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Abstract
Synchrotron microscopic data commonly suffer from poor image quality with degraded resolution incurred by instrumentation 
defects or experimental conditions. Image restoration methods are often applied to recover the reduced resolution, provid-
ing improved image details that can greatly facilitate scientific discovery. Among these methods, deconvolution techniques 
are straightforward, yet either require known prior information or struggle to tackle large experimental data. Deep learning 
(DL)-based super-resolution (SR) methods handle large data well, however data scarcity and model generalizability are 
problematic. In addition, current image restoration methods are mostly offline and inefficient for many beamlines where 
high data volumes and data complexity issues are encountered. To overcome these limitations, an online image-restoration 
pipeline that adaptably selects suitable algorithms and models from a method repertoire is promising. In this study, using 
both deconvolution and pretrained DL-based SR models, we show that different restoration efficacies can be achieved on 
different types of synchrotron experimental data. We describe the necessity, feasibility, and significance of constructing such 
an image-restoration pipeline for future synchrotron experiments.
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1  Introduction

Synchrotron radiation microscopy is a powerful tool for 
uncovering the internal structure and function of matter in 
biology [1], medicine [2], and materials science [3]. For 
example, in biomedical imaging, the three-dimensional (3D) 
characterization of human organs from the organ level to the 
cellular scale is achieved using hierarchical phase-contrast 
tomography [4] at the European Synchrotron Radiation 
Facility, which is critical for understanding system-level 
behaviors in health or disease [4]. However, synchrotron 
microscopic experiments often suffer from disturbances 
from system vibration, defects in imaging systems, and 
other limitations in experimental conditions, resulting in 
poor image quality in experimental data, which complicates 
the retrieval of useful information and hinders the scientific 
discovery process. Therefore, image restoration methods 
are used to recover high-resolution (HR) images from their 
low-resolution (LR) counterparts. On the one hand, image 
restoration effectively improves image quality with enhanced 
resolution, providing more details for the entire image as 
well as for its regions of interest (ROIs), which greatly helps 
researchers interpret synchrotron experimental data. On the 
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other hand, to achieve a resolution much higher than the 
original focused spot size, is difficult. Almost every micro/
nano-focused synchrotron radiation beamline or laboratory-
based microfocus X-ray source strives to overcome the limi-
tations of the physical size of the focused X-ray spot. In such 
efforts, oversampling is used where each movement step is 
smaller than the focused spot size [5], and the oversampled 
data are corrected by deconvolution, which in practice is 
considered a representative image restoration technique. 
Thus, resolution improvement can be achieved without 
major investment or when the resolution limit restricted by 
instrumentation is reached.

Because the experimental image obtained can be regarded 
as a convolution of the HR image and the point-spread func-
tion (PSF) of the imaging system, deconvolution aims to 
“deconvolve” the PSF from the experimental image and 
recover the HR component. As a straightforward classical 
method, deconvolution is widely used to improve the qual-
ity of data acquired using different methods, such as wide-
field fluorescence microscopy [6], confocal microscopy [7], 
structured illumination microscopy [8], and spectroscopic 
techniques [9]. Deconvolution can be categorized into non-
blind and blind approaches. Non-blind methods include 
inverse filters and iterative methods. Inverse filters include 
Wiener deconvolution [10], Tikhonov filtering [11], linear 
least squares [12], and naïve inverse filtering [13], including 
Richardson-Lucy [14], Jansson-Van Cittert [15], Landweber 
[16], and nonlinear Tikhonov-Miller [17]. Non-blind meth-
ods inherently require a known PSF that cannot be estimated 
efficiently in most scenarios. In synchrotron experiments, 
the PSF is usually considered equivalent to the intensity dis-
tribution of the incident X-ray beam, and efforts have been 
made to estimate its formulaic form. For example, the point 
scan and knife-edge methods have been used to estimate the 
PSF [18, 19] for non-blind deconvolution. However, both 
methods require additional instrumentation and only work 
for certain experiments, which may complicate the hardware 
configurations in the hutch and may not be a general solution 
for all beamlines.

