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Abstract
The octupole deformation and collectivity in octupole double-magic nucleus 144Ba are investigated using the Cranking 
covariant density functional theory in a three-dimensional lattice space. The reduced B(E3) transition probability is imple-
mented for the first time in semiclassical approximation based on the microscopically calculated electric octupole moments. 
The available data, including the I-� relation and electric transitional probabilities B(E2) and B(E3) are well reproduced. 
Furthermore, it is shown that the ground state of 144Ba exhibits axial octupole and quadrupole deformations that persist up 
to high spins ( I ≈ 24ℏ).

Keywords  Octupole collectivity · Cranking covariant density functional theory · Rotational spectrum · Electric transitional 
probabilities

1  Introduction

As a microscopic quantum many-body system, the atomic 
nucleus carries a wealth of symmetries and symmetry break-
ings. Spontaneous symmetry breaking plays a crucial role 
in understanding the structure of atomic nuclei. Reflection 
symmetry breaking of atomic nuclei occurs in nuclei with 
octupole deformations (such as pear-shaped nuclei) [1–3]. 
This is related to the charge parity (CP) symmetry violation 
beyond the standard model [4] and has been at the frontier 
of both nuclear physics and particle physics.

The study of reflection symmetry breaking in pear-shaped 
nuclei can be traced back to the 1950 s and is characterized 
by the occurrence of interleaved positive- and negative-
parity bands in even-even nuclei, parity doublet bands in 

odd-mass nuclei, and enhanced electric dipole (E1) and octu-
pole (E3) moments [1–3]. The pear shapes of the nucleus can 
arise from the strong octupole correlations of the nucleons 
near the Fermi surface. They occupy states of opposite par-
ity with the orbital and total angular momenta differing by 
3ℏ , i.e., Δl = Δj = 3ℏ . Empirically, this condition occurs for 
a proton or neutron particle numbers: 34 ( g9∕2 ↔ p3∕2 ), 56 
( h11∕2 ↔ d5∕2 ), 88 ( i13∕2 ↔ f7∕2 ), and 134 ( j15∕2 ↔ g9∕2)[1]. 
To date, the octupole correlations and pear-shaped nuclei 
have been extensively studied in the A ∼ 80 mass region with 
Z ≈ 34 [5, 6], in the A ∼150 mass region with Z ≈ 56 and 
N ≈ 88 [7–9], and in the A ∼220 mass region, with Z ≈ 88 
and N ≈ 134 , see the reviews [1–3].

Focusing on barium isotopes in A ∼150 mass region, the 
nucleus 144Ba is of continuous interest due to its octupole dou-
ble-magic character with proton and neutron numbers Z = 56 
and N = 88 , respectively. Experimentally, various signatures 
including the low-lying negative-parity states, the interleaved 
positive- and negative-parity bands with enhanced E1 connect-
ing transitions [10–13], and especially the enhanced E3 transi-
tion strengths [14], represent an unambiguous static nuclear 
octupole deformation in 144Ba . Theoretically, the octupole 
deformation and collectivity in 144Ba have been studied by 
using various approaches, such as cranked Woods-Saxon-
Bogoliubov theory [15], self-consistent cranked Hartree-Fock-
Bogoliubov (HFB) calculation with parity projection [16], a 
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one-dimensional collective model with phenomenological 
spin-dependent potentials [17–19], the quadrupole-octupole 
collective model [20, 21], cluster model  [22, 23], potential 
energy surface calculations [24], the reflection-asymmetric rel-
ativistic mean field (RAS-RMF) approach [25–28], the inter-
acting boson model (IBM) [29, 30], the generator coordinate 
method (GCM) based on nonrelativistic  [31], and relativistic 
density functional theories [32, 33].

The nuclear density functional theory (DFT) starts 
with a universal energy density functional and can 
achieve a self- consistent description for almost all 
nuclei  [34, 35]. Over the past decades, relativistic or 
covariant version of DFT (CDFT) have been devel-
oped and widely applied to investigate a large variety 
of nuclear phenomena [36–46]. To describe the nuclear 
spectroscopic properties, cranking CDFT has been devel-
oped and widely applied to investigate both the ground 
states of nuclei and various rotational excitation phe-
nomena [47–50]. Specifically, cranking CDFT in a three-
dimensional (3D) lattice space was realized in Ref. [51] 
and has been widely applied to investigate the exotic 
shapes of nuclei and their excitation modes such as the 
nuclear linear chain [51, 52], toroidal structures [53], and 
nuclear chiral rotation [54]. It provides a useful way to 
understand the current focus of the observed rotational 
bands in octupole double-magic nucleus 144Ba , since in 
3D lattice calculations, the single-particle wave functions 
have no symmetry limitation in space and all deforma-
tion degrees of freedom of the nucleus are self-consistent 
included.

