
Vol.:(0123456789)

Nuclear Science and Techniques (2024) 35:105 
https://doi.org/10.1007/s41365-024-01463-9

Reliable calculations of nuclear binding energies by the Gaussian 
process of machine learning

Zi‑Yi Yuan1  · Dong Bai2 · Zhen Wang1 · Zhong‑Zhou Ren1,3

Received: 30 December 2023 / Revised: 29 February 2024 / Accepted: 7 March 2024 / Published online: 18 June 2024 
© The Author(s), under exclusive licence to China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese 
Academy of Sciences, Chinese Nuclear Society 2024

Abstract
Reliable calculations of nuclear binding energies are crucial for advancing the research of nuclear physics. Machine learn-
ing provides an innovative approach to exploring complex physical problems. In this study, the nuclear binding energies 
are modeled directly using a machine-learning method called the Gaussian process. First, the binding energies for 2238 
nuclei with Z > 20 and N > 20 are calculated using the Gaussian process in a physically motivated feature space, yielding 
an average deviation of 0.046 MeV and a standard deviation of 0.066 MeV. The results show the good learning ability of 
the Gaussian process in the studies of binding energies. Then, the predictive power of the Gaussian process is studied by 
calculating the binding energies for 108 nuclei newly included in AME2020. The theoretical results are in good agreement 
with the experimental data, reflecting the good predictive power of the Gaussian process. Moreover, the �-decay energies 
for 1169 nuclei with 50 ≤ Z ≤ 110 are derived from the theoretical binding energies calculated using the Gaussian process. 
The average deviation and the standard deviation are, respectively, 0.047 MeV and 0.070 MeV. Noticeably, the calculated 
�-decay energies for the two new isotopes 204 Ac (Huang et al. Phys Lett B 834, 137484 (2022)) and 207 Th (Yang et al. Phys 
Rev C 105, L051302 (2022)) agree well with the latest experimental data. These results demonstrate that the Gaussian pro-
cess is reliable for the calculations of nuclear binding energies. Finally, the �-decay properties of some unknown actinide 
nuclei are predicted using the Gaussian process. The predicted results can be useful guides for future research on binding 
energies and �-decay properties.
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1 Introduction

Nuclear binding energies are important ground state 
properties that provide valuable information for prob-
ing nuclear structures [1–4] and serve as crucial inputs 
for some nuclear physics problems [5, 6]. For instance, 

binding energies play a key role in calculating the product 
cross sections for unknown nuclei using nuclear reaction 
models before synthesizing superheavy nuclei [7, 8]. They 
are also instrumental in identifying new nuclides in syn-
thesis experiments of heavy and superheavy nuclei [9, 10] 
because � decay is one of the fundamental decay modes for 
most heavy and superheavy nuclei [11–13]. For �-emitters, 
there are two main �-decay observable properties, which 
are respectively �-decay energies and half-lives [14–18]. 
Thereinto, �-decay half-lives are strongly influenced by the 
�-decay energies, which can be calculated using the bind-
ing energies. Meanwhile, binding energies are also vital 
for calculating the properties of other radioactive decay 
modes, such as two-proton radioactivity [19] and heavy-
cluster radioactivity [20]. Furthermore, the accuracy of 
binding energies has a significant impact on nuclear astro-
physics studies, including r-process [21, 22], rp-process 
[23, 24], and the properties of neutron stars [25, 26]. 
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Therefore, it is necessary to explore reliable theoretical 
models to calculate and predict the binding energies more 
accurately.

With the advancements in experimental nuclear phys-
ics facilities, binding energies of more than two thousand 
nuclei have been measured to date [27]. The accumulated 
experimental data provide a foundation for the develop-
ment of theoretical models. In the past few years, numer-
ous theoretical models and formulas have been proposed to 
calculate binding energies, including the Bethe-Weizsäcker 
formula [28, 29], the Thomas-Fermi (TF) model [30], the 
Hartree-Fock-Bogoliubov mean field model [31], and the 
finite-range drop model (FRDM) [32]. The theoretical bind-
ing energies calculated using these models and formulas are 
in good agreement with the experimental data. In Ref. [8], 
an improved binding-energy formula was proposed by incor-
porating additional physical terms into the standard Bethe-
Weizsäcker formula, which consists of the shell effect and 
the neutron-proton correlations. The binding energies and �
-decay energies can be well reproduced using this improved 
formula for heavy and superheavy nuclei with Z ≥ 90 and 
N ≥ 140 . Although these current traditional models can pro-
vide theoretical guidance for studying binding energies, it is 
still worth exploring other models to provide more accurate 
calculations and predictions for future investigations of bind-
ing energies.