In contrast, blind deconvolution techniques circumvent 
the search for the PSF. Instead, they estimate the PSF from 
the input image. Without prior knowledge of the PSF as a 
prerequisite, blind deconvolution is considered more practi-
cal in scenarios where the PSF cannot be easily estimated, 
such as synchrotron experiments. However, because blind 
deconvolution minimizes the error by iteratively updating 
the estimated PSF and image, its computational cost may 
pose a critical concern, particularly when encountering a 
massive amount of experimental data. Computational con-
cerns also exist regarding non-blind methods. In addition, as 
model-driven approaches, both non-blind and blind decon-
volution techniques assume that the data are determinis-
tic and theoretically reasonable, which is not the case in 

synchrotron experiments, where data are usually produced 
with different dimensions and types. Hence, deconvolu-
tion often struggles to take full advantage of the correlation 
information within large experimental datasets.

To avoid PSF estimation as a prerequisite while taking 
advantage of the immense amount of experimental data, 
more suitable solutions are needed. Unlike deconvolution, 
which is a model-driven approach, data-driven methods 
are the most suitable generic solutions. Data-driven meth-
ods [20–22] are essentially state-of-the-art deep learning 
(DL)-based models that perform super-resolution (SR) 
tasks owing to the powerful learning capability of DL on 
large experimental data. SR expands each dimension of the 
input images with variable-scale factors, adding more image 
details with an increased image size. The first DL-based SR 
solution was the SRCNN [23] model introduced by Dong 
et al. in which a convolutional neural network (CNN) was 
used. Subsequently, Ledig et al. [24] proposed the SRGAN 
using a generative adversarial network (GAN) in 2017. It 
was not until 2018 when Wang et al. [25] introduced the 
ESRGAN that a milestone in SR techniques was established. 
They enhanced the SRGAN in terms of the visual quality 
with more realistic textures [25]. The ESRGAN improved 
critical components of the SRGAN including network archi-
tecture, adversarial loss, and perceptual loss [26], yielding 
better performance in terms of visual quality. Later, ESR-
GAN was extended into the Real-ESRGAN, which is a more 
practical implementation of ESRGAN aiming at processing 
real-world images. Currently, Real-ESRGAN is still con-
sidered one of the best-performing SR models and has been 
frequently used for natural image SR tasks, particularly on 
those images containing anime characters.

Despite this progress, the adoption of these advanced 
DL-based SR models in synchrotron experiments remains a 
concern, mostly in terms of data scarcity and model gener-
alizability. Models that excel in natural image SR tasks are 
usually trained using many LR–HR pairs. However, in syn-
chrotron experiments, the collection of LR-HR data pairs is 
often impossible owing to limited beamtime or strictly con-
trolled radiation dosage, particularly for biological samples. 
Therefore, unsupervised or self-supervised learning [27] 
strategies that do not require paired experimental data, are 
more practical for synchrotron beamlines. In contrast, mod-
els that perform well on natural images should be carefully 
adjusted to adapt to synchrotron experimental images [28], 
which often differ from natural images in aspects such as 
intensity distribution, dynamic range, and ROIs. Therefore, 
the direct application of high-performing pretrained mod-
els designed for natural images to synchrotron experimen-
tal images is perfunctory, and it is preferable to delve into 
pretrained models using X-ray-like images, such as micro-
scopic images of bio-samples. One research direction is to 
incorporate the Fourier channel attention (FCA) mechanism 
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into the DL model [29], which helps the network learn high-
frequency information from diverse datasets.

In summary, as a classical model-driven method, decon-
volution is widely used, while either requiring a PSF as a 
prerequisite or scrambling to tackle large experimental data. 
As an evolving data-driven approach, DL-based SR handles 
large experimental datasets better, although there are still 
concerns regarding data scarcity and model generalizabil-
ity. Therefore, no single algorithm or model can completely 
fulfill the image restoration requirement in synchrotron 
experiments, and the sporadic application of designated 
restoration methods for certain tasks is inefficient. In addi-
tion, current restoration solutions, including deconvolution 
algorithms and DL-based SR models, are still considered 
offline post-processing methods. Synchrotron experiments 
are shifting from two-dimensional (2D) static characteriza-
tion to high-throughput [30], cross-scale [31], multimodal 
[32], dynamic [33], and time-resolved [34] characterization 
with soaring experimental data volumes and increased data 
complexity involving convoluted hierarchical structures 
[35], which causes data deluge problems [36]. Under such 
circumstances, offline methods often fall short of timeliness 
and efficiency, incurring raw data congestion and imposing 
a tremendous burden on computing resources, which even-
tually impedes the scientific discovery process. Hence, an 
adaptable synchrotron image restoration pipeline (ASIRP) 
that autonomously selects the best-suited algorithms and 
models for online processing is essential. The pipeline 
adaptably selects appropriate algorithms and models from a 
method repertoire comprising both deconvolution and DL-
based SR techniques. The ASIRP cohesively synthesizes 
different techniques that are otherwise isolated in the reper-
toire into complementary online solutions. By merging the 
unified experimental control and data acquisition software 
framework [37–39] developed for next-generation synchro-
tron light sources [40, 41], the ASIRP is expected to relieve 
the data congestion problem and computational burden at 
future beamlines.

