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Abstract
As a complement to X-ray computed tomography (CT), neutron tomography has been extensively used in nuclear engineer-
ing, materials science, cultural heritage, and industrial applications. Reconstruction of the attenuation matrix for neutron 
tomography with a traditional analytical algorithm requires hundreds of projection views in the range of 0° to 180° and 
typically takes several hours to complete. Such a low time-resolved resolution degrades the quality of neutron imaging. 
Decreasing the number of projection acquisitions is an important approach to improve the time resolution of images; however, 
this requires efficient reconstruction algorithms. Therefore, sparse-view reconstruction algorithms in neutron tomography 
need to be investigated. In this study, we investigated the three-dimensional reconstruction algorithm for sparse-view neu-
tron CT scans. To enhance the reconstructed image quality of neutron CT, we propose an algorithm that uses OS-SART to 
reconstruct images and a split Bregman to solve for the total variation (SBTV). A comparative analysis of the performances 
of each reconstruction algorithm was performed using simulated and actual experimental data. According to the analyzed 
results, OS-SART-SBTV is superior to the other algorithms in terms of denoising, suppressing artifacts, and preserving 
detailed structural information of images.

Keywords Neutron CT · OS-SART  · Sparse-view · 3D reconstruction · Split Bregman · Total variation

1 Introduction

CT is a nondestructive technology used to inspect the inter-
nal structure of an object. Neutron CT has incomparable 
advantages over X-ray CT for heavy metals, isotopes, and 
hydrogen-containing materials. Consequently, it has sev-
eral applications in the fields of fluid measurement and 
visualization in thermodynamics, special nuclear materials, 
and nuclear fuel composition [1–4]. Neutron tomography, 
an important branch of neutron radiography, has become 
increasingly significant for detecting the internal structure 
of samples owing to its ability to display three-dimensional 
(3D) information about the sample interior. The most criti-
cal aspect of neutron CT systems is the 3D reconstruction 
algorithm. The intensity of the neutron source is generally 
low, with source intensities ranging from  105 to  1010 n/cm2/s 
[5]. Owing to the low neutron flux, it takes several minutes 
for neutron CT to acquire projection data at a single angle. 
Therefore, several hours were required to obtain sufficient 
projection data. This long-term acquisition method lim-
its the use of neutron CT for studying static or quasistatic 
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processes. For processes with fast acquisition of changing 
rates, such as the dynamic processes of water distribution in 
an operating fuel cell and the absorption of oxygen by  LaNi5 
[6, 7], the rapidly changing processes cause motion artifacts 
to reappear in the images. Therefore, improving the qual-
ity of neutron tomography has become an important issue 
in image reconstruction. In general, two methods exist to 
enhance the quality of neutron tomography. The first method 
is to increase the neutron intensity while reducing the time 
required to acquire individual projections, which is difficult 
to achieve. The second method is to shorten the acquisition 
time of the projection data by reducing the projection angle, 
which requires the application of a specialized reconstruc-
tion algorithm. Therefore, this study largely discusses a 
sparse neutron CT reconstruction algorithm.

Sparse reconstruction is an ill-posed problem in math-
ematics and a major problem in image reconstruction. Effi-
cient sparse reconstruction algorithms are an important 
research topic in CT image reconstruction. Neutron CT 
reconstruction primarily uses analytical and iterative algo-
rithms. The use of the FBP algorithm in CT reconstruc-
tion must be completed using projection data. When FBP is 
applied to a sparse reconstruction, the reconstructed image 
exhibits noise and artifacts [8]. Compared with FBP, tradi-
tional iterative algorithms such as algebraic reconstruction 
technique (ART) [9], simultaneous iterative reconstruction 
technique (SIRT) [10], and simultaneous algebraic recon-
struction technique (SART) [11] have more significant 
advantages. These algorithms achieved satisfactory results 
with sparse reconstruction. However, without adding pre-
vious information, the reconstructed images of these algo-
rithms exhibited artifacts when the projected data were 
extremely sparse. In addition, deep learning has been widely 
used in sparse CT image reconstruction. Using deep learn-
ing frameworks such as generative adversarial networks, 
researchers have been able to obtain high-quality images 
from sparse views [12–15]. For example, convolutional neu-
ral networks (CNNs) can improve the quality and efficiency 
of image reconstruction by learning to map from projec-
tion to images and can also improve the quality of images 
by training denoising networks that learn to remove noise 
from images [16–18]. However, deep learning still faces 
challenges in sparse CT image reconstruction, including 
difficulties acquiring labeled data and high computational 
complexity. Because of the specificity of the neutron CT 
application environment, neutron CT cannot obtain complete 
projection data for image reconstruction and considerably 
less projection data for deep learning training. Hence, in 
this study, we investigated a 3D reconstruction algorithm 
for sparse neutron CT.

