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Abstract
Machine learning algorithms are considered as effective methods for improving the effectiveness of neutron-gamma (n-� ) 
discrimination. This study proposed an intelligent discrimination method that combined a Gaussian mixture model (GMM) 
with the K-nearest neighbor (KNN) algorithm, referred to as GMM-KNN. First, the unlabeled training and test data were 
categorized into three energy ranges: 0–25 keV, 25–100 keV, and 100–2100 keV. Second, GMM-KNN achieved small-batch 
clustering in three energy intervals with only the tail integral Qtail and total integral Qtotal as the pulse features. Subsequently, 
we selected the pulses with a probability greater than 99% from the GMM clustering results to construct the training set. 
Finally, we improved the KNN algorithm such that GMM-KNN realized the classification and regression algorithms through 
the LabVIEW language. The outputs of GMM-KNN were the category or regression predictions. The proposed GMM-KNN 
constructed the training set using unlabeled real pulse data and realized n-� discrimination of 241Am-Be pulses using the 
LabVIEW program. The experimental results demonstrated the high robustness and flexibility of GMM-KNN. Even when 
using only 1/4 of the training set, the execution time of GMM-KNN was only 2021 ms, with a difference of only 0.13% 
compared with the results obtained on the full training set. Furthermore, GMM-KNN outperformed the charge comparison 
method in terms of accuracy, and correctly classified 5.52% of the ambiguous pulses. In addition, the GMM-KNN regressor 
achieved a higher figure of merit (FOM), with FOM values of 0.877, 1.262, and 1.020, corresponding to the three energy 
ranges, with a 32.08% improvement in 0–25 keV. In conclusion, the GMM-KNN algorithm demonstrates accurate and readily 
deployable real-time n-� discrimination performance, rendering it suitable for on-site analysis.
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1 Introduction

Scintillation detectors are typically used for neutron detec-
tion [1–3]. In scintillation detectors, neutron and gamma-ray 
signals have different time decay constants, with neutron 
signals having longer decay times than gamma-ray signals 
[4]. Thus, neutrons and gamma rays have different pulse 
shapes, and pulse shape discrimination (PSD) [5] utilizes 
this difference to discriminate between the two categories. 

In conventional n-� discrimination algorithms, the charge 
comparison method (CCM) uses the PSD factor as a dis-
criminating index [6], which is the ratio of the tail integral of 
the pulse ( Qtail ) to the total integral ( Qtotal ) [7, 8]. In general, 
the PSD factor corresponding to neutrons is larger than that 
corresponding to gamma rays. The CCM is simple and easy 
to use; however, it is weak in case of n-� discrimination in 
the low-energy range.

Currently, machine learning algorithms are widely 
used for n-� discrimination [9, 10]. Machine learning 
algorithms include unsupervised and supervised learn-
ing algorithms. Unsupervised learning algorithms cluster 
data according to their distribution in the feature space, 
which does not rely on pre-labeled samples and can iden-
tify abnormal pulse events [11, 12]. The Gaussian mix-
ture model (GMM), which is commonly used in unsuper-
vised learning, has demonstrated good performance in n-� 
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discrimination [13, 14]. However, the direct clustering of 
complete pulse data by the GMM still faces challenges. 
First, clustering high-dimensional data directly leads to the 
"curse of dimensionality." Second, when performing direct 
clustering on massive amounts of data using the GMM, 
a large number of significant errors occur, with neutrons 
incorrectly identified as � rays within clusters with clear 
boundaries. Furthermore, GMM clustering is suitable only 
for fixed data [15, 16].

To overcome the limitations of the GMM in n-� dis-
crimination, Liu et al. [14] proposed a method combining 
principal component analysis (PCA) and GMM clustering. 
They extracted three features using PCA and then applied 
the GMM clustering algorithm. The results indicated that 
the PCA-GMM provided a higher figure of merit (FOM) 
for n-�  discrimination than the CCM. However, this 
method has strict data requirements, necessitating close 
pulse peak positions and including only pulse tails while 
disregarding the differences in the overall pulse.

Wang et al. [17] proposed a method for identifying neu-
trons and � rays using a small-batch GMM clustering algo-
rithm. This method yields a higher FOM than the CCM. 
However, in case of a large mismatch between the test 
pulse and the trained model, the exponent yields a large 
negative value, indicating that this method is susceptible 
to outliers.

Supervised learning algorithms can classify or regress 
unknown signals; however, they depend on prior knowledge. 
Common supervised learning algorithms include K-nearest 
neighbors (KNN) [18–20], support vector machines (SVM) 
[21, 22], and linear discriminant analysis (LDA) [23]. The 
KNN algorithm performs classification or regression predic-
tion by calculating the distance between the test data and 
training samples. It is a simple and portable algorithm that 
accurately performs classification and regression tasks based 
on existing samples. However, the real-time performance 
of the KNN algorithm remains debatable, and its stability 
under different conditions requires further exploration.

Durbin et al. [18] proposed a new method that uses KNN 
regression to improve the PSD performance. This approach 
enabled direct comparison with conventional PSD methods 
using the FOM. However, this study did not consider the 
runtime of the algorithm, which is a critical indicator of 
real-time performance [24–27].

