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Abstract

Based on the dinuclear system model, the synthesis of the predicted double-magic nuclei 2°F1 and 34120 was investigated
via neutron-rich radioactive beam-induced fusion reactions. The reaction **Ca + 2**Pu is predicted to be favorable for pro-
ducing ?°8Fl with a maximal ER cross section of 0.301 pb. Investigations of the entrance channel effect reveal that the >**Pu
target is more promising for synthesizing > Fl than the neutron-rich targets 2**Cm and *’Bk, because of the influence of the
Coulomb barrier. For the synthesis of %4120, the maximal ER cross section of 0.046 fb emerges in the reaction 3V + 2*Bk,
indicating the need for further advancements in both experimental facilities and reaction mechanisms.
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1 Introduction

As the center of the “island of stability” was predicted to
be at Z = 114 and N = 184 by the macroscopic—micro-
scopic model [1-5], reaching the next shell closure has
been a major goal in nuclear physics. Various theoretical
methods, including the Skyrme—Hartree—Fock approach
and relativistic mean-field model, have predicted the pro-
ton and neutron shells at Z = 114, 120, 124, or 126 and
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N = 184 [3-13]. In recent years, superheavy elements with
proton numbers up to Z = 118 have been synthesized via
fusion reactions [14-25], along with the discovery of many
new superheavy nuclei [26—33]. Despite these achievements,
the neutron-rich superheavy nuclei region remains unknown.

The existence of superheavy nuclei with Z > 104 is
mainly attributed to shell-structure effects. This informa-
tion has led to the investigation of superheavy isotopes near
the shell closure. Nevertheless, the experimental feasibility
to the “island of stability” via the stable beam-induced hot
fusion reactions encounters challenges due to the limited
availability of actinide target materials and the low neu-
tron-to-proton ratio in the stable projectiles. Consequently,
alternative approaches, including multinucleon transfer and
radioactive-induced fusion reactions, have been proposed.
Nowadays, modern radioactive beam accelerators, such as
the Radioactive Isotope Beam Factory (RIBF), Heavy Ion
Research Facility in Lanzhou (HIRFL), Facility for Rare Iso-
tope Beams (FRIB) and Second-generation System On-line
Production of Radioactive Ions (SPIRAL2) [34-37], have
been developed, offering new opportunities to explore the
“island of stability” via radioactive-beam-induced reactions
in future experiments.

To describe the heavy-ion collision mechanisms, several
macroscopic [38—45] and microscopic models [46-54] were
developed and examined. One of the macroscopic models,
the dinuclear system (DNS) model, is proved to be a reliable
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theoretical tool for describing the fusion-evaporation reac-
tions [8, 55-74]. In this study, the optimal reaction systems
and the corresponding incident energies for the synthesis
of the predicted double magic nuclei 225Fl and 721120 via
fusion reactions with radioactive beams were investigated
using the DNS model.

The remainder of this article is organized as follows: In
Sect. 2, the theoretical details of the DNS model are pro-
vided, followed by an evaluation of the reliability of the
model using the experimental results of the evaporation resi-
due (ER) cross sections of the fusion reactions **Ca + 2*?Pu
and *8Ca + ?**Pu. In Sect. 3, the synthesis of the predicted
double magic nucleus 2**Fl employing neutron-rich radio-
active projectiles and the 2**Pu, *Cm, and *’Bk targets is
explored, and the entrance channel effect is discussed. In
addition, radioactive-beam-induced reactions for the synthe-
sis of the predicted double magic nucleus 3**120 based on
the 2*8Cm, 2*Bk, and 2*’Cf targets were also investigated.
Section 4 presents the conclusions of this study.

2 Theoretical descriptions

Within the framework of the DNS model, the process of
forming the superheavy nucleus is divided into capture,
fusion, and survival stages, and the expression of the cor-
responding ER cross section can be written as

xh?
= QJ + DT(E,,,.J)
2pE i, ZJ: 1)

X PCN(Ec.m.’ J)Wsur(Ec.m. > J)’

O-ER(EcAmA)

T(Egpm.J ) is the transmission probability of colliding part-
ners overcoming the Coulomb barrier and forming a DNS.
Pen(Ee . J) s the fusion probability at which the projectile
nucleon is transferred to the target, thereby forming a com-
pound nucleus [75]. Wy, (E, 1.,/ ) denotes the survival prob-
ability when the compound nucleus undergoes de-excitation
via neutron emission rather than fission [76].

