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Abstract
Interest has recently emerged in potential applications of (n, 2n) reactions of unstable nuclei. Challenges have arisen because 
of the scarcity of experimental cross-sectional data. This study aims to predict the (n, 2n) reaction cross-section of long-lived 
fission products based on a tensor model. This tensor model is an extension of the collaborative filtering algorithm used for 
nuclear data. It is based on tensor decomposition and completion to predict (n, 2n) reaction cross-sections; the correspond-
ing EXFOR data are applied as training data. The reliability of the proposed tensor model was validated by comparing the 
calculations with data from EXFOR and different databases. Predictions were made for long-lived fission products such as 
60Co, 79Se , 93Zr , 107P , 126Sn , and 137Cs , which provide a predicted energy range to effectively transmute long-lived fission 
products into shorter-lived or less radioactive isotopes. This method could be a powerful tool for completing (n, 2n) reaction 
cross-sectional data and shows the possibility of selective transmutation of nuclear waste.

Keywords  (n, 2n) Reaction cross-section · Tensor model · Machine learning · Collaborative filtering algorithm · Selective 
transmutation

1  Introduction

The (n, 2n) reaction cross-sectional data are important for a 
wide range of applications in both fundamental and applied 
science. In nuclear physics, (n, 2n) reactions constitute a 
powerful tool for investigating the structural characteristics 
of excited nuclei. A prime example is the theoretical inves-
tigation of the reaction 197Au(n, 2n)196Au m2 , which is an 
interesting field of study because of the existence of a high-
spin second metastable state [1]. In addition, the 191Ir (n, 2n) 

reaction can help investigate the spin dependence of the level 
density and effective moment of inertia of residual nuclei, 
as well as the formation of isomeric states [2, 3]. Applied 
science also benefits from the (n, 2n) reaction because it can 
be induced by neutrons in various advanced nuclear devices 
such as fast reactors, thorium-based nuclear reactors, and 
accelerator-driven subcritical systems. These reactions are  
vital for neutron transport calculations. They are also indis-
pensable for understanding the radiation damage incurred by 
structural materials. Consequently, achieving highly accurate 
evaluations of (n, 2n) reaction cross-sectional data is cru-
cial for designing and optimizing these nuclear devices [4, 
5]. Furthermore, specific (n, 2n) reactions have distinct 
purposes. For instance, the relative strength of t 169Tm(n, 
2n)168Tm reaction with respect to the 169Tm(n, 3n)167Tm 
reaction is a potential diagnostic tool for determining neu-
tron flux in deuterium–tritium inertial confinement fusion 
plasma [6–8]. The 100Mo(n, 2n)99Mo reaction can be used 
to produce 99mTc, which is employed in nuclear medicine 
for diagnostics [9].

The cross-sectional measurements of 86Sr(n, 2n)85Sr 
provide datasets for superconductivity research in 
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high-energy radiation zones for future fission/fusion reac-
tor technology [10]. The 196Hg (n, 2n)195Hg m,g and 198Hg
(n, 2n)197Hg m,g reactions are important for neutron multi-
plication calculations in spallation neutron sources [11]. 
The effective cross-sections of 55Mn(n, 2n)54Mn , 59Co(n, 
2n)58Co , 176Hf(n, 2n)175Hf , and 197Au(n, 2n)196Au reactions 
can help estimate fast neutron flux and energy spectrum 
for laser-driven neutron sources [12].

The (n, 2n) reaction cross-sections of certain unstable 
nuclei possess exceptional significance, although meas-
uring them is challenging owing to the limited avail-
ability and high radioactivity of high-purity materials. 
Notably, among the actinides, specific isotopes such as 
241Am (with a half-life of T1∕2 = 432.6 years), 239Pu (T1∕2 
= 24,110 years), and 232Th (T1∕2 = 1.4 × 1010years) attract 
particular attention. The 241Am(n,2n) reaction cross-sec-
tions are pivotal for investigating the potential transmu-
tation of long-lived radioactive waste, a process enabled 
by advanced high neutron energy reactors [13]. Similarly, 
the 239Pu(n, 2n)238Pu cross-sections play a critical role in 
estimating the production of 238Pu within a fission spec-
trum, which is of utmost importance for evaluating the 
activation and decay heat characteristics of spent nuclear 
fuel [14]. Moreover, the 232Th(n, 2n)231Th reaction is a 
key factor for validating the physical design of thorium-
based advanced reactors, which is a promising avenue in 
nuclear energy [15–17]. Despite the technical challenges 
of radioactive targets, significant progress has been made 
to overcome them. Consequently, experimental data on 
(n, 2n) reactions involving these isotopes have been accu-
mulated, thereby advancing our understanding of these 
critical nuclear processes.

In addition to reactions involving radioactive actinides, 
(n, 2n) reactions of long-lived fission products (LLFPs) are 
noteworthy. Although LLFPs have shorter half-lives than 
radioactive actinides, the potential release of these radio-
nuclides from geologic repositories cannot be overlooked 
because of their high solubility in underground water [18]. 
To address this problem, various transmutation strategies 
for LLFPs have been proposed, including irradiation with a 
combination of high-energy charged particles and secondary 
neutrons [19], and irradiation with quasi-monochromatic �-
ray beams [20]. Notably, attention has recently been directed 
toward the potential application of (n, 2n) reactions in the 
transmutation of LLFPs [21]. A crucial aspect of this effort 
involves assessing the current status of (n, 2n) cross-sec-
tional data for LLFPs within nuclear data libraries [22]. A 
notable challenge has been the evaluation of cross-sections 
for a range of unstable nuclei across a wide energy spectrum, 
especially in the range where experimental data are scarce. 
It is worth noting that (n, 2n) data for LLFPs are available 
for only two nuclides: 99Tc and 129I.