All the studies mentioned above concentrated on using 
machine learning algorithms to improve the n-� discrimina-
tion capabilities. However, they did not address the algo-
rithmic portability or real-time performance issues. Thus, 
this study proposed a combined method of GMM and KNN 
algorithms (GMM-KNN) to overcome the limitations of a 
single machine learning algorithm in n-� discrimination. The 
proposed method constructs a training set from unlabeled 
data to discriminate unknown pulses.

2  Method

In this study, the GMM-KNN algorithm combines asu-
pervised learning algorithm (GMM clustering) with an 
unsupervised learning algorithm (KNN classification and 
regression). Further, the GMM-KNN achieves pulse dis-
crimination using the LabVIEW program.

2.1  GMM clustering

The GMM is a probabilistic model that describes a dataset 
comprising multiple Gaussian distributions [28]. For each 
Gaussian component, the probability density function is 
expressed as:

where n denotes the dimensions of the pulse data; � denotes 
the n-dimensional mean vector; and Σ denotes the covari-
ance matrix of n × n. Obviously, the Gaussian distribution is 
determined by the mean vector � and the covariance matrix 
Σ . The initial pulse has 248 features; however, such a high 
dimension leads to the "curse of dimensionality." To reduce 
the number of pulse features, this study used only Qtail and 
Qtotal as the two-dimensional (2-D) features of the pulse data, 
that is n = 2.

Neglecting pulse stacking in the n-� discrimination, the 
GMM has only two components: neutrons and gamma rays. 
For a Gaussian mixture distribution with two mixed compo-
nents, the probability density is expressed as:

where �i is the "mixture coefficient", which is the probability 
of selecting the ith component Gaussian. Here, �i>0, and 
2∑
i=1

�i = 1.

The model parameters �i , �i
 , and Σi must be solved by 

the iterative optimization of the expectation-maximum 
(EM) algorithm [29, 30]. Each iteration of the EM algo-
rithm comprises two steps: step E, which involves estimating 
the expectation of the hidden variables based on the current 
parameters; and step M, which involves using the compu-
tational results from step E to update the model parameters 
based on maximum likelihood estimation.

A large number of errors occurred when GMM cluster-
ing was performed directly on the entire training dataset. To 
enhance the accuracy of GMM clustering, we divided the 
data into three energy ranges [17]: 0–25 keV, 25–100 keV, 
and 100–2100  keV. The GMM soft clustering output 

(1)

f (x|�,Σ) = 1

(2�)n∕2|Σ|1∕2 e
−

1

2 (x − �)TΣ−1(x − �).x ∈ ℝ,

(2)fM(x) =

2∑
i=1

�i ⋅ f (x|�i
,Σi),
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provides the probability that a pulse belongs to either neu-
trons or gamma rays. If the probability of a pulse belonging 
to neutrons exceeded 50%, it was classified as a neutron; 
otherwise, it was classified as a gamma ray. The primary 
objective of GMM clustering was to produce a dependable 
training set that is subsequently utilized by the KNN algo-
rithm. However, this classification method may encounter 
ambiguous pulses, which can reduce the accuracy of KNN 
classification.

2.2  KNN classification and regression algorithm

GMM clustering can only cluster a fixed dataset; therefore, 
supervised learning algorithms must be used for real-time 
discrimination. This study used supervised learning to accu-
rately represent the distribution of the training set samples, 
which followed a Gaussian mixture distribution comprising 
two components. The goal of supervised learning was to 
ensure that the test set data exhibited classification/cluster-
ing results similar to those of the training set. Among the 
supervised learning algorithms, such as SVM and LDA, 
KNN was selected for its simplicity and ease of implemen-
tation in LabVIEW programs. The KNN algorithm is known 
for its simplicity and accuracy, ensuring a generalization 
error that is not more than twice the error rate of the Bayes 
optimal classifier. To optimize the KNN algorithm, it is 
important to determine the optimal value of K, select an 
appropriate distance metric, and specify the decision rule.

First, the key to the KNN algorithm is the determination 
of the optimal K value. When the K value is excessively 
large, the distant points affect the prediction results, result-
ing in underfitting; conversely, if K is excessively small, the 
model is less tolerant of noise and prone to overfitting. In 
this study, the method used to determine the optimal K value 
was tenfold cross-validation [31]. A tenfold cross-validation 
means that the training dataset D was divided into ten equal 
parts, nine of which were used to train the model, and the 
remaining 1 part of the data was used to compute the test 
accuracy. This process was repeated for each part of the 
data to obtain the average accuracy. There exists a maxi-
mum value for the results of the tenfold cross-validation, 
where the accuracy value first increases with increasing K 
and then decreases after reaching the maximum value. The 
K value corresponding to the highest accuracy average is 
the optimal K value. The dataset D must contain a sufficient 
number of samples, and simultaneously, the result of the 
GMM clustering can obtain a reliable training set. There-
fore, GMM-KNN uses the training set obtained from GMM 
clustering as dataset D.

In addition, the KNN algorithm must calculate the dis-
tance between an unknown pulse and each pulse in the train-
ing set (in this study, the distance is the Euclidean distance). 

For example, for points X and Y with n features, the distance 
is calculated as

Because we use Qtail and Qtotal as the 2 features of pulses, the 
above equation has n = 2 . Calculating the distance between 
the two pulses simply involves replacing x and y with Qtail 
and Qtotal , respectively.