The expression for the capture cross section o, is as

follows [58]:

h2
Pan(Fom) = 5 2 @I+ DT (B ). @)

c.m.

where transmission probability is defined as follows:
T(Eem.J) = / fBT(E, B, J)dB, 3)

here T(E, ,, , B, J) follows Ahmed’s formula [77-79]: The
parameters of the asymmetric barrier distribution f(B) are
adopted from Ref. [80]. The interaction potential of the col-

liding nuclei is defined as [58]
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where C; , denotes the nuclear surface stiffness [81]. g,
and ﬁ?,z represent the dynamic quadrupole deformation
and static deformation of the projectile and target nucleus,
respectively. The Coulomb potential V- is given by the Wong
formula [82], and the nuclear potential V) is described using
the double-folding potential [83].

When the DNS evolves into a compound nucleus,
the nucleon transfer process is driven by the driv-
ing potential along the degree of mass asymmetry
n=(A; —A,)/(A, +A,)[58]. The distribution probability
of fragments P(Z1 ,N,E|, t) can be obtained by solving the
following set of master equations:

dP(Z,,N,E,,?)
dt
= Z Wz, Nz x5, (D)
Z/

1

X [dy, 5, PZ}, Ny, By, 1) = dyy 5 P(Z), Ny, Ey, )]

+ 2 Wz N2, N, ®

N
X [dy,  P(Z;, N}, E}, 1) = dy v P(Zy, Ny Ey )]
= [Ag(O@) + Agy (BW)IP(Z,, Ny, E, 1).

&)

Here W; ZI N, denotes the mean transition probability
between state (Z,, N,) and (Z/, N,) [84], with dy, v, represent-
ing the microscopic dimension. The likelihood of the DNS
decaying via quasi-fission and the probability of heavy frag-
ment fission are denoted by the quasi-fission probability A
and the fission probability Ag,, which are determined using
the one-dimensional Kramers formula [85].

The complete fusion process within the DNS requires
overcoming the inner fusion barrier By, which originates
from the potential energy difference between the incident
point and the B.G. point [86]. Thus, the fusion probability
can be obtained by adding the distribution probabilities
that overcome the inner fusion barrier.

ZB.GA NB.G.

Pon(Em ) = Z Z P(Z,Ny, Ey, 11 ())), ©6)
Z,=1N,=1

where the interaction time 7,,,(J) is estimated using the
deflection function method [87].

During the survival stage, the excited compound
nucleus is unstable and undergoes light particle emis-
sion or fission to reach the ground stage. The survival
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probability for neutron emission competing with fission
at excitation energy E¢ is calculated as

W?Lll' (E$

oo )

— * - Fn(Ez*’J) (7)
= P(ECN,X,J)IIJ [FH(E?,]) + I (E, ) .

P(E.x,J)denotes the realization probability that the com-
pound nucleus evaporates x neutrons [88]. The partial decay
width for neutron evaporation I'; and the fission decay width
I'; were determined using the Weisskopf—Ewing theory [89]
and the Bohr—Wheeler transition-state method [90], with the
level density given by the standard Fermi gas model [91].

The fission barrier is defined as:
By(EF,J) = B° (1 —x pT?)

E*
BM(E* =0 -t
+ f( ; )exp( ED>

h? h?
- - JUJ+ 1),
< 2Jg.s. 2Js.d. > ( " )

®)

here E7 represents the excitation energy prior to the emission
of the ith neutron. B;"P is the macroscopic part determined
by the liquid-drop model and B represents the microscopic
shell correction [1]. x; jy is a temperature dependent param-
eter [91]. The range of shell damping energy E}, introduces
theoretical uncertainties [64, 92, 93], indicating an excita-
tion-energy-dependent shell effect. J, ; and J, 4 denote the
moments of inertia of the compound nucleus in its ground
state and saddle point, respectively, [94, 95].

Based on the ample experimental results obtained
from the reactions *Ca+?*?Pu — 20~F] + xn and
48Ca 4 2Pu — P27F] 4 xn, the reliability of the DNS
model has been evaluated, as illustrated in Fig. 1. For the
majority of the experimental data, the calculated ER cross
sections are in good agreement within the error margin. This
consistency supports the reliability of the DNS model for
identifying the optimal reaction systems and the correspond-
ing incident energies for producing new superheavy nuclei
through fusion reactions.