Fortunately, the rapid development of the compressed 
sensing (CS) theory has made sparse reconstruction pos-
sible [19]. According to this theory, if a signal can be 

represented sparsely, it can be accurately recovered using 
a specific sparse transformation. Inspired by the CS theory, 
sparse-view images were successfully reconstructed using 
a sparsity prior. Several efficient optimization methods can 
reconstruct high-quality images with flexibility using effi-
cient image priors, such as the non-local mean [20], wavelet 
frame [21], and total variation (TV) [22]. The TV-based iter-
ative reconstruction algorithm offers significant advantages 
for sparse reconstruction. It preserves image edge informa-
tion through the TV regularization term, suppresses noise 
and smoothed regions, highlights the edges, and generates 
clear and accurate images. In addition, the TV regularization 
term promotes the generation of sparse solutions by encour-
aging large changes in the pixel values, producing fewer 
non-zero pixels, and generating more sparse solutions. The 
TV regularization term has local properties and can handle 
images with different textures, edges, and regions better. 
The algorithm has good convergence and stability as well 
as high interpretability, and parameter tuning can control the 
smoothness and detail retention of the reconstructed images. 
Therefore, the key to the iterative reconstruction algorithm 
is to select the most appropriate regular term. TV-based 
models produce satisfactory results for image restoration 
and reconstruction. Current TV-based regularization can 
reconstruct satisfactory images when sparsity is relatively 
high. However, when the projected data are sparse, these 
algorithms do not perform well in eliminating artifacts or 
suppressing noise. To address this problem, researchers have 
published several TV-based algorithms [23–25]. Although 
these approaches are effective at suppressing staircase 
effects, they increase image noise. Another shortcoming of 
these models is the assumption that the image is piecewise 
constant, which destroys the structural information in the 
image. Therefore, it is necessary to devise a well-performing 
image reconstruction algorithm.

The split Bregman is a mathematical method for solving 
the minimization objective function, which essentially solves 
the objective function minimization problem by introducing 
an L1 parametric regularization term. This method is widely 
applied to various L1 parametric regularization image denois-
ing problems and makes it difficult to directly differentiate L1 
parametric regularization problems into L2-parametric regu-
larization problems that can be directly differentiated. The tra-
ditional minimization method consists of two steps: updating 
the image data fidelity term and the regularization constraint 
term. By introducing an initial value of 0, the split Bregman 
algorithm first transforms the non-differentiable L1-parametric 
regularization problem and solves the objective function using 
the conjugate gradient algorithm. The split Bregman algorithm 
solves the problem of difficulty in differentiating L1-paramet-
ric regularization in image denoising using the Bregman dis-
tance principle and achieves an accurate and fast solution to 
the L1 parametric regularization problem. The concept of the 
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Bregman iteration first originated from a generalized function 
analysis for solving extreme values of convex functions [26]. 
Osher et al. [27] proposed a regularization method to improve 
the computing effectiveness of the Euler–Lagrange method 
for TV models based on the Bregman distance. Although this 
method improves the computational efficiency, it is more com-
plicated to implement. To simplify the above method, Zhang 
et al. [28] split the original TV model into two sub-models 
by introducing auxiliary variables and subsequently perform-
ing alternate iterations of scattering and shrinkage operators. 
Goossens et al. [29] proposed a generalized split Bregman-
based regularization method for the wide application of TV 
minimization in image denoising and sparse-view CT recon-
struction and compared it with ASD-POCS to demonstrate the 
possibility of sparse-view reconstruction and noise regulariza-
tion. Because of its efficiency, the split Bregman algorithm has 
already been successfully used in various applications, such 
as image segmentation, image denoising, image compression, 
and image reconstruction.