Several nuclear reaction libraries have been developed 
based on experimental and theoretical calculations to 
evaluate (n,2n) cross-sectional data [23]. Ongoing efforts 
are dedicated to refining the database accuracy through 
experimental measurements. For instance, production 
cross-sections for long-lived products 207Bi and 194Hg 
have been determined according to data measured by an 
ultralow background gamma spectrometer (GeTHU) in the 
China Jinping Underground Laboratory (CJPL) [24]. A 
new 4� neutron detector was constructed to minimize the 
background �-ray influence and improve the (n, 2n) reac-
tion cross-sectional measurements [25]. However, unique 
challenges arise from the short lifetimes or high radioac-
tivity of the target materials, rendering direct measure-
ments of (n, 2n) cross-sections for radioactive nuclides 
unattainable using current experimental techniques. Indi-
rect methods are being developed to address this chal-
lenge [26]. Given the current circumstances, extrapolation 
from databases using physics-based models [27] or statisti-
cal algorithms [28] remains both advisable and effective. 
This approach helps bridge the gap in our understanding 
of (n, 2n) reactions involving unstable nuclides.

The extensive application of machine learning in nuclear 
physics has introduced new ideas into nuclear data evalua-
tion. Machine learning has been successfully employed in 
various research fields, such as nuclear charge radius [29], 
nuclear mass  [30–32], fission cross-sections  [33], frag-
mentation reactions   [34, 35], and nuclear equation of 
state  [36–38]. Machine learning facilitates data evalua-
tion [39], validation analysis [40], and prediction [41]. For 
instance, Bayesian neural networks have proven successful 
in predicting (n, 2n) reaction cross-sections [42]. Collabo-
rative filtering is a machine learning technique used in rec-
ommendation systems to automatically predict the interests 
of a user. It has been extended to the field of nuclear data, 
developing into a tensor model for evaluating fission prod-
uct yields [43, 44] and differential cross-sections for elas-
tic proton scattering [45]. In this study, the applicability of 
a tensor model for evaluating the EXFOR data of (n, 2n) 
reaction cross-sections was investigated. The objective is 
to predict the (n, 2n) reaction cross-section of long-lived 
fission products.

The remainder of this paper is organized as follows. 
Section  2 provides a detailed description of the con-
structed tensor model. In Sect. 3, we validate the reliabil-
ity of the model and explore its application to selective 
transmutations. The reproductive ability of the model was 
assessed in cases with abundant and scarce experimental 
data. Detailed examples are provided to explain the collab-
orative filtering algorithm. Overall reproduction results are 
also presented. Predictions were made in the absence of 
abundant training data and data featuring significant devia-
tions. The predictions of the cross-sections of long-lived 
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fission products are analyzed. Finally, Sect. 4 concludes 
the paper and discusses future prospects.

2 � Theoretical descriptions

The proposed tensor model is an extension of the collabo-
rative filtering algorithm employed in the field of nuclear 
data. The core algorithm is based on tensor decomposi-
tion and completion. The tensor decomposition algorithm 
is a machine learning algorithm with powerful multi-
dimensional structure correlation learning capabilities. 
This algorithm has found widespread application in fields 
such as image processing and data mining [46–48]. The 
Bayesian model was introduced in the field of matrix 
completion by Salakhutdinov and Mnih, who developed 
Bayesian matrix factorization models [49]. Xiong et al. 
combined Bayesian inference and tensor decomposition, 
considering the time dependency of each tensor [50]. Chen 
et al. further improved the Bayesian Gaussian CANDE-
COMP/PARAFAC (BGCP) tensor decomposition model 
without considering the time structure [51]. Subsequently, 
Wang et al. extended the Bayesian tensor decomposition 
approach and studied cross-sections in neutron-induced 
threshold (n, 2n) and photoneutron (� , xn) reactions by con-
structing weighted evolving networks [52].

The (n, 2n) cross-section depends on three degrees of 
freedom: proton number, isospin number, and incident 
energy of the neutron. To represent the threshold effect, 
the following reduced incident energy is applied:

where A is the mass of the target, En is the incident energy 
of the laboratory system, and Sn is the single-neutron sepa-
ration energy of the target. The (n, 2n) reaction occurs only 
when E > 0. After discretizing the reduced energy E with the 
interval dE = 0.5 MeV, the (n, 2n) cross-sectional data can 
be expressed as a third-order tensor denoted as S ∈ ℝ

I×J×K , 
where the element �ijk is the (n,2n) cross-section for the tar-
get with charge number i and neutron number i+j at reduced 
incident energy k×dE. With the experimental data obtained 
from the EXFOR database, some elements are observed, 
while others are missing. In this case, the missing tensor of 
the (n, 2n) cross-section is complemented using a machine 
learning algorithm called the BGCP tensor decomposition 
algorithm. Reference [47] provides a detailed introduction to 
the BGCP algorithm. Here, we briefly introduce how BGCP 
has been applied in this study.

The tensor is estimated using the factor matrices 
Z ∈ ℝ

I×L , D ∈ ℝ
J×L , and E ∈ ℝ

K×L:

(1)E =
A

A + 1
En − Sn,

where L is the CANDECOMP/PARAFAC (CP) rank, 
zl ∈ ℝ

I , dl ∈ ℝ
J , and el ∈ ℝ

K are, respectively, the l-th col-
umn vector of the factor matrices Z , D , and E . The symbol 
◦ denotes the outer product of the vector. Equation (2) can 
be specifically expressed as

where zil is the element at the i-th row and l-th column in the 
factor matrix Z ; djl and ekl are similar.