In this study, we first performed image restoration on 
two synchrotron experimental data types: micro-X-ray fluo-
rescence (µ-XRF) mapping images and synchrotron tomo-
graphic data. Non-blind and blind deconvolution methods, as 
well as pretrained DL-based models designed for either nat-
ural images or microscopic biological images, were tested. 
We demonstrate that the deconvolution methods achieved 
satisfactory results on µ-XRF data, while certain DL-based 
models showed good results on tomographic data. Consid-
ering the strengths and weaknesses of each model in terms 
of data scarcity and model generalizability, we then discuss 
our thoughts on the necessity, feasibility, and significance 
of the ASIRP. In the future, by using algorithmic and soft-
ware advancements, ASIRP can help pave the way towards 
a more automatic, intelligent, streamlined, and user-friendly 

image restoration workflow for new-generation synchrotron 
beamlines.

2 � Material and methods

2.1 � Data acquisition

The μ-XRF data were acquired at the X-ray microanalysis 
beamline (4W1B) in Beijing Synchrotron Radiation Facil-
ity (BSRF), which has an electron energy of 2.5 GeV with 
a current of 250 mA. A polychromatic beam (pink beam) 
with incident X-ray energy ranging from 10–18 keV was 
used. The size of the beam spot was focused by a polycapil-
lary half-lens. A four-element Hitachi Vortex®-ME4 sili-
con drift detector coupled to a Quantum Detectors Xspress3 
four-channel analyzer system was used to detect XRF photon 
counts. Data acquisition was performed in fly scan mode 
using Mamba [39], experimental process control, and data 
acquisition software. The X-ray beam was focused to be 
approximately 50 μm × 50 μm. Two copper-mechanical grid 
samples were used. The first was AG175, which was mapped 
with different step sizes and had a mesh density of 175 lines/
in (69 lines/cm). It had a hole width of 108 μm and a bar 
width of 37 μm. The second grid was the AG300 mesh grid, 
which was used in the intensity analysis. It had a hole width 
of 58 μm and a bar width of 25 μm.

The tomography data were one of 67 tomograms of a 
lithium nickel manganese cobalt oxide battery cathode par-
ticle downloaded from TomoBank [42]. Data were collected 
using nano-CT at the Stanford Synchrotron Radiation Light-
source with an incident X-ray energy of 8348 eV. A total 
of 180 projection images were acquired at different angles.

2.2 � μ‑XRF data mapping and tomographic 
reconstruction

We found that when the concentration of a certain element 
was low, the PyMca software application failed to fit the 
spectra, whereas the concentration of that element could be 
successfully obtained by simply adding intensities within 
the channel of interest. Therefore, we developed a new soft-
ware tool to achieve the “channel-adding” functionality. 
This software was developed using the PyQt5 toolkit. Thus, 
the acquired raw μ-XRF data were either processed using 
PyMca [43] or by intensity summation within the channels 
of interest using our self-developed software. Currently at 
BSRF, our “channel-adding” software is becoming more 
popular amongst the user community due to its time effi-
ciency. The μ-XRF data were stored in hierarchical data for-
mat (HDF5), which is a compatible data format, enabling 
them to be processed by either PyMca or our software. The 
graphical user interface (GUI) of the software is presented 
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in the Results section. For tomographic data, reconstruction 
from the acquired projections was performed using TomoPy 
[44] on a computer equipped with a 6-core 2.6 GHz Intel 
Core i7 CPU, and the final reconstructed 3D volume was 
constructed by stacking the reconstructions using ImageJ 
software [45]. Orthoslices of 3D volume were obtained 
using the ImageJ 3D Viewer plugin.