Finally, the KNN algorithm outputs the classification or 
regression results for the pulses in the test set. For the KNN 
classification task, the result is the category that occurs most 
frequently in the nearest neighboring K instances [32]. For 
the KNN regression task, the result is the average value of 
each feature over the nearest neighboring K instances [33].

2.3  GMM‑KNN classification and regression

Both GMM and KNN are effective methods for n-� discrim-
ination. GMM clustering performs well in PSD analysis. 
However, the results of GMM clustering are limited to the 
current dataset, and prior knowledge obtained from the train-
ing set cannot be directly applied to the test set. In contrast, 
KNN accurately captures the sample distribution and can be 
easily implemented on hardware, providing strong real-time 
performance and the potential for real-time n-� discrimi-
nation. However, the drawback of KNN is that it requires 
prestoring the sample set.

In this study, the goal of GMM clustering was to con-
struct a reliable training set, and KNN utilized this training 
set to discriminate unknown pulses. To integrate the GMM 
and KNN, we proposed improvements to both methods. 
When GMM clusters the data across the entire energy range, 
a significant number of misclassifications are obtained. 
Therefore, in GMM-KNN, the data were divided into three 
energy partitions to enhance the clustering performance. In 
addition, the GMM clustering results often include confus-
ing pulses (low-probability events). Hence, we selected only 
the pulses with classification probabilities greater than 99% 
as the training set. The test set of GMM-KNN comprised a 
large number of unknown pulses, and each pulse must cal-
culate its distance from all samples in the training set. Using 
the complete training set yielded the most accurate classifi-
cation results but significantly increased the computational 
cost of the algorithm.

In the context of GMM-KNN classification, reducing 
the size of the training dataset has a minimal impact on the 
classification results, but significantly decreases the algo-
rithm complexity. This facilitates a flexible selection of the 
sample quantity within the training set for the GMM-KNN 
classification. However, for GMM-KNN regression, a com-
plete training set must be used to ensure the accuracy of the 
regression predictions. To assess the real-time performance 

(3)D(X, Y) =

√
(x1 − y1)

2 + (x2 − y2)
2 +⋯ + (xn − yn)

2.
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of our method, a unified programming language or first-in, 
first-out (FIFO) data transfer with other devices must be 
employed. The LabVIEW program can call or directly read 
the acquired data, which facilitates the real-time implemen-
tation of the GMM-KNN for pulse discrimination. Using 
parallel computing, the LabVIEW program can concurrently 
calculate two decision values, resulting in simpler decision 
logic and faster computation. In addition, the real-time per-
formance of the algorithm must consider the runtime and 
memory footprint of the trained model. Thus, this study 
proposed the GMM-KNN algorithm that employed only 
two features, Qtail and Qtotal , for both GMM clustering and 
KNN classification and regression. These features reduced 
data dimensionality in GMM clustering and significantly 
decreased the computational cost and memory footprint of 
the trained model.

A block diagram of the procedure of GMM-KNN algo-
rithm is shown in Fig. 1. First, the method divides the pre-
processed training and test data into three parts separately, 
These three energy ranges are 0–25 keV, 25–100 keV, and 
100–2100 keV, respectively. Second, GMM takes Qtail and 
Qtotal as pulse features and performs small-batch clustering 
in three energy ranges. Consequently, this method selects a 
portion of the data of clustering results (probability > 99%) 
as the training set of KNN. Finally, GMM-KNN implements 
the classification and regression algorithms with LabVIEW 
programming and subsequently outputs the category and 
regression prediction values.

2.4  Evaluation metrics

The output of the GMM-KNN classification was binary, 
with zero representing gamma rays and one representing 
neutrons. Both pulse types exhibited an elliptical distribution 
in the feature space. Comparing the difference between the 
output and ground truth facilitated the qualitative assessment 
of the effectiveness of the n-� discrimination. The outputs of 
the GMM-KNN regression comprised the average values of 
the nearest K pulses for Qtail and Qtotal , as well as their ratios. 
We used this ratio to calculate the FOM, where a higher 
FOM indicated better n-� discrimination performance.

There is a difference in the ratio of slow charge to total 
charge between the two types of pulses, neutrons and gamma 
rays; therefore, the CCM selects the ratio of the tail integral 
( Qtail ) to the total integral ( Qtotal ) as the PSD factor [34] and 
then calculates the FOM as the discrimination metric. In this 
study, Qtail and Qtotal were adjusted to obtain the best FOM. 
Qtail was considered as 68 ns and Qtotal as 124 ns (Fig. 2). 
For the GMM-KNN regression, the pulse features are the 
predicted regression values, thus, PSD = (Regressed Qtail ) / 
(Regressed Qtotal ). After calculating the PSD values for all 
pulses, the GMM-KNN regression used the updated FOM 
as the evaluation metric, which can use the FOM to evaluate 
the n-� discrimination effectiveness further.

Two Gaussian peaks were observed in the PSD histogram 
after Gaussian fitting (Fig. 3), and the FOM is calculated as 
follows:

Fig. 1  Block diagram of n/� discrimination based on GMM-KNN
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where Γ is the distance between the two Gaussian peaks and 
FWHM

�
 and FWHMn are the full width at half maximum of 

the gamma and neutron peaks, respectively. A larger FOM 
value implies a higher separation between the two Gauss-
ian peaks. Thus, the algorithm n/� discrimination was more 
effective.