To model the tensor data correctly, the factor matrices 
Z , D , and E are set with prior distributions. We assume 
that the prior distributions over the row vectors of each 
factor matrix obey multi-variate Gaussian distributions. 
Consider the i-th row vector of Z as an example. The other 
cases are similar. The elements in the factor matrix Z are 
expressed as random variables:

where the hyper-parameter �(z) ∈ ℝ
L represents the expecta-

tion, and �(z) ∈ ℝ
L×L represents the reciprocal of the stand-

ard deviation.
The observation of the tensor element �ijk is considered 

a random variable. We assume that each observation fol-
lows an independent Gaussian distribution:

where (i, j, k) ∈ � ; �� is the precision, which expresses the 
reciprocal of the discrepancy between measurements; and 
� is the index set of observations. The factor matrix Z is 
updated by sampling all zi individually. After updating Z , 
D , and E , which are explained in detail later, 𝜎̂ijk is also 
updated. Subsequently, the random variable �ijk is updated 
using Eq. (5), thereby providing a prediction for the next 
measurement.

Consider ing mult iple measurements,  let  �(p)

ijk
 

( p = 1,⋯ ,Pijk ) represent the p-th observation of the cross-
section for a total of Pijk observations. It should be noted 
that the tensor S is incomplete, presenting missing entries. 
A list of missing tensors S̃ = {S(1),… ,S(P)} can be used to 
describe all observations, where P = max(Pijk) for all pos-
sible ijk. The observations are arranged in the missing ten-
sors according to their superscripts, e.g., �(1)

ijk
 in S(1) and �(2)

ijk
 

in S(2) . Entries with no observations are missing.
The likelihood function can be expressed as follows:

(2)Ŝ =

L∑

l=1

zl◦dl◦el,

(3)𝜎̂ijk =

L∑

l=1

zil◦djl◦ekl,

(4)zi ∼ N

[
�
(z)

i
, (�

(z)

i
)−1

]
,

(5)𝜎ijk ∼ N
(
𝜎̂ijk, 𝜏

−1
𝜀

)
,
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where ⊛ denotes the Hadamard product.
Subsequently, according to Bayesian inference, the poste-

rior distribution of zi can be expressed as follows:

where the posterior values of the hyper-parameters �(z) and 
�

(z) are given by

The contributions of the observations to the hyper-parame-
ters are equivalent, being independent of the missing tensor. 
The likelihood function of all the observations is

where 𝜎̂ijk  denotes the average value of the cross-section 
after several experimental measurements, and b(p)

ijk
 is equal to 

1 for measured entries and 0 for missing entries. Let us place 
a conjugate Γ prior to the precision ��:

(6)L(𝜎
(p)

ijk
|zi, dj, ek, 𝜏𝜀)∝exp

{
−
𝜏𝜖
2

[
𝜎
(p)

ijk
−(zi)

T (dj⊛ek)
]2}

,

(7)
p(zi|�

(p)

ijk
, dj, ek, ��,�

(z),�(z))∝L(�
(p)

ijk
|zi, dj, ek, ��)×Pr(zi)

∝N(zi|(�̂
(z)

i
, (�̂

(z)

i
)−1)

(8)
��
(z)

i
= 𝜏𝜀(dj ⊛ ek)(dj ⊛ ek)

T + �
(z)

i
,

��
(z)

i
= (��

(z)

i
)−1

[
𝜏𝜀𝜎

(p)

ijk
(dj ⊛ ek) + �

(z)

i
�
(z)

i

]
.

(9)

L(�S|Z,D,E,𝜏𝜀)∝
P∏

p=1

I∏

i=1

J∏

j=1

K∏

k=1

( 𝜏𝜀 )
1∕2exp

[
−
𝜏𝜀
2
b
(p)

ijk
(𝜎

(p)

ijk
−𝜎̂ijk)

2
]
,

(10)�� ∼ Γ(a0, b0),

where the posterior values of the hyper-parameters a0 and 
b0 are given by

Figure 1 shows the iterative steps of the tensor model. 
The cross-section of a specific nuclide is represented as Ŝ . 
Using CP decomposition, we express the tensor Ŝ as the 
outer product of three factor matrices, i.e., Z , D , and E , 
corresponding to the three dimensions mentioned earlier. 
We assume that the prior distributions for the factor matri-
ces are multi-variate Gaussians. The likelihood function 
is derived from observed data. The posterior distributions 
of the hyper-parameters and the precision are updated. 
Subsequently, the posterior distributions of Z , D , and E 
are obtained through Bayesian inference. Each iteration 
updates all the variables sequentially using Gibbs sam-
pling. The relationship between each parameter and the 
observed value is captured using data sampling. The itera-
tions continue until the precision reaches its optimal level. 
Upon reconstructing the tensor Ŝ with the updated values, 
we obtain the complete cross-sectional tensor.

(11)

â0 =
1

2

P∑

p=1

I∑

i=1

J∑

j=1

K∑

k=1

b
(p)

ijk
+ a0,

b̂0 =
1

2

P∑

p=1

I∑

i=1

J∑

j=1

K∑

k=1

(𝜎
(p)

ijk
− 𝜎̂ijk)

2 + b0.

Fig. 1   (Color online) Model framework presentation
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3 � Results and discussion

3.1 � Model validation

Figure 2 displays the (n, 2n) cross-sections for the iso-
topes of Co, Cu, Ga, Se, Zr, Tc, Pd, Sn, Sb, I, Xe, Cs, 
Sm, Hf, Pb, and Bi. They can be classified into two types: 
cases where the experimental data are abundant and cases 
where the data are scarce. Except for 88Zr and 99Tc , the 
available data for these nuclides are abundant. As the 
incident energy increases above the threshold, the cross-
section experiences a rapid increase, reaching barn-level 
magnitudes. The threshold energy for the reaction AX(n, 
2n)A−1X  corresponds to the single-neutron separation 
energy of AX  . Above 16 MeV, the cross-section exhib-
its a slight decrease. The curves in the figures represent 
calculations performed using the proposed tensor model; 
they are generally consistent with the available data.