2.3 � Deconvolution and DL‑based methods

Non-blind and blind deconvolution methods were used, and 
both types of method were implemented using MATLAB’s 
built-in functionality. In addition, a non-blind method using 
the Richardson-Lucy algorithm, was initially implemented 
in Python script. The algorithm was packaged as an execut-
able “. exe” program using “pyinstaller” and then delivered 
to beamline users to improve their experimental data. Later, 
this deconvolution script was integrated into the “chan-
nel-adding” software with a user-friendly GUI design, as 
described below in the Results section.

Popular DL-based SR methods used included zero-shot 
models such as ZSSR [46], models using GAN architectures 
such as ESRGAN and Real-ESRGAN, and models using the 
FCA mechanism such as deep FCA GAN. ZSSR is an unsu-
pervised image-specific CNN model trained at testing time. 
During testing, the training data was completely extracted 
from internal image information of the LR test image; The 
Real-ESRGAN adopted the same generator used in ESR-
GAN, which comprised several residual-in-residual dense 
blocks. The discriminator used was a U-Net-shaped archi-
tecture with spectral normalization applied, which helped 
stabilize the training process. The FCA model featured 
the FCA mechanism, which was embedded in the residual 
groups [29]. The model was built on the framework of an 
adversarial network [47–49] (cGAN). In our experiments, 
we configured the development environment using a work-
station equipped with an NVIDIA GeForce RTX 3060 GPU. 
The environment included configured Python (v3.6), Ten-
sorFlow (v2.6.2), and Keras (v2.6.0).

3 � Results

3.1 � Restoration using deconvolution

Deconvolution methods, including non-blind and blind 
approaches, were both applied to the µ-XRF images of the 
copper grid sample AG175, which were acquired using 
variable step sizes from the 4W1B beamline at the BSRF. 
We then present the deconvolution results using packaged 
“channel-adding” software, which has been thoroughly 
tested and delivered to beamline users. Finally, a graphical 

analysis of the intensity fluctuations of the mapped data was 
conducted to validate the effectiveness of the deconvolution.

3.1.1 � Deconvolution applied to µ‑XRF mapping images

Deconvolution techniques, including both non-blind and 
blind methods, were applied to µ-XRF mapping images 
acquired using variable step sizes of 5, 10, 25, and 50 µm. 
Since the focused beam size was 50 µm, oversampling 
occurred when the step size was equal to 5, 10, and 25 µm. 
Figure 1 compares the deconvolved images with the original 
images with increasing scan steps. The red arrows indicate 
improvements. The real-world microscopy image and PSFs 
recovered using the blind deconvolution method are also 
shown.

The “black lines (gaps)” present in the 5 and 10 µm 
images were caused by the periodic yet inconsistent inten-
sity of the incident X-ray at the beamline. Because the X-ray 
beam at the BSRF during data acquisition was generated 
under the parasitic mode of the Beijing Electron–Positron 
Collider, the current of the electrons increased following 
injection and decayed following electron–positron collisions, 
where injection and collisions occurred alternately. There-
fore, the intensity of the resultant X-rays was periodic, with 
a sawtooth waveform. These lines could not be completely 
removed from the mapping images even though intensity 
normalization was performed using the ionization chamber. 
However, with larger step sizes such as 25 and 50 µm, the 
scanning speed increased and the whole sample area was 
scanned within a single injection-collision period. In those 
instances, no “gaps” were observed in the mapping images 
in Fig. 1.

The results shown in Fig. 1 were obtained using MAT-
LAB’s built-in non-blind and blind deconvolution function-
alities [50, 51]. On average, it took 0.4 s for the non-blind 
algorithm and 0.8 s for the blind algorithm. The number of 
iterations was set to 10. However, based on our operational 
experience installing and learning additional commercial 
software such as MATLAB to process data may be cum-
bersome for beamline users, to the detriment of the entire 
experimental experience. Therefore, open-source, installa-
tion-free software with a low learning curve that runs on 
popular operating systems is preferred.

In addition to MATLAB, the deconvolution was per-
formed in Python. We first packaged the Python scripts that 
perform both plotting and deconvolution into an executable 
“.exe” application using “pyinstaller” (or “py2exe”). Also, a 
“.ini” configuration file was provided, which allowed users 
to input configuration parameters such as the data directory, 
channel range, plot colors, plot threshold, PSF size, standard 
deviation, and number of deconvolution iterations. The soft-
ware uses a channel-adding method to generate the elemen-
tal concentration. It has been suggested by the beamline that 
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this is superior to the PyMca fitting method in which the 
characteristic peaks of some less-concentrated elements are 
too weak to be successfully fitted by PyMca. The software 
also normalizes the photon counts by the counts around the 
Ar emission energy instead of using the intensity from the 
ionizing chamber. The restoration results obtained using the 
packaged software are shown in the Supplementary Informa-
tion (Fig. S1).