In neutron CT systems, the quality of neutron projection 
data is relatively low. This is because the image acquisition 
equipment, transmission equipment, and receiving equipment 
used in the neutron CT system are not perfect, resulting in 
the neutron projection data being disturbed by different noises 
during the acquisition, transmission, and storage processes, 
which blur the reconstructed neutron images and result in a 
significant loss of edge structure information. In addition, 
the image processing algorithm used in neutron CT systems 
directly impacts the reconstructed image quality; therefore, it 
is necessary to use efficient image reconstruction algorithms 
in the neutron CT system. We propose the OS-SART-SBTV 
algorithm based on the split Bregman tight frame algorithm 
to improve the quality of neutron CT images. This method 
can reconstruct neutron CT 3D images quickly and accurately. 
Compared to the traditional algebraic iterative reconstruction 
method, the regularization constraint term can be updated 
simultaneously with the data fidelity term, thus ensuring the 
convergence and speed of the objective function. According 
to the experimental results, the OS-SART-SBTV algorithm is 
more effective than the traditional algebraic iterative recon-
struction algorithm in increasing the quality of the recon-
structed images and reducing the noise caused by insufficient 
projection data.

2  Methods

2.1  Low‑rank matrix approximation (LRMA) 
algorithm

The LRMA algorithm is a method for approximating the rep-
resentation of a high-dimensional matrix as a low-rank matrix 

[30]. In image processing, this algorithm simplifies the data by 
preserving their main features and structure.

We first analyzed the problem of estimating a low-rank 
matrix � from noisy projection data:

where W denotes the noise model. The LRMA problem can 
be defined using the following equation:

where k = min(m, n) and �i(�) are the ith singular values of 
the matrix � , and � is a regularizer that induces sparsity and 
may be non-convex.

2.2  Total variation (TV) algorithm

Iterative algorithms have an advantage over analytical algo-
rithms under the condition of limited projection views; how-
ever, when severely under-sampled, the reconstructed image 
still has severe artifacts, even with iterative algorithms. 
Because the CS theory was proposed, CS-based approaches 
have been successfully applied to eliminate artifacts and 
other aspects. CS theory can only be applied to sparse images 
or images that can be represented sparsely. Generally, neu-
tron tomography images are not sparse but can be sparsely 
expressed by a sparse transformation using the following defi-
nition equation:

where qu,v,z denotes the pixel value at position (u, v, z).
The TV is the total pixel value in the image:

Mathematically, TV-based image reconstruction can be 
expressed as follows:

2.3  Fast gradient projection (FGP) algorithm

Beck and Teboulle introduced the FGP algorithm to solve the 
TV, which is derived as follows [31]:
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The non-smooth nature of TV results in the inability to 
directly solve Eq. (6). To solve this problem, Chambolle 
used a gradient-based algorithm for the solution process. 
Based on this algorithm, a constrained problem pair is con-
structed. Certain symbols are assumed. The � represents the 
set of matrix pairs (� , �) that satisfy the following relations:

� ∶ ℝ
(h−1)×g ×ℝ

h×(g−1)
→ ℝ

h×g is linear operation. Its 
definition formula is as below:

The operator �T∶ ℝ
h×g

→ ℝ
(h−1)×g ×ℝ

h×(g−1) adjacent to 
� uses the following computational formula:

where � , � ∈ ℝm×n are the matrices that defines the equation:

PC is an orthogonal projection operator of C. Thus, 
when C = Bl,u , the PBl,u

 is given by

Assuming this notation, we obtained the dual prob-
lem in Eq. (6). This approach can explain the connection 
between the dual and primal optimal solutions. To explain 
this relationship further, we introduced the following prop-
osition. We assumed that (� , �) ∈ � is the optimal solution 
to this problem:

The expression for HC(o) is given below:

h in Eq.  (7) is a continuous differentiable function 
whose gradient is defined as follows:
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(8)HC(o) = o − PC(o), o ∈ ℝ
h×g.