3.1.1 � Cases with abundant experimental data

Cases with abundant experimental data are further clas-
sified according to discrepancies within the data. Tensor 
models rely on data-driven approaches. The combination 
of extensive data support and a tensor decomposition algo-
rithm ensures the reliability of our calculations. In cases 
where abundant data points concentrate on the overall trend, 
as exemplified by the case of 63Cu shown in Fig. 2b, our 
calculations closely approximate the average of the data, 
resulting in smooth curves. Similar results are observed in 
Fig. 2e for 90Zr.

In some cases, there are limited outliers, such as those 
shown in Fig. 2b for 65Cu . Limited data points, some of 
which deviate from the overall trend, are indicated by cir-
cles. Although considered as low-quality data, these outliers 
do not impede the model to perform well, and the calculated 
results for 65Cu remain smooth. Figure 2c presents a scenario 
with even fewer data points and a relatively large proportion 
of low-quality data. However, the tensor model is still char-
acterized by smooth calculations. This pattern holds for 82Se 

Fig. 2   (Color online) (n, 2n) 
cross-sections for isotopes of 
Co, Cu, Ga, Se, Zr, Tc, Pd, Sn, 
Sb, I, Xe, Cs, Sm, Hf, Pb, and 
Bi. The curves show the cal-
culations by the tensor model, 
whereas the dots represent the 
EXFOR data
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(Fig. 2d), 96Zr (Fig. 2e), 133Cs (Fig. 2l), 154Sm (Fig. 2m), and 
209Bi (Fig. 2p), respectively.

In the other cases, there are large deviations within the 
data. For example, for 127I (Fig. 2j), noticeable data discrep-
ancies are observed within the same energy region. Despite 
these variations, the proposed tensor model maintains its 
ability to generate calculations within the range of the avail-
able data. This robust quality control is also evident for 112Sn 
(Fig. 2h) and 174Hf (Fig. 2n). The tensor model effectively 
addresses the challenge of data quality dependence, ensur-
ing reliable results even in the case of ‘high quantity but low 
quality’ data. Small oscillatory behaviors are observed in 
these cases, which may be attributed to hidden errors within 
the experimental data.

This oscillatory behavior is also observed in Fig. 2k for 
124Xe . In this case, the calculations near 14 MeV exceed 
the observed data. This deviation may also be attributed 
to hidden errors in the experimental data. Typically, data 
are published with both systematic and statistical errors, 
which are visually represented as error bars in the figures. 
However, in certain cases, the error bars may not reflect the 
deviation of the observed data from other measurements. 
These errors can be concealed, particularly when compa-
rable data are scarce. They could stem from factors related 
to the measurement instruments or data analysis processes. 
The unexpected calculations for 124Xe suggest the presence 
of potential hidden errors in the corresponding data. A more 
comprehensive evaluation is necessary with reference to an 
evaluation database and a physical model.

3.1.2 � Cases with scarce experimental data

For cases where experimental data are scarce, 99Tc (Fig. 2f) 
is taken as an example. Note that in Fig. 2f, only one data 
point is observed for 99Tc . The cross-sections as a function of 
the incident energy were calculated using the tensor model, 
exhibiting a reasonable trend. As described in Eq. (3), these 
calculations at a given incident energy ( Ek = k × dE , for 
example) for 99Tc are derived not only from the data for 
99Tc but also from the data for 103Rh and data at energy Ek 
for all nuclei. The N–Z value of 103Rh matches that of 99Tc ; 
further details are illustrated in Fig. 3.

3.1.3 � Detailed examples of the collaborative filtering 
algorithm

Figure 3 displays the (n, 2n) cross-sections for isotopes 
of Cu, Ga, Tc, and Rh. To validate the calculations per-
formed using the proposed tensor model, we compare them 
with experimental data for 65Cu and 99Tc , as illustrated in 
Fig. 3a and c. The comparison involves data from various 
databases, including ENDF/B-VIII.0, JENDL-5, JEFF−3.3, 

ROSFOND-2010, and CENDL−3.2; all of them exhibit sim-
ilar trends to those of the EXFOR data. The solid curves in 
the figures represent calculations generated by the proposed 
tensor model. Overall, these calculations are consistent with 
the data obtained from the aforementioned databases. To 
shed light on the impact of collaborative filtering, Fig. 3b 
and d presents the cross-sections of 69Ga and 103Rh , respec-
tively. Notably, these nuclides feature the same isospin val-
ues as those of 65Cu and 99Tc.

The tensor model is based on collaborative filter-
ing, which is a formula-free fitting method described by 
Eq. (3). Calculations at specific incident energies for a 
given nuclide are drawn not only from its own data but 
also from data associated with the same isospin (same N–Z 
value), isotopes (same Z value), and data at that energy for 
all nuclei. We consider the case of 65Cu shown in Fig. 3a. 
Data from various databases, excluding EXFOR, generally 
exhibit good agreement with each other, featuring small 
deviations. Even for the EXFOR data, which served as 
training data for the model, a minority of the data points 
deviates from the overall trend. Importantly, these out-
liers do not adversely affect the quality of the calcula-
tions. This is evident from the completion of the excitation 
function for 65Cu(n, 2n)64Cu , where the model captures 
reasonable physical laws. Consequently, the calculations 
for 65Cu remain smooth and are consistent with data from 
ENDF/B-VIII.0, JENDL-5, JEFF-3.3, ROSFOND-2010, 
and CENDL-3.2. It is worth noting that calculations for 
65Cu were also drawn from the data for 69Ga , as shown in 
Fig. 3b. In this figure, it is evident that a substantial and 

Fig. 3    (Color online) (n,  2n) cross-sections for isotopes of Cu, Ga, 
Tc, and Rh. The solid curves represent calculations by the tensor 
model, the dotted curves represent data from databases ENDF/B-
VIII.0, JENDL-5, JEFF−3.3, ROSFOND-2010, and CENDL−3.2, 
and the dots represent EXFOR data
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dense dataset spanning the energy range from 13 MeV to 
15 MeV significantly influences the calculations for 69Ga 
and 65Cu in this energy region.