Although this program performs deconvolution without 
installing proprietary software such as MATLAB, the lack of 
an intuitive GUI is still an inherent drawback. We received 
feedback from users and beamline staff that modifying the 
“.ini” configuration file may be less intuitive for some users. 
Considering this, we developed an updated data-processing 
software with a GUI included. We have continued updat-
ing the software providing new functionality in response 
to user requests. The software inherited the same “chan-
nel-adding” mechanism and normalization method as the 
packaged software. Figure 2 shows the updated software 
using a GUI. Numerous functionalities include original 
data loading in the HDF format, automatic data dimension 
calculation, plotting threshold and color map selection, flip 
and rotation, ROI selection, and data visualization before 
and after deconvolution. The software saved the processed 
data, such as the plotted 2D mapping and deconvolved 
mapping, into local storage. It also saved the counts of all 
scanned points as a one-dimensional array, combined with 

the relative coordinates along both scan directions in “.txt” 
files, which provided users with the option of plotting using 
Origin software. This software runs on multiple platforms 
and is distributed to beamline users with a detailed soft-
ware manual. The time required to deconvolve the data 
was 20 s for five iterations. The data dimensions were 182 
(H) × 162 (V) scanned points. Using the fastest fly scan speed 
(5 mm/s) in the BSRF-4W1B beamline, the data acquisi-
tion process required approximately 2.5 min to complete. 
Therefore, the data processing speed was better than that of 
data acquisition.

3.1.2 � Graphical analysis on intensity fluctuations

To further validate the effectiveness of deconvolution, we 
studied the intensity fluctuations before and after deconvo-
lution by plotting them across the entire 2D mapping. The 
sample used this time was the AG300 copper mesh grid 
scanned using µ-XRF with a step size of 25 µm. The PSF 
size was 3 × 3 pixels and 10 iterations were performed. The 
time taken to process this data was 0.01 and 0.03 s for the 
non-blind and blind algorithms, respectively.

Figure 3 shows that after applying deconvolution, the 
intensity fluctuated more dramatically than that of the orig-
inal, implying an improved image contrast. The standard 
deviation of the intensity of the original image was 25.13, 
and it improved to 40.82 and 40.53 after non-blind and blind 

Fig. 1   (Color online) deconvolution results on a copper mesh grid 
sample (AG175) with variable step sizes. The different columns (left 
to right) reflect the increasing step sizes and the original microscopy 

image. The scans with different step sizes were performed within the 
same region of interest (ROI)
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deconvolution, respectively. To improve the visualization 
of the intensity fluctuations, grayscale 2D mapping was 
applied. The middle column illustrates the intensity fluc-
tuation, while the right column is a side view of the intensity 
distribution. A more dramatic intensity fluctuation implies 
a greater standard deviation of the intensity, indicating con-
trast improvements by the deconvolution algorithms.

3.2 � Restoration using DL

The restoration results obtained using three distinct DL 
methods are presented. These models were selected delib-
erately to address our concerns regarding data scarcity and 
model generalizability, as each model showed their respec-
tive strengths and weaknesses. The first was a self-super-
vised model, zero-shot SR (ZSSR), which used internal 
learning without requiring paired LR–HR images as train-
ing data; the second was a GAN approach, Real-ESRGAN, 
which is currently considered one of the best-performers 
in the SR field for natural images; the third DL model 

embedded the FCA mechanism, which was pre-trained on 
microscopic bio-images similar to certain types of synchro-
tron experimental data. The first model related to the data 
scarcity concern, whereas the latter two dealt with the gen-
eralizability issue.

3.2.1 � ZSSR

HR experimental images are often difficult to acquire in 
practice. Although such HR images are available, the labe-
ling process can be tedious and is often completed manu-
ally. The lack of HR image counterparts at beamlines often 
causes data scarcity, and self-supervised or unsupervised 
learning strategies are considered more promising. Among 
these, the ZSSR generates training data from the test image 
itself, and the training process occurs during the testing 
phase without requiring a paired and labeled external data-
base. It is considered an image-specific CNN that extracts 
training data from the test image. The results obtained using 
the ZSSR are included in the Supplementary Information. 