3  LabVIEW implementation of GMM‑KNN

LabVIEW is a graphical programming language used mainly 
in the fields of control, measurement, and data acquisition 
[35]. The nuclear signal output from the detector was digitized 
and stored using the LabVIEW host computer program and 

(4)FOM =
Γ

FWHM
�
+ FWHMn

,

the signals were processed using discrimination algorithms. 
To evaluate the real-time performance of the algorithm for 
data acquisition, we used the unified LabVIEW programming 
language. KNN classification using the LabVIEW program 
first presorted the training set. Consequently, the distance val-
ues were completely independent of the index values, which 
simplified judgment logic. The array operations in KNN 
regression facilitated regression values for all features to be 
calculated simultaneously, greatly simplifying the LabVIEW 
program. In the LabVIEW program for real-time n-� discrimi-
nation, the unknown pulses were computed as arrays. In this 
study, the GMM-KNN classification and GMM-KNN regres-
sion algorithms were applied to the same test set for discrimi-
nation, and the output results were saved as a.csv file.

3.1  Energy division

The pulses in the test set were randomly collected in the 
real experiments. The pulses were divided into three parts 
based on three energy ranges: 0–25 keV, 25–100 keV, and 
100–2100 keV. Figure 4 shows the LabVIEW program dia-
gram for pulses division based on energy. The conditional 
diagram uses energy as the determinant, and the program 
counts the pulses in each energy range. Thereafter, by sort-
ing the energy in ascending order and setting the index of 
"array subset vi" based on the count value, we can obtain three 
sub-arrays.

3.2  GMM‑KNN classification algorithm

A program block diagram of the GMM-KNN classification is 
shown in Fig. 5, GMM-KNN classification to determine the 
category of a pulse included three steps:

Step 1 - Training set composition: In the GMM-KNN algo-
rithm, the training set processed by GMM clustering contained 
26172 pulses (probability >99%), and the test pulses calcu-
lated the distances with each pulse of the training set. It is 
more computationally intensive when using the full training 
set directly; therefore, we sorted the data within the training 
set by probability value and take one sample every three val-
ues. These samples formed a 2-D array training set Mc . The 
columns of Mc represent the two features of a pulse, Qtail and 
Qtotal , and each row represents a pulse. The m rows in front of 
the 2-D array are the gamma rays and the remaining k rows are 
neutrons. The expression for Mc is as follows:

Fig. 2  Diagram of the tail integral Qtail and the total integral Qtotal

Fig. 3  Definition of FOM
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Fig. 4  Block diagram of LabVIEW program for energy division

Fig. 5  Block diagram of LabVIEW program for GMM-KNN classification algorithm
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Step 2 - Distance values computation: This involved comput-
ing the distance values between the test pulse feature vector 
� = [Qtail(test) + Qtotal(test)] and all pulses in the training 
set. These distance values formed a one-dimensional (1-D) 
array D(Mc,�) . The elements of D(Mc,�) are the Euclidean 
distance values between each row of the array within Mc and 
feature vector �:

Step 3 - Pulse classification: The distance subsets D
�
(Mc,�) 

and Dn(Mc,�) corresponded to gamma rays and neutrons, 
respectively. The smallest K values were obtained from 
the distance subsets D

�
(Mc,�) and Dn(Mc,�) . The result 

(5)Mc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�1(train)

�2(train)

�m(train)

⋮

n1(train)

n2(train)

nk(train)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qtail(�1) Qtotal(�1)

Qtail(�2) Qtotal(�2)

⋮ ⋮

Qtail(�m) Qtotal(�m)

Qtail(n1) Qtotal(n1)

Qtail(n2) Qtotal(n2)

⋮ ⋮

Qtail(nk) Qtotal(nk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)
D(Mc,�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D(�1(train),�)

D(�2(train),�)

⋮

D(�m(train),�)

D(n1(train),�)

D(n2(train),�)

⋮

D(nk(train),�)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= D
�
(Mc,�) + Dn(Mc,�)

of the tenfold cross-validation indicated a maximum accu-
racy of 99.317 % at K = 5; thus, K was set as 5. The two 
distance subsets were sorted in ascending order separately, 
and the smallest five gamma rays and five neutrons in each 
of D

�
(Mc,�) and Dn(Mc,�) were named as �1 , �2 , �3 , �4 , �5 ; 

n1 , n2 , n3 , n4 , n5 , respectively.
When 𝛾3 < n3 , we have

The above equation holds for 𝛾4 < n3 and 𝛾5 < n3 . In these 
cases, the number of gamma rays must be greater than the 
number of neutrons in the five nearest neighbor values.

When n3 < 𝛾3 , we have

The above equation holds for n4 < 𝛾3 and n5 < 𝛾3 . In these 
cases, the number of neutrons must be greater than the num-
ber of gamma rays among the five nearest neighbor values.

In summary, the 3rd value of each of the subsets ( �3 
and n3 ) was the judgment value. When 𝛾3 < n3 , the pulses 
were determined to be gamma rays. Conversely, when 
n3 < 𝛾3 , the pulses were considered as neutrons. In clas-
sification, the traditional KNN algorithm must perform 
five judgments and five counts. However, the GMM-KNN 
classification requires only one judgment, which improves 
algorithm efficiency and reduces algorithm complexity.