Consequently, the problem in Eq. (6) can be transformed 
into the following equation:

Because the objective function is concave in � , � and convex 
in o , it is possible to swap the maximum and minimum orders. 
Thus, we obtain the following formula:

It is able to be reformulated as below:

Therefore, the optimal solution of the above equation can 
be obtained:

We can then solve the following dyadic problem by apply-
ing Eq. (14) to Eq. (13) and omitting the permanent term in 
Eq. (13):

Because our objective is to resolve the dual problem of 
Eq. (6), and the gradient is represented by Eq. (11), we intro-
duced a gradient projection algorithm, which is commonly 
used for denoising problems. Because the norm of o�ℝh×g is 
Frobenius norm. For (� , �)�ℝ(h−1)×g ×ℝ

h×(g−1) , it is expressed 
as the following equation:

The projection in the set � could be calculated sim-
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P� (� , �) = (l1, l2) . The expression for l�Rh×g is given below:
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The image denoising algorithm based on the FGP algo-
rithm can be obtained by substituting the maximum values 
of the gradient equation, objective function, and Lipschitz 
constant into the gradient projection algorithm presented 
in Eq. (6).

2.4  Split Bregman reconstruction algorithm

Unconstrained convex minimization problem for CT image 
reconstruction models:

where ‖f‖TV = �∇f � = ∑S

s=1

∑V

v=1
∇fs,v

The main steps for solving the image reconstruction 
problem with the split Bregman algorithm for TV minimi-
zation are expressed by Eq. (19). First, the two variables are 
imported to transform Eq. (19) into
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 . The pen-
alty term is subsequently introduced, and the above equation 
is converted into

Therefore, the Bregman iteration method can be used to 
solve Eq. (20):
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Equation (20) can usually be updated in two alternating 
iterative steps f  and d:

The first step considers the specificity of the CT reconstruc-
tion matrix � and is solved using the gradient descent method:
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 is the step size.

The second step can be solved by the generalized contrac-
tion formula:
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The specific process of CT reconstruction based on the split 
Bregman algorithm is as follows.
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2.5  OS‑SART 

The SART is an improved iterative reconstruction algo-
rithm proposed by Anderson and Kak in 1984. The SART 
is a modification of the ART in that it uses the error of all 
rays passing through a pixel at a certain angle to correct 
its value. This formula is expressed as follows:

The OS-SART algorithm is an improvement over the 
SART algorithm that divides the projection angle using 
the following equation:

2.6  Proposed algorithm

Based on the OS-SART algorithm and split Bregman 
method, we propose the 3D reconstruction algorithm OS-
SART-SBTV for sparse-view neutron CT. The algorithm 
employs a two-step iteration process with OS-SART for 
image reconstruction and the split Bregman method for 
total variation denoising (Table 1).

2.7  Quantitative evaluation index

Image evaluation metrics play a vital role in assessing 
the quality and accuracy of reconstructed images. These 
metrics provide objective measures to compare different 
algorithms and determine their performance. The follow-
ing four image evaluation metrics were selected to analyze 
the performance of each algorithm.

The smaller the root mean square error (RMSE), the 
better, and the smaller it is also implies that the closer the 
two images are, the more detail is retained in the original 
image. RMSE is defined by the following equation:

The universal quality image (UQI) is a metric for evalu-
ating image quality that quantifies the similarity between 
two images using the following equation:
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Correlation coefficient (CC) is an evaluation metric 
used to quantify the correlation between two images using 
the following equation:

Mean structural similarity (MSSIM) is based on the con-
cept of structural similarity and aims to measure the degree 
of structural similarity and distortion between two images 
using the following equation:
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Table 1  OS-SART-SBTV algorithm

1. Iteration stop condition not reached
2. First: OS-SART 
3. Initialize: f0 , λOS−SART , NOS−SART , λSBTV and NSBTV

4. For n = 1 to NOS−SART do

5.
f
(k+1)

j
= f k

j
+
∑

i∈St

�
�k

pi−
∑J−1

n=0
winf

(k)

in∑J−1

n=0
win

wij

��
∑

i∈St
wij

6. Non-negativity constraint,

If f (n)
OS−SART

< 0, f
(n)