For 99Tc (Fig. 3c), the data from various databases devi-
ate from each other across all energy ranges. In contrast, 
the calculations produced by the tensor model exhibit a 
reasonable trend. Notably, the solid curve representing the 
calculations is based on a single data point from EXFOR. 
These calculations for 99Tc are influenced not only by the 
data for 99Tc but also by the data for 103Rh , as shown in 
Fig. 3d. Figure 3d shows that the data for 103Rh are abun-
dant but exhibit substantial deviations. However, the cal-
culations using the tensor model remain smooth and fall 
within the range of the available data. Above 16 MeV, the 
calculations for 99Tc are influenced by the data for 103Rh 
in this energy region, resulting in a slight decrease in the 
cross-section. This collective approach allows the comple-
tion of the excitation function for 99Tc(n, 2n)98Tc using 
these data. The algorithm of the tensor model ensures the 
reliability of these calculations.

3.1.4 � Overall results of the reproduction

Figure 4 provides statistical information on 5770 EXFOR 
data points within the energy region from 0 to 20 MeV. 
In Fig. 4a, we observe the ratios between the model cal-
culations and the data. These ratios exhibit global varia-
tion within the range from 0.1 to 10, with a predominant 
concentration around 1. Ratios exceeding 1 indicate an 
overestimation by the model, whereas those below 1 repre-
sent an underestimation. Notably, the maximum ratio can 
reach magnitudes of 103 . At energy levels below 15 MeV, 
the deviations in these ratios can reach a factor of 104 , 

whereas they are approximately limited to a factor of 10 at 
energy levels above 15 MeV. The region around 14 MeV 
seems to contain a dense cluster of data points.

Figure 4b represents the quantity of data as a function of 
energy, with data counts calculated for each 0.5 MeV inter-
val. Notably, there is a substantial concentration of data in 
the energy range from 13 to 15 MeV, with the maximum 
count reaching 1800 data points. Obtaining data for neutrons 
near 14 MeV seems to be more accessible than for other 
energy ranges. By contrast, the number of data points in 
other energy regions remains relatively low, with no more 
than 300 data points in each interval. It is important to note 
that extensive support from this wealth of data can signifi-
cantly enhance the reliability of the calculations performed 
using the tensor model.

Figure 4c shows the relative errors associated with the 
data. Typically, data are accompanied by both systematic 
and statistical errors, which are represented as error bars in 
the figures. The relative errors shown in Fig. 4c are defined 
as Δ�∕� . These relative errors range from 10−3 to 10. In the 
energy region below 15 MeV, the relative errors are par-
ticularly large, whereas in the energy region above 15 MeV, 
the relative errors are generally smaller, not exceeding 10. 
Notably, the presence of these larger relative errors may 
have contributed to the substantial deviations observed in 
the ratios shown in Fig. 4a.

Figure 5 presents a detailed examination of the ratios 
using a logarithmic scale and the corresponding propor-
tions. Figure 5a shows the logarithms of the ratios between 
the model calculations and the data for energy ranging from 
0 to 40 MeV. This representation simplifies the compari-
son of orders of magnitude. Notably, the logarithmic errors 
primarily range from −0.1 to 0.1. In practical terms, this 
implies that the ratios typically range from 10−0.1 to 100.1 , 

Fig. 4   (Color online) Statistic information of 5770 EXFOR data in the 
range from 0 to 20 MeV in the laboratory: a ratios between calculations 
and the data; b energy distribution of the data; and c relative errors

Fig. 5   (Color online) Logarithm of the ratios between the calcula-
tions and data (logarithmic error): a energy distribution of the loga-
rithmic errors and b count of errors of different sizes
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corresponding to values between 0.79 and 1.25. The cor-
responding ratios are shown in Fig. 5b, where 44.99% of the 
data points exhibit logarithmic errors between 0.0 and −0.1 , 
and 40.62% display logarithmic errors between 0.0 and 0.1. 
Notably, logarithmic errors within the range from −0.3 to 
0.3, equivalent to ratios between 0.5 and 2.0, indicate devia-
tions between the calculations and the data less than a factor 
of 2; the corresponding proportion exceeds 90%.

3.1.5 � Prediction in the absence of abundant training data

The discussion thus far has primarily focused on validating 
the reproductive ability of the model. The model has dem-
onstrated its capacity to complete the excitation functions 
using data from the training dataset. The next step involves 
assessing the prediction ability of the model, specifically its 
capability to predict cross-sections and complete excitation 
functions for nuclides that lack data in the training dataset. 
This is a crucial aspect in evaluating the generalization abil-
ity of the model and its predictive power. Two conditions 
are considered to assess the prediction ability of the model: 
Predictions are made in the absence of training data, which 
are abundant, and have significant deviations.

Figure 6 presents the (n, 2n) cross-sections for 90Zr and 
its isotopes, 88Zr and 96Zr . This case was designed to assess 
the predictive ability of the model in the absence of train-
ing data. In Fig. 6a, we distinguish between calculations 
labeled as reproductions and predictions. It is important to 
note that a wealth of data are available for 90Zr . The repro-
ductions were generated by the tensor model trained using 
the dataset that includes 90Zr data, whereas the predictions 
were obtained using the same model without incorporating 
any 90Zr data during the training process. Both the reproduc-
tion and prediction results exhibit global consistency with 
the EXFOR data. Despite the absence of training data, the 
model predictions for 90Zr are remarkably consistent with 
the data. The deviation between the calculations with and 
without the inclusion of 90Zr data remains small.