In this study, the cranking CDFT in 3D lattice space is 
used to investigate the octupole deformation and collec-
tivity in the nucleus 144Ba . The model is shown briefly in 
Sect. 2. The numerical details and calculated results for 
the available data, including the I–� relation and electro-
magnetic transition probabilities, are shown in Sect. 3. A 
summary is shown in Sect. 4.

2 � Theoretical Framework

The detailed formalism of the cranking CDFT in 3D lat-
tice space has been shown in Ref. [51]. The starting point 
of the CDFT is a standard effective nuclear Lagrangian 
density, where the nucleons are coupled with a meson 
exchange interaction [55–57] or zero-range point-cou-
pling interaction [58–60] as follows,

In Eq. (1), m denotes the nucleon mass, e denotes the charge 
unit of the protons, A

�
 and F

��
 denote the four-vector poten-

tial and field strength tensor of the electromagnetic field, 
respectively. For the 11 coupling constants, �S , �V , �

TS
 , �

TV
 , 

�
S
 , �

S
 , �

V
 , �

S
 , �

V
 , �

TS
 , and �

TV
 , � refers to the four-fermion 

term, � and � refer to the third- and fourth-order terms, 
respectively, and � refers to the derivative couplings. Sub-
scripts S, V, and T indicate the symmetries of the couplings, 
i.e., S denotes a scalar, V denotes a vector, and T denotes 
an isovector.

To describe nuclear rotations in the cranking approxima-
tion, the effective Lagrangian density of Eq. (1) is trans-
formed into a rotating frame with a constant rotational fre-
quency � around the rotational axis. The equation of the 
single-particle motion can be derived from the Lagrangian 
in the rotating frame:

with ĥ′ denoting the cranking single-particle Hamiltonian, 
−� ⋅ Ĵ denoting the Coriolis or cranking term, �′

k
 denoting 

the single-particle Routhians, and Ĵ = l̂ +
1

2
�̂ denoting the 

total angular momentum of the nucleon spinors. The single-
particle Hamiltonian ĥ0 is

The relativistic scalar S(r) and vector field V
�
(r) are con-

nected in a self-consistent manner to the nucleon density 
and current distribution. By solving the cranking Dirac 
equation (2) self-consistently at a given rotational fre-
quency, the single-particle Routhians, expectation values 
of the angular momentum, and quadrupole and octupole 
moments can be obtained, see Refs.  [34, 61–63] for the 
detailed formalism. Specifically, single-particle wave func-
tions have no symmetry limitation in space and all nuclear 
deformation degrees of freedom including octupole defor-
mation are self-consistently obtained in the present 3D 
lattice cranking CDFT calculation. It provides a powerful 
way to investigate the evolution of octupole shapes with 
spin in the current octupole double-magic nucleus 144Ba . 
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The quadrupole moments (Q20,Q2±1,Q2±2) and octupole 
moments (Q30,Q3±1,Q3±2,Q3±3) can be calculated as:

 Since, the nuclei are placed in a 3D lattice space, we addi-
tionally constrain the center of mass of the entire nucleus at 
the origin and align the principal axes with the coordinate 
axes to remove redundant degrees of freedom. The values 
of Q21 and Q2−1 always disappear. The deformation param-
eters �

��
 can be obtained from the corresponding multipole 

moments  [64]

with R = 1.2A1∕3 fm and N denoting the number of protons 
neutrons, or nucleons.

Based on the quadrupole moments, B(E2) transition prob-
abilities can be derived in semiclassical approximation [50, 
65]

 where Qp

20
 and Qp

22
 denote the quadrupole moments of 

the protons, and � , and � denote the polar and azimuthal 
angles of the total angular momentum in the intrinsic frame, 
respectively. Similarly, B(E3) transition probabilities can be 
derived in semiclassical approximation:
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 where Qp

30
 , Qp

3±1
 , Qp

3±2
 , and Qp

3±3
 are the octupole moments 

of protons.