Machine learning has been widely used across many 
fields [33–38], as it can learn useful information from known 
systems and predict unknown properties within the same 
system using the obtained information. In the last decade, 
nuclear properties have been studied using various machine-
learning methods based on available physical knowledge, 
including nuclear masses [39–41], nuclear charge radii [42], 
�-decay properties [43], and �-decay properties [44]. These 
nuclear properties can be well reproduced using machine 
learning. Recently, a new Bayesian machine learning mass 
model has been proposed [45], which can reproduce nuclear 
masses with the high accuracy required for the studies of 
r-process. As one of the popular machine-learning methods, 
the Gaussian process is a powerful nonparametric model, 
which is expected to model any distribution of the objec-
tives [46]. Owing to its excellent flexibility in data modeling, 
the Gaussian process has been frequently applied in various 
studies [47, 48]. Notably, the Gaussian process can provide 
not only the theoretical values of the objectives but also the 
distribution of the calculated results, contributing to the vis-
ualization of the theoretical uncertainties [49]. Recently, the 
Gaussian process has been successfully exploited to predict 
the �-decay energies and half-lives of actinide nuclei [50]. 
Inspired by these previous works, it is of great interest to 
explore the reliability of the Gaussian process in the calcula-
tions of binding energies.

In this work, the Gaussian process has been extended to 
study the binding energies by directly modeling the experi-
mental binding energies. The remainder of this paper is given 
as follows. In Sect. 2, the theoretical framework, consisting of 
the Gaussian process with the modified kernel function and 
the physically motivated feature space, is provided. In Sect. 3, 
the theoretical binding energies calculated using the Gaussian 
process are shown and discussed. Furthermore, the �-decay 
properties are reproduced and predicted based on the calcu-
lated binding energies. Finally, a comprehensive summary is 
presented in Sect. 4.

2  Theoretical framework

In the present work, the binding energy for a nucleus is con-
sidered as a realistic observation Bp = bp + ð with noise 
ð ∼ N(0, �2

b
) . Here, bp = b(xp) is a latent function that  

denotes the noise-free binding energy for the pth nucleus  
xp [51]. Bp denotes the realistic binding energy, and ð is an 
independently identically distributed Gaussian noise. Given a 
set of n nuclei with known binding energies into a training  
set (xp,Bp)

n
p=1

 , we aim to model the underlying physical  
relationship between each nucleus and its binding energy  
using the Gaussian process. Within the framework of  
the Gaussian process, the values of latent function 
b = (b1, b2,⋯ , bn)

T = (b(x1), b(x2),⋯ , b(xn))
T are modeled 

by a joint Gaussian distribution, characterized by the values  
of a mean function (m(x1),m(x2),⋯ ,m(xn))

T and the matrix 
of a covariance function [k(xp, xq)]n×n [46]. Therefore,  
the Gaussian process can be generally denoted as 
b(xp) ∼ GP(m(xp), k(xp, xq)) . The mean function m(xp) is 
often set as zero because of the lack of prior knowledge. The 
so-called kernel function k(xp, xq) can be written as a function 
of |xp − xq| , which is crucial for describing the similarities 
between pairs of nuclei. For the studies of binding energies, 
we choose a composite kernel function written as

with rb = |xp − xq| . The modified kernel function is a linear 
combination of two widely used kernel functions, which are 
the Matérn kernel function and the Rational Quadratic kernel 
function, respectively. Here, �b , lb , �b , and db are four hyper-
parameters of the Gaussian process. lb , �b , and db can capture 
the relevant range of the binding energies for pairs of nuclei, 
and �b is able to describe the correlation intensity between 
them. For the realistic binding energy Bp , the covariance 
function becomes k(xp, xq) → k(xp, xq) + �

2
b
�pq . �pq is a Kro-

necker delta where �pq = 1 for p = q and �pq = 0 for p ≠ q . 
When describing a number of nuclei X = (x1, x2,⋯ , xn)

T , 

(1)

k(xp, xq) = �
2
b

��
1 +

√
3rb

lb

�
exp

�
−

√
3rb

lb

�
+

�
1 +

r2
b

2�bd
2
b

�−�b
�
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the binding energies B = (B1,B2,⋯ ,Bn)
T are expressed as 

B ∼ GP(0,K(X,X) + �
2
b
I) , where I is a diagonal matrix.