OS−SART
= 0

7. Second: Split Bregman solving TV
8. fo = fOS−SART, d

0
x
= d0

y
= d0

z
= b0

x
= b0

y
= b0

z
= 0

9. Until the stop iteration condition is reached
10.f k+1 = argmin

f
u
2
‖�f − p‖22 +

�
2
‖dkx − ∇xf − bkx‖

2
2 +

�
2
‖dky − ∇yf − bky‖

2
2

+ �
2
‖dkz − ∇zf − bkz‖

2
2

11. 
dk+1
x

= max
(
sk −

1

�
, 0
)

∇xf
k+bk

x

sk

12. 
dk+1
y

= max
(
sk −

1

�
, 0
)

∇yf
k+bk

y

sk

13. 
dk+1
z

= max
(
sk −

1

�
, 0
)

∇z f
k+bk

z

sk

14. bk+1
x

= bk
x
+ (∇xf

k+1 − dk+1
x

)

15. bk+1
y

= bk
y
+ (∇yf

k+1 − dk+1
y

)

16. bk+1
z

= bk
z
+ (∇zf

k+1 − dk+1
z

)

17. end if,
18. end if the stop criterion is satisfied
19. Get the final reconstructed image fOS−SART−SBTV
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3  Experiment

3.1  3D digital head model experiment

In this study, the performance differences among the five 
algorithms were comparatively analyzed using a 3D digital 
head model with dimensions of 256 × 256 × 256  (Fig. 1). The 
four iterative algorithms must be adjusted with the param-
eters to obtain the best quality image. Therefore, the param-
eters of each algorithm were set as follows: OS-SART-TV 
algorithm, λOS−SART = 2.2 , Niter0S−SART = 50 , λTV = 200 , 
and NiterTV = 150 . As for the OS-SART-FGPTV algorithm, 
λOS−SART = 2.5 , NiterOS−SART = 50 , λFGPTV = 0.006 , and 
NiterFGPTV = 150 . As for the OS-SART-LRMA algorithm, 
λOS−SART = 2.3 , NiterOS−SART = 50 , blcksize = [121212] . 
For the OS-SART-SBTV algorithm, �OS−SART = 2.2 , 
NiterOS−SART = 50 , λSBTV = 0.0032 , and NiterSBTV = 150.

Figure 2 displays the dependency between the RMSE and 
iterations for different numbers of projection views recon-
structed using the OS-SART-SBTV algorithm. The results 
display that OS-SART-SBTV can reach a convergence state 
after certain iterations. In addition, the convergence speed 
of the algorithm increased with an increase in sparse views, 
indicating that the OS-SART-SBTV algorithm can minimize 
the objective function and obtain a satisfactory solution 
under different sparse-view conditions.

Figure 3 shows the five algorithms used to reconstruct 
the images with different projection angles. The numbers 
of projection views were 10, 30, 60, and 60+. 60+ denotes 
the reconstruction results of the projection data after adding 
the Poisson and Gaussian noise models. The quality of the 
neutron source and the inherent noise of the system equip-
ment can affect the acquired projection data. Therefore, by 
introducing Gaussian and Poisson noise to the digital head 
model, we can test the performance and stability of the algo-
rithm. To analyze the noise reduction performance of the 
algorithm, two noise distributions were added to the digital 
model. The noise model parameters are the incident pho-
ton flux 1 × 105 , mic = 0 , and �2

ic
= 0.25 [32]. As depicted in 

Fig. 3, the sharpness and smoothness of the images recon-
structed using the five algorithms increased progressively 
with respect to the number of projected views when recon-
structing the noiseless projection data. When the reconstruc-
tion angle was 10°, the reconstructed image quality of all 
five algorithms was poor, leading to an inability to differ-
entiate the performance of the algorithms effectively. The 
reconstructed results of OS-SART-TV depicted in Fig. 3, 
were superior to those of the FBP algorithm; however, its 
reconstructed image exhibited the problems of detail loss 
and excessive smoothing of edge structure, especially when 
reconstructing 30 views, the reconstructed image of OS-
SART-TV algorithm was blurred. The third to fifth rows 
in Fig. 3 represent the reconstructed images from the OS-
SART-FGPTV, OS-SART-LRMA, and OS-SART-SBTV 
algorithms. The number of iterations for the four algorithms 
used to reconstruct the different projection views was set Fig. 1  Slice of the head model at z = 90