3 Results and discussion

3.1 The synthesis of the predicted double-magic
nucleus 2°2Fl with the 2**Pu target

Many Fl isotopes have been synthesized via hot fusion
reactions using Pu targets [96—-103]. Among the available
Pu targets, the neutron-rich 2**Pu target has emerged as a
promising candidate for achieving the next shell closure,
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Fig.1 (Color online) Comparison of the calculated results with the
available experimental data from the reactions *3Ca + 2422%Pu [98-
103]. The calculation uncertainties are given by the shaded areas

N = 184. Through hot fusion reactions with the ***Pu tar-
get and radioactive projectiles 3°738Ca, the synthesis of
the double-magic nucleus **®Fl predicted by the macro-
scopic—microscopic model is investigated.

For the reaction *°Ca + 2**Pu — 2%FI + 2n, the predicted
maximal ER cross section of 0.0005 pb which calculated
by DNS model, is significantly below the detection limita-
tion. In contrast, the ER cross sections for the reactions
S7Ca + **Pu — ?8Fl + 3n and *Ca + ?**Pu — 2%%Fl + 4n
are presented in Fig. 2. The maximal ER cross section
for the latter reaction reaches 0.301 pb, which is approxi-
mately an order of magnitude higher than that 0.044 pb for
the reaction 3’Ca + 2**Pu — 2°8Fl + 3n. It is observed that
the predicted maximal ER cross sections for the reactions
induced by radioactive Ca beams are suppressed when
compared to those induced by “*Ca. To further investi-
gate this phenomenon, the capture, fusion and survival
stages of the reactions *Ca+ 2**Pu — 28F] +4n and
BCa + 2**Pu — 2%FI + 4n are investigated in Fig. 3.
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Fig.2 (Color online) The calculated ER cross sections for the reac-
tions ¥’Ca + 2**Pu — 28F1 + 3n and ¥Ca + 2**Pu — 2°Fl + 4n. The
calculation uncertainties are given by the shaded areas

Figure 3a shows the calculated capture cross sections for
the reactions *333Ca + 2**Pu alongside the experimental data
of the reaction “¥Ca + 2**Pu. It reveals an increasing trend
for the capture cross sections with increasing E¢,, which
can be attributed to the enhanced probability of the colliding
nuclei overcoming the Coulomb barrier at elevated E(. . The
alignment between the calculated and experimental results
for the reaction **Ca + 2**Pu supports the predictive ability
of the empirical coupled channel model. For the reaction
38Ca + 2*Pu, the excitation energy of the Coulomb barrier
Vg + Q is 42.4MeV. This value is approximately 8.3 MeV
higher than that of the reaction “®Ca + >**Pu, which is
34.1 MeV. Consequently, such a significant increase in the
Vg + O value for the ¥Ca-induced reaction leads to a sup-
pressed capture cross section at low E¢.y.

In Fig. 3b, the fusion probabilities for the reactions
48.58Ca + 2**Pu are depicted. The fusion probability exhib-
ited an upward trend with increasing E(, which is ascribed
to the increased likelihood of overcoming the inner fusion
barrier at a high E( . Notably, the fusion probability of the
reaction *8Ca + 2**Pu was lower than that for the reaction
48Ca + 2**Pu. This difference is primarily due to variations
in the inner fusion barrier, which are influenced by the mass
asymmetry of the reaction system. A further analysis is shown
in Fig. 4 elaborates on the influence of the driving potential
in the fusion process. This reveals that the lower mass asym-
metry of reaction *®Ca + 2**Pu results in an incident point
substantially distant from the B.G. point. Consequently, the
inner fusion barrier for the reaction 33Ca + 2**Puis13.1 MeV,
which is significantly higher than that for the reaction
48Ca + 24Py (9.4 MeV). This marked difference in the inner
fusion barriers accounts for the observed suppression of the
fusion probability for the reaction 3¥Ca + 2**Pu in Fig. 3b,
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Fig.3 (Color online) a The calculated capture cross sec-
tions, b fusion probabilities and ¢ survival probabilities of the
reactions *3Ca+2*Pu — ?%FI 4+ 4n (black solid lines) and
BCa+2*Pu — 2Fl+4n (red dash-dot lines). The experimental
values for the reaction *8Ca + 2**Pu are denoted by the black cir-
cles [104]

revealing the crucial role of mass asymmetry in influencing
the formation of the compound nucleus in the fusion process.