Figure 6b shows the cross-sections for 90Zr , both calcu-
lated by the tensor model and obtained from various data-
bases, including BROND-3.1, CENDL-3.2, ENDF/B-VII.1, 
JEFF-3.3, JENDL-4.0, and TENDL-2019. These datasets 
exhibit consistent trends, with small deviations between the 
data represented by the dotted curves. The predictions pro-
vided by the tensor model (depicted as a solid curve) are 
consistent with the data.

Figure 6c shows the cross-sections of 88Zr and 96Zr . For 
96Zr , similar to the example shown in Fig. 2b, several data 
points deviate significantly from the overall trend. However, 
these deviations do not lead to poor model calculations 
for 96Zr . The situation for 88Zr resembles that of 99Tc , as 
shown in Fig. 2f, where a single data point is available. The 

excitation function of 88Zr(n, 2n)87Zr can still be determined. 
The cross-sections for 88Zr and 96Zr significantly contribute 
to the predictions for 90Zr . Therefore, the excitation func-
tion of 90Zr(n, 2n)89Zr can be accurately obtained without 
utilizing the data specifically for 90Zr.

3.1.6 � Prediction in the absence of data with significant 
deviations

Figure 7 shows the (n, 2n) cross-sections for 84Sr and its 
isotopes 86Sr and 88Sr . This case tests the prediction ability 
of the model in the absence of a set of training data exhibit-
ing large deviations. For 84Sr (Fig. 7a), the deviation in the 
data is large. The error bars do not cover the deviation from 
other data. The reproductions by the tensor model, indicated 
by the dotted curve in the figure, exhibit large numerical 
fluctuations. The abnormal calculations for 84Sr may indicate 
hidden errors in the corresponding data. The predictions are 
represented by solid curves in Fig. 7a. Note that the missing 
data do not generate bad predictions. The predictions for 
84Sr were derived from its isotopes and are smoother. This 

Fig. 6   (Color online) (n, 2n) cross-sections for 90Zr and its isotopes 
88Zr and 96Zr . The calculation labeled as reproduction was generated 
by the tensor model trained using the dataset that includes 90Zr data, 
while the calculation labeled as prediction was obtained using the 
same model without incorporating any 90Zr data during the training 
process



Prediction of (n, 2n) reaction cross‑sections of long‑lived fission products based on tensor… Page 9 of 14  184

is also attributed to the contributions of the data associated 
with the same isospin value and the data in its energy region 
for all nuclei.

Figure 7b shows the cross-sections for 84Sr from the ten-
sor model and from databases ENDF/B-VIII.0, JEFF-3.3, 
JENDL-5, and ROSFOND-2010. As indicated by the dotted 
curves, the data trends are similar, but there exist devia-
tions. The predictions of the model are consistent with the 
data in the energy region below 15 MeV. The tensor model 
underestimates the cross-sections in the energy region above 
15 MeV.

Figure 7c shows the cross-sections for 86Sr and 88Sr . The 
case of 86Sr is similar to that of 96Zr , as shown in Fig. 6c. 
However, there are numerical fluctuations in the energy 
region above 18 MeV. The behavior of 88Sr is similar to that 
of 88Zr . The cross-sections increase rapidly and then begin 
to decrease, which is a reasonable trend. The curve does 
not pass through the data point but is close. There are also 
numerical fluctuations in the calculations at 13 MeV and 
19 MeV. The collaborative filtering algorithm of the model 
helps complete the excitation; however, this is also the rea-
son for the small numerical fluctuations in the calculations 
for both 86Sr and 88Sr . The cross-sections for 86Sr and 88Sr 
contribute to the predictions for 84Sr . The excitation function 
of 84Sr(n, 2n)83Sr can be completed, and the predictions are 
smooth. This also indicates that further improvements are 
required with the help of the evaluation database and physi-
cal model to reduce hidden errors.Fig. 7   (Color online) (n, 2n) cross-sections for 84Sr and its isotopes 

86Sr and 88Sr

Fig. 8   (Color online) (n, 2n) 
cross-sections for 60Co , 79Se , 
93Zr , 107Pd , 126Sn , and 137Cs . 
The solid curves represent 
the calculations by the tensor 
model, whereas the dotted 
curves represent the data from 
databases CENDL−3.2, ENDF/
B-VIII.0, JEFF−3.3, JENDL−
4.0, and TENDL-2019
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3.1.7 � Prediction of cross‑sections of long‑lived fission 
products

Figure 8 provides a comprehensive overview of the (n, 2n) 
cross-sections for long-lived fission products, including 
60Co (T1∕2 = 5 years), 79Se (T1∕2 = 32 years), 93Zr (T1∕2 = 
1.59×106years), 107Pd (T1∕2 = 6.33×106years), 126Sn (T1∕2 
= 23 years), and 137Cs (T1∕2 = 30 years). These nuclides 
are radioactive and play a significant role in the study of 
fission products. Note that there are no EXFOR data avail-
able for these specific nuclides. As such, we compared the 
calculations with data from other databases, which some-
times exhibit deviations among themselves. However, the 
calculations generated by the proposed tensor model, rep-
resented by the solid curves in the figures, demonstrate 
consistent and strong global agreement with the data.