Fig. 2  Relationship between RMSE and the number of iterations of OS-SART-SBTV: a 30, b 60, and c 60+
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to 50. Specifically, the reconstruction results of the OS-
SART-FGPTV and OS-SART-LRMA algorithms displayed 
certain improvements compared to the FBP algorithm. 
The OS-SART-FGPTV and OS-SART-LRMA algorithms 
reconstruct more details than OS-SART-TV. Compared to 
OS-SART-TV, OS-SART-FGPTV, and OS-SART-LRMA, 
the OS-SART-SBTV algorithm had fewer image artifacts 
and sharper edge structures when the number of reconstruc-
tion angles was 30. Compared with OS-SART-TV, the OS-
SART-SBTV algorithm not only suppressed the artifacts 

well but also reconstructed more structural information 
about the image. In addition, we zoomed in on the regions 
of interest (ROI) for the different algorithm-reconstructed 
images depicted in Fig. 3. According to the ROI of the FBP 
algorithm, serious artifacts were present in the ROI of the 
reconstructed image, and a significant amount of detailed 
image information was lost. It is well known that the ROI 
edges of images reconstructed by OS-SART-TV are exces-
sively smooth, resulting in blurred images. Compared with 
the OS-SART-FGPTV and OS-SART-LRMA algorithms, 

Fig. 3  Slice of reconstructed images of the head model obtained using FBP, OS-SART-TV, OS-SART-FGPTV, OS-SART-LRMA, and OS-
SART-SBTV at z = 90
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the OS-SART-SBTV algorithm displayed fewer artifacts 
in the ROI images and reconstructed more detailed image 
information and edge structure features.

Figure 4 represents the relationship between the number 
of iterations and the variation in the RMSE for the differ-
ent algorithms. According to the curves in Fig. 4, the OS-
SART-SBTV algorithm has the fastest convergence rate, 
and the RMSE values for each iteration of the OS-SART-
SBTV algorithm were smaller than those of the other two 
algorithms.

Similar conclusions were drawn from Fig. 5, which dis-
plays the error images for each reconstruction algorithm. As 
shown in Fig. 5, different algorithms reconstructed the error 
images for the 30, 60, and 60+ projection views. Although 
we could not discriminate the superiority of each algorithm 
when there were 60 views, the OS-SART-SBTV algorithm 
showed great superiority when the number of projected 
views was small, for example, 30 views. From the error 
image in Fig. 5, the error image of the FBP had serious arti-
facts and lost a lot of image structure information, indicating 
that the FBP algorithm could not be applied to sparse recon-
struction. Compared to FBP, the four iterative algorithms 
performed well in reconstructing detailed image information 
and suppressing artifacts. The OS-SART-SBTV algorithm 
exhibited the least loss of detailed structural information in 
the error image. To further compare and analyze the per-
formance differences between the algorithms, we scaled up 
the ROI of the error images of the different algorithms (red 
rectangular area in Fig. 5). According to the ROI of the error 
image of FBP, it is evident that several image structure fea-
tures were lost, and multiple artifacts appeared in the error 
image. By comparing the ROI of the OS-SART-TV, OS-
SART-FGPTV, OS-SART-LRMA, and OS-SART-SBTV 
error images, the OS-SART-SBTV algorithm could recon-
struct more detailed structures. Therefore, the OS-SART-
SBTV algorithm outperformed the other two iterative algo-
rithms in terms of reconstructing the image detail structures.