Figure 3c illustrates the survival probabilities for the for-
mation of nuclei 2%8Fl and 2°®Fl1 via the 4n-emission channel.
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Fig.4 (Color online) The driving potential as a function of mass
asymmetry for the reactions *98Ca + 2**Pu. The entrance channels
of the reactions “8Ca + >**Pu and *®Ca + 2**Pu are represented by the
black solid line arrow and the red dashed line arrow

The survival probability of the nucleus 2*8Fl was observed to
be slightly higher than that of 288F1. However, fission became
the dominant de-excitation mode at high EéN, which leads
to a downward trend in the survival probabilities. Conse-
quently, the disparity in survival probabilities diminishes in
the high E¢, region. This decline in the survival probability
at elevated E(, coupled with the suppression of the capture
and fusion probabilities, results in a reduced maximal ER
cross section for the synthesis of 2°Fl using radioactive Ca
projectiles in comparison with the Fl isotopes produced with
the ¥*Ca beam.

3.2 The synthesis of the predicted double-magic
nucleus 2°Fl with the 28Cm and 2*°Bk targets

Among the experimentally accessible actinide targets, >**Cm
and 2Bk, which have a neutron number of 152, are the most
neutron-rich target materials currently available for fusion
reactions aimed at exploring the neutron-rich superheavy
nuclei region. Table 1 presents the maximal ER cross sec-
tions for the synthesis of the double-magic nucleus >**Fl
through fusion reactions using >**Cm and 2**Bk targets and
radioactive projectiles *>~3*Ar and °'2Cl, in comparison
with reactions involving the ?**Pu target. The maximal
ER cross section for a 2*3Cm-based reaction is 0.129 pb
for the reaction *Ar + 2*8Cm — 28Fl + 4n. In contrast,
for the 2*Bk-based reactions, the maximal ER cross sec-
tion achieved with the heaviest known 32Cl projectile was
approximately 0.004 pb.

Despite the higher number of neutrons in the ?*Cm
and **Bk targets, Table 1 suggests that the maximal ER
cross sections achieved by these targets do not present a
clear advantage over those achieved by the 2**Pu-based
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Fig.5 (Color online) a The calculated capture cross sections,
b fusion probabilities and ¢ ER cross sections of the reactions
BAr 4+ 28Cm — 2%F1 + 3n and 2Cl + >Bk — 2Fl + 3n. The cal-
culation uncertainties are given by the shaded areas

reactions. Further examination of the entrance channel
effects is shown in Fig. 5, which includes the capture
cross sections, fusion probabilities and ER cross sec-
tions for the reactions *3Ar + ?¥Cm — 2%F1 4+ 3n and
32Cl + 2Bk — *Fl + 3n. High Vg + Q values for the
reactions 3Ar+28Cm (46.9MeV) and 2Cl+ Bk
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Fig.6 (Color online) The predicted ER cross sections for the reac-
tions a Ti+2%Cf —» 39120+ 3n, °Ti+ 2*Cf — 34120 + 4n,
b OCr+ 2Bk — 394120 + 3n, ¥V 4+ 2¥Bk - 3120+ 4n and c

Table 1 The predicted maximal ER cross sections, the corresponding
optimal incident energy E_ and the E}. of the radioactive-beam-
induced reactions for producing the predicted double-magic nucleus
298]

Reaction E.. E'y o
(MeV) (MeV) (pb)
24Py (8Cadn) 28Fl 189.8 43.0 030140204
28Cm (**Ar,4n) 25FI 1785 53.0 0.129+0070
2#4Pu (¥'Ca,3n) 2*FI 191.2 43.0 0.044+0021
248Cm (°*Ar,3n) 28F1 178.8 51.0 0020)18:882
2#9Bk (°2C1,3n) *8Fl 170.3 60.0 0.0040001
44Pu (°6Ca,2n) *%FI 1943 44.0 0.00050.0002
#8Cm (°2Ar,2n) 2%8Fl 180.0 49.0 0.0003 000008
249Bk (*IC1,2n) 2%FI 170.3 57.0 0.000]+0-00002

—0.00002

(56.2MeV) significantly suppress the capture cross sec-
tions for these reactions as depicted in Fig. 5a, in com-
parison with the reaction ®Ca + ?**Pu in Fig. 3a.

During the fusion process, as illustrated in Fig. 5b, the
fusion probability for the reaction 32Cl + 2*’Bk is slightly
higher than that for the reaction 3Ar 4+ 2*8Cm, owing to
the relatively higher mass asymmetry of the >Cl + *’Bk
reaction. It can be observed that the high mass asymme-
try values contribute to the fusion probabilities for these
reactions, surpassing that of the reaction *8Ca + >**Pu in
Fig. 3b. Despite the enhancement in the fusion stage, the
maximal ER cross sections for synthesizing >*®Fl remain
suppressed in reactions based on >**Cm and ?*’Bk targets
in Fig. 5c, primarily due to the reduced capture cross
sections. Note that 3Ca is a weakly bound nucleus. The
complex structure and low binding energy of ¥Ca may
lead to neutron evaporation or projectile breakup, poten-
tially suppressing the ER cross section.