(7)
{

n1 < n2 < n3,

𝛾1 < 𝛾2 < 𝛾3 < n3.

(8)
{

𝛾1 < 𝛾2 < 𝛾3,

n1 < n2 < n3 < 𝛾3.

Fig. 6  Block diagram of LabVIEW program for GMM-KNN regression algorithm
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3.3  GMM‑KNN regression algorithm

GMM-KNN regression requires determining the nearest 
neighbor of the K(K = 5) values and calculating the average 
of the five values. The algorithm does not divide the train-
ing set into two groups but requires a complete training set. 
Similar to the GMM-KNN classification, the implementation 
of the GMM-KNN regression with LabVIEW involves three 
steps (Fig. 6 ):

Step 1: The distance values between the test pulse 
� = [Qtail(test) + Qtotal(test)] and the n pulses in the training 
set Mr were calculated. Consequently, a 1-D array of distance 
values D(Mr,�) was obtained.

Step 2: The 1-D array D(Mr,�) was combined with the 2-D 
array Mr of the training set into a new 2-D array Mn . The 
first row of Mn represented the distance value, the second 
row represented the Qtail value of the pulses in the train-
ing set, and the third row represented the Qtotal value of the 
pulses in the training set. We then sorted Mn in ascending 
order according to the first row and intercepted the first five 
columns to obtain M5.

(9)Mr =

⎡
⎢⎢⎢⎣

v1

v2

⋮

vn

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

Q
(1)

tail
Q

(1)

total

Q
(2)

tail
Q

(2)

total

⋮ ⋮

Q
(m)

tail
Q

(m)

total

⎤
⎥⎥⎥⎥⎦

(10)D(Mr,�) =

⎡⎢⎢⎢⎣

D(v1,�)

D(v2,�)

⋮

D(vn,�)

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

D1

D2

⋮

Dn

⎤⎥⎥⎥⎦

Step 3: The regression values of KNN were calculated. 
The first eigenvalue E1 was the average of the first five col-
umns in row 2, the second eigenvalue E2 was the average 
of the first five columns in row 3, and the third eigenvalue 
PSDGMM−KNN was the division of the first two eigenvalues.

The PSD values of all pulses were stored in.csv files, and the 
GMM-KNN regression used PSD as a discriminating index. 
The PSP values were used to compute the FOM, which can 
evaluate the n-� discrimination ability of the GMM-KNN 
regression. The GMM-KNN regression first calculated the 
distance value of the pulses and subsequently calculated 
the regression value of the nearest K value. The regression 
values for all pulses did not need to be calculated. Moreo-
ver, the regression values of Qtail and Qtotal were calculated 
in parallel, which significantly reduced the computational 
complexity.

(11)

Mn =

⎡
⎢⎢⎣

D1 D2 … Dn

Q
(1)

tail
Q

(2)

tail
… Q

(n)

tail

Q
(1)

total
Q

(2)

total
… Q

(n)

total

⎤
⎥⎥⎦

M5 =

⎡⎢⎢⎣

Dmin1 Dmin2 … Dmin5

Qtail(1) Qtail(2) … Qtail(5)

Qtotal(1) Qtotal(2) … Qtotal(5)

⎤
⎥⎥⎦

(12)E1 =

5∑
i=1

Qtail(mini)

5
, E2 =

5∑
i=1

Qtotal(mini)

5

PSDGMM−KNN = E1∕E2

Fig. 7  (Color online) Results of GMM clustering. a Results of the direct GMM clustering. b Results of the small-batch GMM clustering after 
segmentation by energy
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4  Results and discussion

The neutron source used in this experiment was an 241Am-
Be source, the detector was an organic liquid scintillation 
detector (EJ-301) [36, 37], and the digitizer was DT5730B. 
The detector collected current pulses, which were digi-
tized to obtain raw data. After preprocessing steps, such as 
smoothing, filtering, normalization, and baseline recovery, 
the raw data were transformed into initial data, which were 
stored the initial data in the computer. The preprocessed 
dataset of 60,000 pulses was divided into two parts. Of 
these, 30,000 pulses were used for the GMM clustering to 
obtain a reliable training set. The remaining 30,000 pulses 
were reserved to test the feasibility of the GMM-KNN 
algorithm.

4.1  GMM clustering

Depending on whether the probability value exceeded 
50%, we classified the GMM clustering results into two 
categories. Figure 7a shows the results of direct cluster-
ing, where the red squares and blue circles represent neu-
trons and gamma rays, respectively. There were significant 
errors in the pulse discrimination, with numerous neutrons 

Fig. 8  (Color online) n-� distribution in the training set within the 0–25 keV at different probabilities

Table 1  Distribution of pulses in three energy domains at intercepts 
of different probabilities

Probability

Energy (keV) Original dataset 90% 95% 99% 99.9%

0–25 12570 11002 10442 9177 7074
25–100 9576 9422 9357 9170 8867
100–2100 7854 7826 7810 7755 7671

Fig. 9  PSD histogram of the GMM-KNN regression, when the train-
ing set comprises pulses with a probability greater than 99.9%

Fig. 10  Training set comprising pulses with probability above 99%
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misclassified as gamma rays. Figure 7b shows the results 
of small-batch clustering in 3 energy ranges, where only 
a few ambiguous pulses were observed. Small-batch clus-
tering reduced the misclassification rate and improved the 
effectiveness of n-� discrimination.