Fig. 2   (Color online) the data processing software. In this design, the 
left column of the GUI comprises functionalities such as HDF5 data 
loading, automatic data dimension calculation, step size setting, con-

centration threshold setting, colormap selection, flip and rotation, and 
ROI selection. The right column features visual comparisons between 
the original and the deconvolved data
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Without HR image counterparts, data scarcity has become a 
concern for µ-XRF data, and self-supervised learning meth-
ods struggle to achieve satisfactory recovery (Fig. S2).

3.2.2 � Real‑ESRGAN

In addition to the self-supervised model, a high-performing 
GAN model pretrained on natural images was tested on both 

natural and µ-XRF images. The results are shown in the 
Supplementary Information. As with the self-supervised 
model, the GAN model offered a limited resolution boost 
on µ-XRF images, although it performed well on natural 
images (Fig. S3). Therefore, generalizability is a concern. 
Good generalizability often implies that models trained 
using one type of data are also effective for other types of 
data. However, this model lacks generalizability.

Fig. 3   (Color online) intensity fluctuations before and after deconvolution: a original; b non-blind; c blind
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3.2.3 � Embedded FCA mechanism

For better generalizability of the synchrotron experimental 
data, DL models can be directly trained using synchrotron 
data or using data that resembles synchrotron experimental 
data. Therefore, the DL model with the FCA mechanism was 
tested on two synchrotron experimental data types, including 
µ-XRF data and tomography data. Rather than using natural 
images, this model was trained on microscopic biological 
images, which resembled synchrotron experimental images 
in terms of channel number, dynamic range, intensity distri-
bution, and ROI locations.

Figure 4 shows the SR results obtained using the model 
with the FCA mechanism. The images used were µ-XRF 
images. Improvements in the image quality after restoration 
were observed. The FCA method, as well as both deconvo-
lution algorithms, super-resolved and restored the original 
data. The dimensions of the copper grid image were 1488 
(H) × 744 (V). It took 25 min to super-resolve such data with 
doubled horizontal and vertical resolutions. The dimensions 
of the Cardamine violifolia seed sample image [52] were 
771 (H) × 1108 (V). The seed data were acquired by another 
beamline user [52] with a configuration like that used for the 
copper mesh grid sample. It took 20 min to super-resolve the 
seed data with double horizontal and vertical resolutions. 
Although the data acquisition process is dramatically expe-
dited thanks to fly scan techniques, the SR process can still 
keep up with or even lead the data acquisition process, which 
typically takes 1 h to acquire data from a 30 mm by 30 mm 
sample with a period of 0.01 s and a step size of 50 µm (at 
5 mm/s maximum fly scan speed). In addition, processing 
time can be further reduced using GPU acceleration. Fig-
ure 4 also shows the results obtained using the deconvolution 
algorithms for comparison. For the non-blind algorithm, the 
computation time was 1.92 s; and for the blind algorithm, 
the computation time was 3.71 s. The environment was 
established by configuring Python, TensorFlow, and Keras 
into standalone versions on a workstation equipped with an 
NVIDIA GeForce RTX 3060 GPU. Deconvolution results 
were also shown.

Based on the SR results obtained from the μ-XRF images, 
we tested the SR capability of the models using synchro-
tron tomography data. Figure 5 shows the results obtained 
using non-blind deconvolution, blind deconvolution, and 
the FCA model. Improvements are shown in one of the 2D 
projections and in the orthoslices of the 3D reconstructed 
volume from before and after applying image restoration 
techniques. The 3D reconstructed volume was stacked from 
512 2D reconstructions obtained by using TomoPy [44]. 
Using the non-blind deconvolution, the blind deconvolution, 
and the FCA model, the averaged time required to process 
one projection image was 0.15 s (10 iterations), 0.31 s (10 
iterations), and 36 s, respectively. The FCA model benefitted 
from GPU acceleration. For example, although the training 
required tens of hours to complete, once trained, the pre-
diction required less than 1 s to reconstruct an image with 
1024 × 1024 pixels [29].

To improve the visualization of the SR effect, magnified 
images of the boxed regions of the orthoslices are shown in 
Fig. 6. The capability of the FCA DL model to restore image 
details is demonstrated. The information that could not be 
recovered by non-blind or blind algorithms was recovered 
using the DL model with FCA mechanism. An improvement 
on each slice of the 3D reconstruction implies that the whole 
3D reconstructed volume was super-resolved with enhanced 
data details.