@ Springer

Cr + 28Cm — 394120 + 3n, OCr + #5Cm — 3%120 + 4n. The cal-
culation uncertainties are given by the shaded areas

Table 2 The same as in Table 1, but for producing the predicted dou-

ble-magic nucleus 3%+120

Reaction E

%
ECN

max
O’

c.m. ER

(MeV) (MeV) (fb)
29BKk (58Y, 3n) 304120 237.1 38.0 0.04670.922
28Cm (%Cr, 3n) %120 246.3 37.0 004200
29Cf (°3Ti, 3n) 2120 229.8 39.0 0.0360917
29Cf (°Ti, 4n) 120 230.0 47.0 0.02570.14
248Cm (0Cr, 4n) 34120 255.2 46.0 0.019%000¢
29BK (FV, 4n) 34120 245.4 48.0 0.017+50%2
248Cm (**Cr, 2n) 34120 246.2 36.0 0.008+0.9%3
298K (S7V, 2n) 34120 237.0 370 0.0081005
29¢f (7Ti, 2n) 3120 2275 38.0 0.0060.9%2

3.3 Investigations on the synthesis of the predicted
double-magic nucleus 34120

For the synthesis of the double-magic nucleus 34120 pre-
dicted by the relativistic mean-field model, the reaction sys-
tems employing the radioactive projectiles and the experi-
mentally accessible heavy actinide targets >*°Cf, 2Bk and
28Cm are investigated. The calculated maximal ER cross
sections and corresponding incident energies for these
reactions to synthesize 3*4120 are presented in Table 2. This
reveals that among the investigated reaction systems, the
highest maximal ER cross section of 0.046 fb emerges in the
reaction 8V + 2Bk — 394120 + 3n.

Figure 6 further illustrates the ER cross sec-
tions for the reactions “%Ti+2*Cf — 394120 + 3n,
ITi + 29Cf — 304120 + 4n, ¥V + 2Bk — 304120 4 3n,
OV 4 29Bk — 304120 + 4n, °Cr + 2Cm — 304120 + 3n,
OCr +2#8Cm — 34120 4+ 4n. It can be found that the
3n-emission channel is promising for the synthesis of
304120. Nevertheless, the maximal ER cross sections are
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approximately 1072 femtobarns, which is significantly
lower than the current detection capabilities. Therefore, the
advancement of experimental methodologies is required,
including the development of more experimentally feasible
neutron-rich radioactive projectiles, enhancement of radio-
active beam intensities, improvement of detection tech-
niques, and exploration of alternative reaction mechanisms
such as multinucleon transfer reactions. These approaches
are critical for reaching the center of the predicted “island
of stability”.

4 Summary

In this study, a comprehensive investigation of radioactive-
beam-induced fusion reactions was conducted to approach
the center of the predicted “island of stability”. By employ-
ing radioactive projectiles **~8Ca, >>~>*Ar and >*>Cl com-
bining with the **Pu, ?*8Cm and ?*’Bk targets, the synthesis
of the predicted double-magic nucleus 2*’Fl is investigated.
The maximal ER cross section of 0.301 pb appears in
the reaction %Ca+ 2**Pu — 28Fl +4n. The capture,
fusion and survival stages are discussed for the reactions
¥Ca + 24Py — 28F] 4+ 4n and %Ca + 2**Pu — 2%8FI + 4n,
revealing that the critical influence of the Coulomb barrier
and mass asymmetry results in the reduced maximal ER
cross section for the reaction 8Ca + 2**Pu — 2%8F1 + 4n.
The effects of the entrance channel were also investi-
gated, indicating that the *Pu target is more promising
than the neutron-rich >**Cm and ?*’Bk targets for synthe-
sizing the nucleus 2°’Fl, primarily owing to the influence
of the Coulomb barrier. Additionally, for the synthesis of
the predicted double-magic nucleus %4120, the maximal
ER cross section is predicted to be 0.046 fb for the reac-
tion BV + 2Bk — 304120 + 3n, necessitating further
development in both experimental techniques and reaction
mechanisms.
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