Although small-batch clustering yielded better results 
than direct clustering, Fig. 7 exhibits the red downward pro-
trusion at the energy segmentation boundary (25 keV and 
100 keV). To obtain a reliable training set, these ambiguous 
pulses must be removed. Within 0–25 keV, we progressively 
increased the probability of pulses in the training set (Fig. 8). 
Figures 8a-c corresponds to complete pulses, pulses with a 
probability above 90%, and pulses with a probability above 
99%, respectively. Figure 8 demonstrates that a higher prob-
ability results in a better separation of pulses in the train-
ing set; however, it also decreases the number of pulses in 
0–25 keV.

Table1 presents the quantity distributions in the train-
ing set for different probabilities. At 25–2100 keV, there 
was minimal variation in the number of pulses. Most of the 
ambiguous pulses were concentrated at 0–25 keV. As the 
probability increased, the number of pulses in 0–25 keV 
decreased significantly. When the training set comprised 
pulses with a probability exceeding 99.9%, the number of 
pulses in the 0–25 keV range was even lower than that in the 
25–2100 keV. In addition, the PSD histogram of the test set 
exhibited three distinct peaks and poor fitting performance 
at this stage (Fig. 9). Therefore, this study used a training 
set composed of pulses with a probability exceeding 99%.

Figure  10 shows the training set comprising pulses with 
a probability above 99%. In this case, the samples with PSD 
values below the threshold ( PSDthreshold ) were removed at the 
energy segmentation boundaries. At this stage, the neutrons 
and gamma rays are completely separated, and the GMM-
KNN algorithm only needed to select the remaining pulses 
from this portion to construct the training set. Once the train-
ing set was constructed, the GMM-KNN can flexibly select 
a subset of data from the training set and implement n-� 
discrimination using LabVIEW program.

4.2  GMM‑KNN classification

In the context of real-time n-� discrimination, the algorith-
mic efficiency is a crucial factor that is influenced by both 
the size of the training set and the number of pulse features.

This study investigated the time consumption and error 
rates of the GMM-KNN algorithm by employing aver-
age sampling techniques to select subsets of the complete 
training set with proportions of 1/2, 1/3, 1/4, 1/5, and 1/6 
(Table 2). By comparing the time consumption and error 
rates of differently sized training sets, it was observed that 
when only 1/4 of the complete dataset was used, the classi-
fier’s time consumption was reduced to approximately 1/4 
of the original, resulting in an average execution time per 
pulse of only 67 μ s compared to 294.27 μ s for the complete 
training set. The discriminative results between the reduced 
dataset and the complete training set exhibited a difference 
of only 0.13% (41 pulses, with 21 falling in the 0–25 keV). 
This sampling method significantly reduced the computa-
tional costs while ensuring reliable discrimination results. 
This facilitated flexible selection of the training set based on 
the experimental latency requirements.

KNN algorithms typically use the nonzero-amplitude por-
tion of pulses as feature points, which encompass 64 points. 
Table 3 shows that the time consumption of the KNN algo-
rithm was 4325 ms in the 0–25 keV. In contrast, GMM-KNN 
employed only two pulse features, Qtail and Qtotal , resulting 
in a reduced execution time of 2021 ms for the same test 
volume. The program was parallelized, and the selection of 
Qtail and Qtotal significantly improved the processing speed. 
Notably, even when using the 64-points KNN algorithm, 
the execution time remained at 4325 ms, indicating that the 
algorithm was not very demanding in terms of the number 
of pulse features and could adapt to different pulse types and 
experimental requirements.

An imbalanced classification is a significant challenge 
for classification algorithms. In this study, we applied GMM 
clustering to partition a test dataset containing 10,000 
gamma rays and 10,000 neutrons into 20 subsets, each com-
prising 1,000 pulses. We varied the gamma/neutron ( �/n) 
ratios from 10:1 to 10:10 and from 10:10 to 1:10, result-
ing in 19 different ratios. We compared the results of the 

Table 2  Algorithmic time 
consumption and error rate of 
different sample sizes

Sample sizes

1/1 1/2 1/3 1/4 1/5 1/6

Total time (ms) 8828 4131 2712 2021 1648 1291
Error rate (%) 0.000 0.080 0.126 0.130 0.196 0.240

Table 3  Algorithmic times of different ranges or Method

Methods Energy (keV) Times (ms)

GMM-KNN 0–25 2021
GMM-KNN 25–100 1791
GMM-KNN 100–2100 1446
64-points KNN 0–25 3425
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GMM-KNN classifier with the prior knowledge to obtain 
the error rates and average execution times per pulse for each 
ratio, as shown in Fig. 11. All seven ratios ranging from 10:8 
to 6:10 exhibited error rates below 5%. The lowest error rate 
of 1.01% (1.23%) and average execution time of a cycle of 
301.84 μs (289.60 μs ) were achieved at a ratio of 9:10 (10:9), 
which is consistent with the � /n ratio of approximately 9:10 
(12,542 gamma rays to 13,619 neutrons) observed in the 
training set. The GMM-KNN classifier demonstrated excel-
lent real-time performance, strong adaptability, and robust-
ness. Thus, it exhibits great potential for real-time discrimi-
nation and can be utilized for on-site analysis, serving as a 
reference for offline n-� discrimination analysis.