Figure 6 displays the vertical and horizontal profiles of the 
reconstructed FBP, OS-SART-TV, OS-SART-FGPTV, OS-
SART-LRMA, and OS-SART-SBTV. The results resemble 

the reconstructed and reference images. As shown in Fig. 6, 
fluctuations were present in the profile lines of FBP, and 
the pixel values of the reconstructed image significantly 
deviated from the actual values. Although the four iterative 
algorithms were superior to FBP, they deviated from the real 
pixel values. The OS-SART-SBTV algorithm reconstructs 
images with pixel values closest to the real pixel values. 
Compared to the FBP, OS-SART-TV, OS-ART-FGPTV, and 
OS-SART-LRMA algorithms, the reconstructed images of 
the OS-SART-SBTV algorithm were closer to the reference 
image, regardless of the vertical or horizontal profiles. This 
illustrates the excellent performance of the OS-SART-SBTV 
algorithm for sparse-view CT 3D reconstruction.

Based on the above results, the FBP algorithm cannot be 
applied to sparse reconstructions. For further comparison, 
we selected the RMSE, CC, MSSIM, and UQI to illustrate 
the edge protection and noise suppression effects of the four 
iterative algorithms.

Figure  7 depicts the UQI, RMSE, CC, and MSSIM 
evaluation metrics for the reconstructed images using the 
four algorithms. First, we quantitatively analyzed images 
reconstructed using noiseless projection data. Figure 7a 
displays that the RMSE value of the algorithm increased as 
the number of projections decreased. When the algorithms 
reconstruct the projection angle in the same manner, the 
RMSE of the OS-SART-SBTV reconstructed image was 
minimized. When the reconstructed sparse view was 30, the 
RMSE of OS-SART-SBTV was 0.0246. As illustrated in 
Fig. 7, the CC, MSSIM, and UQI of all algorithms decreased 
with the number of projection angles. When the number 
of reconstructed angles was the same, the CC, MSSIM, 
and UQI of OS-SART-SBTV were at the maximum, indi-
cating that the algorithm reconstructed the image with the 
best quality. We subsequently quantitatively analyzed the 
reconstructed images using the noise-containing projec-
tion data. The RMSE analysis revealed that the OS-SART-
SBTV reconstructed image had the lowest RMSE value 
when reconstructing the same amount of noise-containing 
projection data. From the CC, MSSIM, and UQI, the OS-
SART-SBTV reconstructed images had the greatest values 

Fig. 4  Relationship between RMSE and the iterations for different algorithms: a 30, b 60, and c 60+
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when reconstructing the same number of noise-containing 
projection data. In conclusion, according to the reconstruc-
tion results of each algorithm, the image quality of our pro-
posed algorithm was the highest when reconstructing the 
same number of projection views.

3.2  Real neutron beam projection experiment

We analyzed the performance of the OS-SART-SBTV algo-
rithm in real applications by reconstructing the projection 
data of the clock model (Fig. 8). The clock model-based 
neutron CT projection data were supplied by Schillinger 

[33]. Schillinger presented 201 equirectangular neutron 
photographs over a 180° range.

We used five algorithms to reconstruct the clock-pro-
jection data from a real neutron CT experiment to verify 
the superiority of our algorithms. As shown in Fig. 9, 
the reconstructed image of FBP contains obvious arti-
facts. The reconstructed image of the OS-SART-TV was 
extremely smooth, causing a relatively serious loss of 
detailed information. Although the OS-SART-FGPTV and 
OS-SART-LRMA algorithms improved the reconstructed 
images compared to the OS-SART-TV algorithms, cer-
tain structural information was still lost in the images 

Fig. 5  Slice of error images at z = 90
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reconstructed by the OS-SART-FGPTV and OS-SART-
LRMA algorithms when the sparsity was very small. 
Visual analysis revealed that the OS-SART-SBTV was 
better than the other algorithms at eliminating artifacts 
and suppressing noise. In addition, the OS-SART-SBTV 
algorithm preserved more detailed structural information, 
and the reconstructed images were of the highest quality.

The images of the real neutron projection data recon-
structed by the four algorithms were evaluated using four 
image evaluation metrics (Fig.  10). The RMSE of OS-
SART-SBTV was the lowest, indicating that the algorithm 
reconstructed the image nearest to the original image. 

OS-SART-SBTV had the maximum UQI, CC, and MSSIM, 
indicating the best performance of the algorithm. In sum-
mary, according to the reconstruction results, OS-SART-
SBTV is the best method for removing noise, suppressing 
artifacts, and reconstructing detailed structures.