4 � Towards ASIRP

Thus far, we have demonstrated the strengths and weak-
nesses of deconvolution methods and pre-trained DL models 
in synchrotron image restoration tasks. We have shown that 
deconvolutions perform well on µ-XRF images, while being 
less effective on tomography data. In addition, deconvolu-
tion either requires prerequisite PSF information or incurs 
heavy computational costs. However, the DL methods face 
challenges in terms of data scarcity and generalizability. 
For example, when data scarcity was encountered in µ-XRF 
experiments, the ZSSR (self-supervised) method provided 

Fig. 4   (Color online) SR results 
on µ-XRF images using the 
model with FCA mechanism 
compared with deconvolution 
algorithms
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limited restoration outcome (Fig. S2), and the high-perform-
ing Real-ESRGAN DL model for natural images struggled 
to effectively restore the µ-XRF images (Fig. S3); finally, the 
DL model with the FCA mechanism showed its SR capabil-
ity on both µ-XRF (Fig. 4) and tomography data (Figs. 5 and 
6). In summary, both the deconvolution and DL methods 
showed strengths and weaknesses. The challenges of requir-
ing prior information, high computational costs, data scar-
city, and model generalizability cannot be fully addressed 
using a single method.

In addition, no single algorithm, technique, or model 
can completely fulfill the diverse image-restoration require-
ments across different characterization methods and beam-
lines. In real-world scenarios, it is often impractical to 
efficiently test the capability of a particular method with 
specific experimental data. It is imperative to adaptively 
select the algorithms and models that are most suitable for 
specific data types from a readily available pool. Through 
the algorithm selection process, distinct techniques that are 
otherwise isolated can complement each other and function 

Fig. 5   SR results on synchro-
tron tomographic data using 
non-blind deconvolution, blind 
deconvolution, and the model 
with FCA mechanism

Fig. 6   (Color online) magnified 
images of the boxed regions on 
XY and YZ orthoslices
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synergistically. To this end, the strategy of adaptable algo-
rithm selection represents a promising approach.

Another concern regarding the different techniques is that 
they lack online operational functionalities, which may hin-
der the realization of real-time processing. Currently, real-
time data processing is a developing trend in synchrotron 
radiation experiments. The best solution is to formulate an 
online image restoration pipeline using the selected algo-
rithms and models. The pipeline acts as a downstream sys-
tem following beamline experiment control and data acqui-
sition software frameworks such as Mamba [39]. Together 
with Mamba, the pipeline can make full use of the large 
amount of experimental data to perform restoration tasks 
online, which may, in turn, provide feedback to the data 
acquisition framework to help adjust experimental strate-
gies and guide experimental processes. The practicality and 
efficiency of such pipelines are demonstrated by the experi-
ments and discussions presented above in the results section. 
The time required to super-resolve the experimental data 
was proven to be less than that required to acquire such data, 
which makes the pipeline suitable for real-time or online 
deployment at beamlines.

Therefore, not only adaptability but also the requirement 
for online processing must be met. For image restoration 
tasks in the synchrotron experiments, we considered an 
ASIRP to be the optimal solution. The ASIRP improves 
the synchrotron experimental experience through both an 
adaptable algorithm selection strategy and an online image 
restoration technique achieved by integrating experimental 
control and a data acquisition framework [39]. The design 
of the ASIRP and its interoperability with other components 
are illustrated in Fig. 7.

The ASIRP is integrated into the experiment control and 
data acquisition framework Mamba. The pipeline provides 
online feedback from the restored data to the data acquisi-
tion process. The methods repertoire collects and adaptably 
selects suitable deconvolution or DL methods to perform 
image restoration tasks. The white arrows in Fig. 7 show the 

directions of data flow including both the forward and the 
feedback path. The translucent ring encircling the methods 
repertoire cube indicates adaptable algorithm selection from 
candidate algorithms or methods.

5 � Discussion

In this study, we divided synchrotron image restoration 
methods into two categories: deconvolution techniques and 
DL-based SR methods. Both the deconvolution techniques 
and DL methods have respective capabilities and limitations. 
These limitations are mostly related to prerequisite priors, 
computational burden, data scarcity, or model generaliz-
ability. In addition, there were significant differences in the 
data types across the beamlines. Such differences occur not 
only between natural images and synchrotron experimen-
tal images but also across different beamlines. Experiments 
have shown that certain methods that are effective for one 
data type may not work well for other types. To this end, 
an ASIRP can adaptably select methods that are best suited 
to each experiment and cater to the data diversity at future 
beamlines.