Using the complete training set, the GMM-KNN per-
formed the classification task simultaneously in three 
different energy ranges (0–25  keV, 25–100  keV, and 
100–2100 keV). The discrimination results in these three 

energy ranges were concatenated to obtain a discrimina-
tion result across the complete energy range (as shown in 
Fig. 12). The classification exhibited a small error at the 
energy boundaries, which is consistent with the GMM clus-
tering results. This indicated that the test results accurately 
reflected the distribution of the data in the training set. In 
contrast to the CCM, which judges the pulse categories 
using the threshold PSDthreshold , the results of the GMM-
KNN classification were more consistent with the Gauss-
ian mixture distributions of the two components. In the 
low-energy range, an overlap between neutrons and gamma 
rays was observed, and we could not directly observe the 
classification results of these two pulse types in the low-
energy region in Fig. 12. Only by comparing the classifica-
tion effects of CCM and GMM-KNN in the feature space 
containing Qtail and Qtotal can we effectively evaluate their 
classification performances.

Using Qtail , Qtotal and energy as the X, Y, and Z axes, 
respectively, we obtained a three-dimensional (3-D) plot of 
the classification results in the feature space (Fig. 13). The 
red cubes and blue spheres represent neutrons and gamma 
rays, respectively. Figure 13a shows the classification results 
of CCM. Figure 13 shows the classification results of GMM-
KNN. As evident, for the majority of pulses, the neutrons 
and gamma rays exhibited distinct cone-shaped distribu-
tions, which rendered them easy to distinguish. However, 
for certain lower-energy pulses, there was no clear bound-
ary between the neutrons and gamma rays (indicated by the 
flattened red region in Fig. 13), resulting in their mixture 
and making differentiation difficult. To further compare the 
classification results of the CCM and GMM-KNN in the 
low-energy range, we focused on the performance of the two 
classification algorithms in the feature space.

Figure 14 shows the projection of the 3-D visualization 
from Fig. 13 onto the X − Y  plane. In the 2-D feature 

Fig. 11  Error rate and runtime for various gamma/neutron ratios

Fig. 12  (Color online) Classification results of GMM-KNN in a 2-D 
space comprising PSD and Energy
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space, we can observe the classification results of the 
CCM (left) and GMM-KNN (right). The two types of 
pulses exhibited approximately elliptical distributions, 
with blue representing gamma rays and red representing 
neutrons. The CCM determined the pulse categories based 
on the threshold, PSDthreshold . It constructed a histogram of 
the pulse PSD and fit it with a Gaussian distribution, 
thereby facilitating the separate fitting of peaks for neu-
trons and gamma rays. The midpoint between the two 
peaks was considered as the threshold PSDthreshold , which 
served as the criterion for distinguishing between neutrons 
and gamma rays. In Fig. 14, PSDthreshold is represented by 
a simple straight line (the equation of the line is 
y =

1

PSDthreshold

x ). In contrast, GMM worked better for ellip-

tical clustering, such that GMM-KNN classified 1657 
(5.52%) gamma rays correctly. Although GMM-KNN still 
cannot completely discriminate neutrons and gamma rays 
in the low-energy range, it performs better classification 
compared to CCM. In the feature space, the GMM-KNN 
had a larger number of discriminable pulses.

For the portion of pulses that is difficult to distinguish 
for both methods (the flattened red region in the 3-D visu-
alization), both the CCM and GMM-KNN tended to classify 
these ambiguous pulses as neutron pulses. This is because 
gamma rays exhibit a more concentrated distribution, result-
ing in a higher peak in the PSD histogram corresponding to 
gamma rays. As the PSDthreshold moved toward the gamma 
peak, more pulses are classified as neutrons. In the case of 
the GMM-KNN classification method, the training set was 
also generated by the GMM, resulting in classification pref-
erences similar to those of the CCM.

A quantitative comparison of the classification results of 
CCM and GMM-KNN revealed that GMM-KNN improved 
the n-� discrimination. For quantitative analysis, we used the 
GMM-KNN regression algorithm.

4.3  GMM‑KNN regression

To obtain a more generalizable metric, GMM-KNN employs 
regression to compute a quantifiable FOM value. This is 
because the difference between the two types of pulses, 
neutrons and gamma rays, increases with higher energies. 
Consequently, the FOM values vary across the three energy 
ranges.

For the CCM, we created a histogram of the PSD 
(Fig. 15). Figure 15a–c correspond to the test results within 
0–25 keV, 25–100 keV, and 100–2100 keV, respectively. 

Fig. 13  (Color online) Scatterplot in 3-D space comprising eigenvalues and energies. (a) CCM classification results. (b) GMM-KNN classifica-
tion results

Fig. 14  (Color online) Classification results of CCM and GMM-KNN 
in 2-D feature space. The left and right sides present the CCM and 
GMM-KNN classification results, respectively
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Figure  15a corresponds to the lowest 0–25  keV range, 
where the two Gaussian-fit peaks were least separated. In 
this energy range, neutrons and gamma rays were the most 
difficult to discriminate, and the number of misclassified 
pulses was the highest. As the energy increased, the differ-
ence between the distributions of the two types of pulses 
increased, and the separation of the two Gaussian-fit peaks 
increased, as shown in Fig. 15b and c. These two parts of 
the pulse can be easily distinguished. The CCM is a simple 

and effective discrimination method in the energy range of 
25–2100 keV; therefore, the CCM can discriminate pulses 
with high energies well. However, at lower energy levels, 
there are numerous ambiguous pulses, and the level of ambi-
guity increases as the energy decreases.

