of 224Ra. We have 
found these two nuclei have similar electric octupole (E3) 
transition strength. Specifically, B(E3;3− → 0+) = 43 W.u. 
for 224Rn, comparable to the experimental value of 224Ra 
(42(3) W.u.). This result indicates that 224Rn may possess 
a similar strong octupole correlation to that in 224Ra, even 
though the excitation energy of 3− in 224Rn is approximately 
twice that of 224Ra. However, a more solid conclusion can 
only be drawn based on related octupole criteria such as the 
electric dipole E1 and octupole E3 transition probabilities, 
which will be measured in the future. This study suggests 
that 225Rn atom, similar to 225Ra atoms [58, 59], can serve as 
another candidate for measuring permanent atomic electric 
dipole moment.
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