Data diversity is particularly common in multimodal 
experiments and is considered as one of the most typical 
experimental modes of fourth-generation synchrotron light 
sources. In certain experiments, such diversity exists not 
only in experimental data with different dimensionalities 
but also in data with the same shape. For instance, diffrac-
tion and transmission microscopy images are both two-
dimensional. Although the shapes of the two data types 
are the same, the effective image restoration techniques 
used can be different. At beamlines, where multimodal 
characterization is routinely conducted, the ability to use 
multiple image restoration methods is more desirable 
than elsewhere. Therefore, by providing suitable restora-
tion techniques, the ASIRP can handle the data diversity 

Fig. 7   (Color online) ASIRP overview
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challenge in multimodal experiments more effectively, 
offering a universal restoration solution across different 
beamlines.

However, the lack of potential for online processing 
may hinder its application in synchrotron experiments. 
Because of limited beam time, experiments are often unre-
peatable, making a powerful feedback mechanism highly 
valued. The feedback mechanism allows for more con-
vincing experimental process control during data acqui-
sition. Although efficacious, many restoration solutions 
are post-processing methods or considered to be offline. 
Therefore, they struggle to provide timely feedback to the 
data acquisition process. Instead, the ASIRP is designed 
as a pipeline that aims to deliver online feedback, both 
spatially and temporally. Spatially, ASIRP constantly 
monitors and restores acquired images during data acqui-
sition, with image details containing meaningful physical 
information being continuously improved. With enhanced 
details, scientists and users can improve their determina-
tion of ROIs on an image, which can then be used for sub-
sequent finer scans within the ROI. Temporally, in X-ray 
diffraction experiments during the data acquisition pro-
cess, the ASIRP discerns minute changes in the shape of 
diffraction patterns in real time, which often reflect physi-
cal events, such as phase changes within materials. By 
determining the time interval at which a physical event of 
interest occurs, researchers can improve their understand-
ing of how materials behave in-situ in a time series, which 
helps them make ad hoc experimental decisions.

Finally, by taking advantage of the ASIRP, some down-
stream tasks can also be performed in a more streamlined 
manner. For example, in synchrotron XRF experiments con-
ducted at the BSRF, users seek effective ways to obtain 3D 
volumes from scanned 2D mappings. Such tasks are cur-
rently completed by manually registering and aligning 2D 
mappings, which is inefficient requiring a huge amount of 
time and human effort. Owing to the outstanding progress 
made in generative AI technology, 3D volumes can be gener-
ated from their 2D counterparts. This 2D-to-3D technique 
can be naturally integrated between the “Restored Data” and 
the “Data Analysis” modules of the ASIRP. Our prelimi-
nary 2D-to-3D generative results obtained using the 2D XRF 
mapping images are shown in Fig. S4 in the Supplementary 
Information. The generative model used was Zero-1-to-3 
[53].

The ASIRP project is still in the planning stages. In this 
study, we showed that no single algorithm or model can 
address the data processing challenges encountered at next-
generation beamlines, whether for good model generaliz-
ability, less stringent data dependency, or the requirements 
for online or multimodal processing. Therefore, the proposed 
construction of such a pipeline is imperative, and this study 
lays a solid foundation for achieving such ambitious goals.

6 � Conclusion

We demonstrated the strengths and limitations of stand-alone 
image restoration methods for different synchrotron experi-
mental data types. The studied methods include deconvolution 
techniques and DL-based SR methods. The deconvolutions 
excel on µ-XRF images, however, they require prior informa-
tion or can incur excessive computation cost. The DL-based 
SR models perform well using tomographic data, however, 
concerns remain regarding data scarcity and model generaliz-
ability. Thus, no standalone method can simultaneously fulfill 
the adaptability and online processing requirements needed 
to support the software advancements of future beamlines. To 
this end, the ASIRP adaptably selects suitable methods from 
a method repertoire. This repertoire consists of both deconvo-
lution techniques and DL-based SR models. By integrating it 
with the software framework Mamba, the ASIRP streamlines 
the image restoration workflow through an adaptable algo-
rithm selection mechanism, which helps make timely experi-
mental decisions, guide experimental processes, and facilitate 
substantial research outcomes for the broader X-ray micros-
copy community.
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