4  Discussion

This study presents an efficient sparse reconstruction algo-
rithm for neutron CT. We used an iterative algorithm for the 
reconstruction because the FBP algorithm has an inherent 

Fig. 6  Profile line graphs of 
reconstructed images by dif-
ferent algorithms: vertical and 
horizontal
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flaw when applied to sparse-view image reconstruction, 
which makes it unsuitable for reconstructing noisy sparse-
view neutron projection data. Moreover, an iterative algo-
rithm can optimize the quality of the reconstructed image 
using regularization. The TV-based iterative algorithm, 
which has evident advantages over other methods, is widely 
used for sparse reconstruction. For example, the OS-SART-
TV algorithm is superior to OS-SART in terms of noise 
suppression. According to the quantitative image evaluation 

index, OS-SART-SBTV was superior to OS-SART-TV, 
OS-SART-FGPTV, and OS-SART-LRMA. Based on the 
results of the 3D digital head model reconstruction, the 
novel algorithm proposed in this study performed well in 
both visual observation and quantitative measurement. 
However, in a realistic neutron CT system, the projection 
data are affected by electronic devices and photon-counting 
noise. Consequently, several reconstruction algorithms do 
not achieve satisfactory results in realistic scanning environ-
ments. Therefore, we further validated the performance of 
OS-SART-SBTV in neutron CT using the projection data 
of the clock model. According to the experimental results, 
OS-SART-SBTV is superior to the other algorithms in 
sparse-view neutron CT 3D reconstruction. That is, OS-
SART-SBTV is more suitable for application in real neutron 
CT scanning systems than the other algorithms. In addi-
tion, deep learning has achieved good results in sparse-view 
reconstruction. The DEAR model proposed in [15] not only 
effectively removes image artifacts but also displays excel-
lent performance in retaining image edge structure infor-
mation and feature recovery. In addition, the combination 
of score-based generative models (SGM) and wavelet sub-
networks has made significant research progress in sparse 
reconstruction, which is capable of generating more accu-
rate and reliable reconstructed images and will become an 
important research direction for sparse reconstruction in 
future [34, 35].

Fig. 7  Image evaluation metrics 
of different algorithms for 
reconstructing head model. a 
RMSE, b CC, c MSSIM, and 
d UQI

Fig. 8  Slice of clock model at z = 110
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In the study of a 3D digital head model, this novel algo-
rithm converged monotonically to a stable solution (Fig. 2). 
To obtain a convergent solution, several parameters of the 

algorithm must be optimized. For the OS-SART-SBTV, four 
parameters need to be determined, λOS−SART , NiterOS−SART , 
λSBTV and NiterSBTV . We could significantly improve the 

30 45 60

Fig. 9  Slices of reconstructed images at z = 110 for different algorithms
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image quality when λOS−SART was varied in a smaller range. 
Therefore, we could improve the image quality by adjusting 
λOS−SART . NiterOS−SART is typically set to 50 to 100 because 
the image improves more slowly as the number of iterations 
increases. In general, after 50 iterations, the algorithm can 
result in a better-reconstructed image. However, more expe-
rience is required to set λSBTV and NiterSBTV . These param-
eters were adjusted until image quality was optimized.

5  Conclusion

We proposed an efficient 3D reconstruction algorithm 
for sparse neutron CT. To enhance the quality of neutron 
CT images, we proposed the OS-SART-SBTV algorithm, 
which reconstructs images using the OS-SART algorithm 
and uses the split Bregman method to solve TV. Compared 
with the FBP, OS-SART-TV, OS-SART-FGPTV, and OS-
SART-LRMA algorithms, the OS-SART-SBTV algorithm 
displays great advantages for visualization and quantita-
tive evaluation. Based on the reconstruction results of 
the digital head model and real neutron projection data, 
OS-SART-SBTV demonstrated distinct advantages in 
reconstructing detailed information, reducing noise, 
and suppressing artifacts compared to other algorithms. 
Therefore, the OS-SART-SBTV is suitable for sparse neu-
tron CT reconstruction. In future, further validation and 

verification will be performed using the OS-SART-SBTV 
algorithm.
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