The proposed tensor model exhibits capability to com-
plete excitation functions even in the absence of specific 
data. The model also demonstrates strong predictive abili-
ties, consistently aligning with data from various databases. 
To illustrate this, let us consider the example of 126Sn in 
Fig. 8e. While deviations are noticeable among the data from 
various databases, especially in the energy regions below 
14 MeV and above 15 MeV, the calculations of the model 
maintain robust global agreement with the data, excluding 
those from ENDF/B-VIII.0.

For 137Cs (Fig. 8f), small deviations are observed among 
the data from various databases, primarily in the energy 
region above 10 MeV. However, the model calculations con-
sistently align with the data from CENDL−3.2 and JENDL−
4.0 below 18 MeV. Furthermore, the model agrees with the 
data from ENDF/B-VIII.0, particularly near 19 MeV.

For 60Co (Fig. 8a), the data from JEFF−3.3 and TENDL-
2019 are consistent. However, the tensor model demon-
strates a trend of overestimating the cross-sections below 
18 MeV and underestimating them above 19 MeV.

In the case of 79Se (Fig. 8b), deviations among the data 
from various databases are apparent, particularly in the 
energy region below 12 MeV. The tensor model gener-
ally overestimates the cross-sections between 10 MeV and 
16 MeV and underestimates them above 17 MeV.

For 93Zr (Fig. 8c), deviations are noticeable in the data 
from various databases, particularly in the energy region 
above 8 MeV. The tensor model tends to overestimate cross-
sections below 11 MeV.

However, there is notable agreement between the model 
calculations and data from databases such as JENDL-4.0 and 
TENDL-2019 in the range from 11 to 16 MeV. Moreover, 
the model aligns with the data from ENDF/B-VIII.0 and 
JEFF-3.3 above 16 MeV. Although deviations between the 
calculations and data exist, they remain within an order of 
magnitude.

For 107Pd (Fig. 8d), deviations in the data become evident, 
particularly in the energy regions below 12 MeV and above 
18 MeV. Notably, the model calculations are consistent 
with data from databases such as JEFF−3.3 and ENDF/B-
VIII.0 below 7 MeV. However, above 10 MeV, the tensor 
model tends to underestimate the cross-sections, with a rapid 
decrease. A similar decreasing trend is observed in the data 
from ENDF/B-VIII.0 shown in Fig. 8e.

To further determine the manner in which the tensor 
model completes the excitation functions in Fig. 8, Table 1 
summarizes the nuclides applied in the calculations and their 
corresponding amounts. This table lists the training data for 
60Co , 79Se , 93Zr , 107Pd , 126Sn , and 137Cs . The energy region 
ranges from 0 to 20 MeV. This is the same contribution 
from the data for all nuclides at the same energy. There-
fore, the focus is particularly put on the data of nuclides that 
have the same proton number Z or isospins N–Z as the target 
nucleus. By contrast, the total quantities of training data for 
60Co , 79Se , 93Zr , 107Pd , and 126Sn are larger than those for 
137Cs . However, as shown in Fig. 8, the calculations for 137Cs 
are more precise. This indicates that the amount of training 
data may not be the predominant factor influencing model 
calculations.

Taking 137Cs and 107Pd as examples, for isotopes with 
the same proton number as 137Cs (Z = 55), only the data for 
133Cs are available in EXFOR. The number of data for 133Cs 
is 24. The nuclides 153Eu and 155Gd have the same isospin 
values as 137Cs (N–Z = 27). A total of 51 data points were 
collected. These 75 data points contribute to the calcula-
tions of 137Cs . Similarly, the excitation function of 107Pd(n, 

Table 1   Training data for 60Co , 
79Se , 93Zr , 107Pd , 126Sn , and 
137Cs

Nuclide 60Co 79Se 93Zr 107Pd 126Sn 137Cs

Same Z 59Co 74,76,78,80,82Se 88,90,96Zr 102,110Pd 112,114,120,124Sn 133Cs

Amount 280 149 262 93 72 24
Same N-Z 66Zn,74Se 81Br,85Rb 87Rb,99Tc 109Ag 130Te,134Xe,138Ba 153Eu , 155Gd

70Ge,78Kr 89Y,93Nb 103Rh,107Ag 113In 142Ce,146Nd,150Sm
154Gd,158Dy,162Er

Amount 150 343 142 77 249 51
Sum 430 492 404 170 321 75
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2n)106Pd shown in Fig. 8 is completed by the contributions 
of 93 data points of isotopes 102,110Pd (Z = 46) and 77 data 
points of the nuclides 109Ag and 113In (N–Z = 15). The total 
quantity reaches 170, nearly 2.5 times larger than that for 
137Cs . However, as shown in Fig. 8d and f, the calculations 
for 137Cs are more precise than those for 107Pd . Note also 
the underestimation of the cross-sections for 107Pd above 
10 MeV. This is attributed to the data for 109Ag in the same 
energy region. This indicates the significance of high-quality 
data for model training.

3.2 � Application in selective transmutation

Disposal of radioactive nuclear waste has always been a 
concern. The concept of partition–transmutation provides a 
new approach to transform secondary actinide nuclides and 
LLFPs into short-lived, low radioactive, or stable nuclides 
by transmutation. The concept of selective transmutation 
was then proposed. By determining the energy regions 
of LLFPs, transmutation can be realized for the targeted 
LLFPs, which has the advantage of reducing the genera-
tion of new long-lived unstable nuclides in the process. In 
this study, the (n, 2n) reaction cross-sections varying with 
energy for LLFPs such as Co, Se, Zr, Pd, Sn, and Cs, were 
predicted, which provides the possibility of realizing selec-
tive transmutation.