For the GMM-KNN regression, we generated PSD 
histograms (Fig. 16). Figure 16a–c correspond to the test 
results within 0–25 keV, 25–100 keV, and 100–2100 keV, 
respectively. As shown in Fig. 16a, for GMM-KNN, the 
separation of the two Gaussian fitting peaks increased, 
and the FOM value greatly improved compared with that 
in case of CCM. The discrimination ability of the GMM-
KNN was significantly better than that of the CCM in the 
energy range of 0–25 keV. However, in the higher energy 
ranges (25–100 keV and 100–2100 keV), the FOM values 
improved less and the separation of the two Gaussian-fitted 
peaks became slightly larger. When the effectiveness of n-� 
discrimination improved, we observed that the PSD is highly 

Fig. 15  Histograms of PSD from the CCM for the three energy levels

Fig. 16  Histograms of PSD from the GMM-KNN for the three energy levels

Table 4  FOM of CCM and GMM-KNN regression

Energy (keV)

Method 0–25 25–100 100–2100

CCM 0.664 1.053 0.967
GMM-KNN 0.877 1.262 1.020
Increasing rate 32.08 % 19.85 % 5.48 %



 T.-M. Ding et al.194 Page 14 of 16

concentrated in certain bins. This is attributed to the fact that 
the training set was not a standard Gaussian distribution, 
but there were several small protrusions of varying heights. 
After the KNN regression, pulses in certain intervals became 
more concentrated, leading to a more pronounced peak in 
the histogram.

The results of the CCM and GMM-KNN regressions 
are presented in Table 4. In the 0–25 keV, neither method 
could completely separate the two types of pulses. However, 
the FOM of the GMM-KNN method improved by 32.08%, 
thereby significantly enhancing the discrimination between 
neutrons and gamma rays. This method facilitated a further 
reduction in the energy threshold for discriminable pulses, 
implying that neutrons and gamma rays can be distinguished 
in a larger energy range. In addition, the improvement in 
FOM by GMM-KNN decreased as the energy increased. 
At 25–2100 keV, the CCM could achieve basic separation 
between neutrons and gamma rays, thereby diminishing the 
additional benefits of machine learning methods.

5  Conclusion

We designed a new intelligent discrimination algorithm 
called GMM-KNN. This method can be used to construct 
a training set from unlabeled data and achieve the n-� dis-
crimination of unknown pulses. GMM-KNN selected Qtail 
and Qtotal as pulse features to reduce the dimensions and 
flexibly select samples from the training set, which sig-
nificantly reduced algorithm complexity. GMM-KNN also 
used the LabVIEW program to achieve KNN classification 
and regression. The LabVIEW program can be executed in 
parallel; however, the memory consumption of the array 
should be strictly controlled. We improved the KNN algo-
rithm, particularly for KNN classification. The improved 
KNN algorithm significantly enhanced the running speed. 
Compared to the conventional KNN algorithm, the GMM-
KNN classifier required only half the time to test the same 
dataset. Moreover, GMM-KNN could flexibly choose the 
number of training set samples based on specific experimen-
tal delay requirements. When only a quarter of the sample 
set data were used, the GMM-KNN classifier required only 
approximately 1/4 of the time (2021 ms) required for the full 
dataset, whereas the discrimination results differed by only 
0.13% (41 pulses). Further, this method maintained a stable 
performance over a wide range of gamma/neutron ratios, 
rendering it suitable for different experimental data. Prior 
to running the GMM-KNN classifier, we presorted the two 
types of pulse samples in the training set and executed the 
LabVIEW parallel calculation, thereby reducing the com-
plexity of the judgment logic by using only the size of the 
two judgment values to determine the pulse category. The 
GMM-KNN regression first calculated the distance value 

and then synthesized it with the original pulse features into 
a 2-D array. This facilitated the calculation of the average of 
K values rather than all pulse regression values. To evaluate 
the n-� discrimination effect of the GMM-KNN algorithm, 
we qualitatively analyzed the scatter distribution and quan-
titatively calculated the FOM value. In the feature space, 
the GMM-KNN classification could better fit near-elliptical 
distributions, correctly classifying approximately 5.52% 
of the gamma rays. The FOM values for the GMM-KNN 
regression in the three energy ranges were 0.877, 1.262, and 
1.020, respectively. Compared with the CCM, this method 
exhibited higher discrimination factors in each energy 
range, particularly in the low-energy domain ( < 25 keV ), 
where FOMGMM-KNN increased by 32.08% compared with 
FOMCCM . This study verified the effectiveness and feasibil-
ity of the GMM-KNN method, which exhibited excellent 
real-time performance, strong adaptability, robustness, and 
great potential for real-time discrimination. This renders it 
suitable for on-site analysis and providing new ideas and 
methods for the n-� discrimination field. In future work, 
the GMM-KNN will be deployed on an NI field-program-
mable gate array (FPGA) to form a composite device with 
the host computer, achieving high-accuracy real-time n-� 
discrimination.
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