3 � Results and Discussion

A successful density functional PC-PK1 [60] is employed 
in the CDFT calculation. The Dirac spinors of the nucleons 
and potentials in the single-particle Hamiltonian (2) are rep-
resented in 3D lattice space. The step size and grid number 
along x, y, and z axes are chosen as 1 fm and 30, respectively. 
The convergence of the iteration is realized by ensuring that 
the energy uncertainty for every occupied single-particle 
state is smaller than 10−9 MeV2 and the maximum abso-
lute difference between the mean potentials at two adjacent 
iterations is smaller than 10−3 MeV. To provide the potential 
energy surface in the (�20, �30) plane, a deformation-con-
strained CDFT calculation in 3D lattice space is performed 
in the region �20 ∈ [−0.3, 0.4] and �30 ∈ [0.0, 0.3] with a step 
size of 0.05. For cranking CDFT calculations, the rotational 
frequency is varied from � = 0.0 to 0.45 MeV.

In Fig. 1, the potential energy surface (PES) in the 
(�20, �30) plane for 144Ba calculated by the constrained 
CDFT calculation in a 3D lattice with the successful 
density functional PC-PK1 is shown [60]. It shows that 
the global minimum of the PES locates at �20 = 0.22 and 
�30 = 0.13 . It should be noted that the single-particle wave 
functions calculated in the present CDFT calculation have 
no symmetry limitation, and all deformation degrees of 
freedom of the nucleus are self-consistent included. Apart 
from the constrained axially symmetric quadrupole and 
octupole deformations �20 and �30 , the axially symmetric 
hexadecapole deformation �40 = 0.13 is also obtained self-
consistently for the ground state of 144Ba . All axial asym-
metric deformations, i.e., �2�, �3�, �4�, (� ≠ 0) , are found to 
be zero, which implies that the ground state of 144Ba corre-
sponds to an axially symmetric and reflection-asymmetric 
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shape. Around the minimum, the PES exhibits a relatively 
soft character. The energy difference between the ground 
state ( �20 = 0.22 , �30 = 0.13 ) and the lowest reflection 
symmetric energy position ( �20 = 0.2 , �30 = 0.0 ) is less 
than 1.0 MeV. Moreover, a secondary minimum ( ∼3.0 
MeV) is observed at ( �20 = −0.15 , �30 = 0.05 ). Experi-
mentally, a value of �30 = 0.17(+4

−6
) has been derived [14] 

by using the relationship of the octupole moment (with 
the standard assumption of axial symmetry) and the com-
monly used �30 parameters [66]. The obtained ground state 
octupole deformation �30 = 0.13 is consistent with the �30 
value within the experimental error range. As analyzed in 
Ref. [25], this octupole deformation minimum is a conse-
quence of strong octupole–octupole interactions between 
pairs of single-particle orbitals near the Fermi surface 
with Δl = Δj = 3ℏ around the Fermi level, i.e., proton 
( h11∕2 ↔ d5∕2 ) and neutron ( i13∕2 ↔ f7∕2).

To investigate the observed rotational spectroscopic 
properties and the evolution of the octupole deformation 
and collectivity with respect to nuclear rotation, cranking 
CDFT calculations in 3D lattice are performed. Figure 2 
shows the calculated total angular momentum as a func-
tion of the rotational frequency for the ground state band in 
144Ba comparison with the available data  [13]. It can be seen 
that the experimental data are slightly overestimated by the 
present calculated results, which give an excessive moment 
of inertia. A better agreement with the experimental data is 
expected by taking into account the pairing correlation [67] 
for which the moments of inertia will be depressed.

With the quadrupole and octupole moments obtained 
self-consistently, the reduced transition probabilities B(E2) 
and B(E3) can be calculated in semiclassical approximation 
according to Eqs. (12) and (13). In Fig. 3 (a), the calculated 
B(E2) values are compared with available data [14]. It is 
found that the resulting B(E2) values are in good agreement 
with the data on the order of magnitude. As shown in Fig. 3 
(a), the calculated B(E2) values remain nearly constant with 

increasing rotational frequency, which can be further under-
stood by the changes in the quadrupole deformation shown 
in Fig. 4 (a). With the increasing rotational frequency, the 
nucleus undergoes a nearly unchanged �20 deformation from 
0.22 to 0.20.