Figure 9 shows the (n, 2n) cross-sections for the iso-
topes of Co, Se, Zr, Pd, Sn, and Cs. For a stable nuclide 
AX , as the neutron number increases, the nucleus becomes 

less stable, and the single-neutron separation energy tends 
to decrease, which corresponds to a decrease in the thresh-
old energy of AX(n, 2n)A−1X . This is observed from the 
results for 74,76,78,80,82Se , 88,90,96Zr , 102,104,106,108,110Pd , and 
112,114,118,120,124,126Sn . Note that 79Se , 93Zr , and 105,107Pd are 
nuclides with odd numbers of neutrons and even num-
bers of protons, which are less stable than their even–even 
isotopes, and are easier to separate a neutron from the 
nucleus. The single-neutron separation energy is much 
smaller than that of even–even isotopes. This is also 
observed in Fig. 9a. Note that 60Co (Z = 27, N = 33) is less 
stable than 59Co (Z = 27, N = 32) owing to the odd number 
of neutrons. The single-neutron separation energy of 60Co 
is smaller than that of 59Co . According to Fig. 9f, for Cs 
with odd proton numbers and even neutron numbers, the 
single-neutron separation energy tends to decrease as the 
neutron number increases, similar to the case of stable 
nuclides. This tendency, which is related to the neutron 
number, is well-represented by the tensor model.

The thresholds for these isotopes vary, with specific 
reactions allowed only at energies higher than their respec-
tive thresholds. As depicted in Fig. 9a, for Co in the energy 
region between 8 MeV and 11 MeV, the cross-sections 
for 60Co reach the order of a barn, whereas those for 59Co 
remain very small, not exceeding 10−1 . Consequently, in 
this energy range, the main reaction is 60Co(n, 2n)59Co , 
which leads to transmutation of the radioactive long-lived 
fission product 60Co into a stable isotope 59Co . Similar 
scenarios are observed for Se (Fig. 9b), where the radioac-
tive isotope 79Se can be transmuted into the stable isotopes 

Fig. 9   (Color online) (n, 2n) 
cross-sections for isotopes of 
Co, Se, Zr, Pd, Sn, and Cs. The 
curves represent the calculations 
by the tensor model, whereas 
the dots represent the EXFOR 
data
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78Se in the energy range between 8 MeV and 10 MeV. 
The same applies to 126Sn , as shown in Fig. 9e, within the 
energy range between 9 MeV and 9.6 MeV, and to 137Cs , 
as illustrated in Fig. 9f for energy levels between 8.8 MeV 
and 9.2 MeV.

Regarding Zr, Fig. 9c depicts a noteworthy phenom-
enon occurring in the energy region between 8 MeV and 
12 MeV. Notably, in addition to 93Zr , the cross-sections 
for 96Zr are also significant. This suggests that both 93Zr
(n, 2n)92Zr and 96Zr(n, 2n)95Zr reactions can occur within 
this energy range. Consequently, the radioactive isotope 
93Zr undergoes transmutation into the stable nuclide 92Zr , 
whereas the products of 96Zr(n, 2n) reactions are also sta-
ble isotopes that do not yield new radioactive products. A 
similar scenario unfolds in the case of 107Pd , as shown in 
Fig. 9d. In the energy region between 7 MeV and 9 MeV, 
the radioactive isotope 107Pd can be transmuted into the 
stable isotope 106Pd , and 105Pd can undergo transmutation 
into 104Pd , which is also a stable isotope. These examples 
illustrate the potential for selective transmutation based 
on cross-sections calculated using the proposed tensor 
model. This capability is instrumental in efficiently man-
aging long-lived fission products and avoiding unneces-
sary reactions.

4 � Summary

In this study, we constructed a tensor model based on 
the collaborative filtering algorithm, which is a machine 
learning technique used in recommendation systems. The 
model uses tensor decomposition and completion to pre-
dict (n, 2n) reaction cross-sections, in which the EXFOR 
data of the (n, 2n) reaction cross-sections are applied as 
the training data. The calculations performed using the 
tensor model were compared with EXFOR data. A consist-
ent trend was observed in the majority of cases. Statistical 
analysis reveals that for over 90% of the instances, the 
calculated results were within two times the ratio of the 
experimental data. This robust performance underscores 
the feasibility of the tensor model.

One notable contribution of the proposed tensor model 
is its ability to complete missing (n, 2n) reaction cross-
sectional data in EXFOR. This can be explained by its 
collaborative filtering algorithm, which makes the model 
clearer than a black-box model. To validate the model, 
we selected nuclides with either a substantial amount of 
experimental data, such as 90Zr , or data with significant 
deviations, as exemplified by 84Sr . The results from these 
examples are reasonable and generally agree with the data 
from various evaluation databases. Cases where deviations 

occur can often be explained. This study mainly focuses on 
the performance of the tensor model for the prediction of 
(n, 2n) reaction cross-sections and provides a preliminary 
reference for the database. It is important to note that the 
accuracy of the reproduction and data prediction depends 
on both the quality of the data and performance of the 
model. Therefore, continual improvement can be pursued, 
including the thoughtful selection of experimental data 
based on their physical relevance. A rigorous data evalua-
tion procedure should be conducted to obtain more accu-
rate results, which will be performed in the future studies.

The cross-sections of LLFPs are predicted using this 
model. The results are reasonable and agree with data 
from various evaluation databases. By analyzing the vary-
ing energy thresholds for (n, 2n) reactions among different 
isotopes of LLFPs, we identified suitable energy ranges for 
the transmutation of each LLFP. Within these ranges, only 
LLFPs with high cross-sectional values can be effectively 
transmuted into shorter-lived or less radioactive isotopes. 
This approach helps circumvent the unnecessary transmu-
tation of stable isotopes and reduce the new generation of 
the long-lived radioactive nuclides to a significant extent. 
These findings underscore the practical application of pre-
dictions made by the tensor model, particularly in the con-
text of nuclear waste disposal. This approach holds promise 
for more efficient and targeted management of nuclear waste.
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