The octupole collectivity is also demonstrated by B(E3) 
values shown in Fig. 3(b) and the evolution of octupole 
deformation �30 in Fig. 4(b). As shown in Fig. 3(b), the 

Fig. 1   Potential energy surface for 144Ba calculated by the CDFT in 
3D lattice  [51] with density functional PC-PK1  [60]. The contour 
separation is 0.25 MeV and the pentagram corresponds to the loca-
tion of the ground state

Fig. 2   Total angular momentum as a function of the rotational fre-
quency for the ground state band of 144Ba calculated by the crank-
ing CDFT in 3D lattice (line) in comparison with the experimental 
interleaved positive-parity (solid symbols) and negative-parity bands 
(open symbols)

Fig. 3   Calculated (a) B(E2) and (b) B(E3) values as functions of the 
total angular momentum in the cranking CDFT calculations com-
pared with the data for 144Ba [14]
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corresponding B(E3) data are effectively reproduced by 
the cranking CDFT calculation. As shown in Fig. 4(b), the 
calculated octupole deformation �30 increases slightly and 
then decreases with increasing spin. With an increase in the 
rotational frequency to ℏ� = 0.45 MeV (spin I ≈ 24ℏ ), the 
average octupole deformation is approximately �30 = 0.128 , 
indicating the robustness of the octupole shape with respect 
to nuclear rotation.

To understand the evolution of the octupole deformation 
of the yrast states in 144Ba , the single-proton and single-
neutron Routhians are shown as functions of rotational fre-
quency in Figs.  5 (a) and 5 (b), respectively. The levels 
near the Fermi surface are labeled by Nilsson-like notation 
Ω[Nnzml] of the largest component. It is noted that these 
levels can mix different components with opposite parity 
due to the existence of octupole deformations. As shown 
in Fig. 5 (a) for single-proton Routhians, an energy gap 

Z = 56 fenced with several levels near the Fermi surface, 
is found at the ground state and persistently presented with 
an increase in the rotational frequency. Furthermore, an 
energy gap N = 88 for the single-neutron Routhians shown 
in Fig.  5(b) is found not only in the ground state, but also 
in the high-spin region. Therefore, it is concluded that these 
two energy gaps, Z = 56 and N = 88 , near the Fermi sur-
faces are responsible for the octupole minimum and robust-
ness of the octupole shape against nuclear rotations in 144Ba.

4 � Summary

In summary, the cranking covariant density functional the-
ory in a three-dimensional lattice is first applied to investi-
gate the octupole deformation and collectivity in octupole 
double-magic nucleus 144Ba . With the electric octupole 
moments obtained by self-consistently solving the cranking 
Dirac equation, the reduced transition probabilities B(E3) 
are derived in semiclassical approximation for the first time. 
The available data, including the I − � relation, the B(E2) 
and B(E3) values, are well reproduced by the cranking 
CDFT calculations. The potential energy surface (PES) in 
(�20, �30) plane, calculated by the constrained CDFT calcula-
tion in 3D lattice, provide a static axial octupole and quad-
ruple deformed ground state for 144Ba . With the increase of 
the rotational frequency (up to ℏ� = 0.45 MeV), the calcu-
lated octupole deformation is nearly unchanged and give 
an average value �30 = 0.128 , indicating the robustness of 
the octupole shape against nuclear rotation. By analyzing 
the single-proton and single-neutron Routhians with the 
increasing rotational frequency, two energy gaps, Z = 56 and 
N = 88 , near the Fermi surfaces are found to be responsible 
for the octupole minimum and the robustness of the octupole 
shape against nuclear rotation in 144Ba.

It should be noted that the pairing correlations were 
neglected in the present calculations. It would be interesting 
to introduce, for example, the shell-model-like approach [65, 
67] to the present cranking CDFT in 3D lattice to investi-
gate the effects of pairing correlations. The current cranking 
CDFT describes the physics only on average in a rotating 

Fig. 4   Evolution of (a) quadrupole deformation �
20

 and (b) octupole 
deformation �

30
 for the calculated yrast states in 144Ba as functions of 

the rotational frequency

Fig. 5   Single-particle Routhians 
for (a) proton and (b) neutron of 
144

Ba as functions of the rota-
tional frequency. The levels near 
the Fermi surface are labeled by 
Nilsson-like notations Ω[Nnzml] 
of the largest component
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mean field. The total angular moment is treated in semi-
classical approximation and the total parity is not a good 
quantum number. For the interleaved positive- and negative-
parity bands in octupole deformed nuclei, the total parity 
and parity splitting cannot be calculated using the present 
3D lattice cranking CDFT calculation. Additionally, it will 
be interesting to introduce the parity projection beyond 3D 
lattice cranking CDFT in the future.
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