The central interest of this work is to predict unknown 
binding energies based on the knowledge learned from the 
training set using the Gaussian process. When predicting 
unknown binding energies for nuclei X∗ with the training 
set D = (xp,Bp)

n
p=1

 , the joint Gaussian distribution of the 
training outputs B and the predicted outputs b∗ can be writ-
ten as [46]

For n∗ predicted nuclei, K(X,X) , K(X,X∗) , K(X∗,X) , and 
K(X∗,X∗) , respectively, denote n × n , n × n∗ , n∗ × n , and 
n∗ × n∗ matrix evaluated at all pairs of training and predicted 
points. By conditioning the joint Gaussian distribution, the 
crucial predicted expressions for the Gaussian process are 
b∗|D,X∗ ∼ N(b∗, cov(b∗)) , where

Here, the values of b∗ give the predicted binding energies 
for unknown nuclei. The variances of the predicted binding 
energies can be calculated by adding the noise variance �2

b
 

to the predictive variance given by cov(b∗).
As mentioned above, each nucleus is described by 

xp , which is a vector of physical features determining 
the description of the corresponding binding energy. 
In the present work, our goal is to obtain good descrip-
tions of the binding energies using the Gaussian process 
with as simple physical information as possible. Hence, 
we construct a physical feature space with nine features, 
where xp = (Ap,A

2∕3
p , Z2

p
A
−1∕3
p , (Ap∕2 − Zp)

2∕Ap,A
−1∕2
p , �p,

|Np − Zp|∕Ap,�p, vp) . Here, A, Z, and N denote the mass, 
proton, and neutron numbers, respectively. The first six 
features are based on the Bethe-Weizsäcker formula [7, 
28, 29, 52, 53]. A is introduced to model the propor-
tional relationship between the binding energies and 
the nuclear volume, reflecting the saturation of nuclear 
force. A2∕3 is provided since the binding energies are 
expected to decrease on the nuclear surface. Z2A−1∕3 is 
used to describe the influence of the Coulomb interac-
tion between protons. (A∕2 − Z)2∕A is the symmetry term 
that approximately estimates the balance between N and Z. 
A−1∕2 and � = [(−1)N + (−1)Z]∕2 are used to describe the 
pairing energies with � = 1, 0,−1 for the even-even, odd-A, 
and odd-odd nuclei. |N − Z|∕A is from the Wigner term, 
which originates from the neutron-proton correlations [1, 
8]. Additionally, � and v include the shell information, 
where � (v) is calculated using the numbers of protons 

(2)
[
B

b∗

]
∼ N

(
0,

[
K(X,X) + �

2
b
I K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
.

(3)

b∗ = K(X∗,X)[K(X,X) + �
2
b
I]−1B,

cov(b∗) = K(X∗,X∗) −K(X∗,X)[K(X,X) + �
2
b
I]−1K(X,X∗).

(neutrons) away from the nearest proton (neutron) magic 
numbers [54].

The aforementioned theoretical framework implies that 
five hyperparameters need to be determined, which are �b , lb , 
�b , db , and �b , respectively. These can be determined by opti-
mizing the marginal likelihood using the training data [46].

3  Numerical results and discussions

In this section, we present and discuss the theoretical 
results of the nuclear binding energies calculated using 
the Gaussian process. First, we calculate the binding 
energies for nuclei with Z > 20 and N > 20 to evaluate 
the learning ability of the Gaussian process. The train-
ing set chosen in this work contains 2238 nuclei with 
known binding energies taken from AME2020 [55]. 
Each nucleus in the training set is presented as (xp,Bp) , 
where xp = (Ap,A

2∕3
p , Z2

p
A
−1∕3
p , (Ap∕2 − Zp)

2∕Ap,A
−1∕2
p , �p,

|Np − Zp|∕Ap,�p, vp) and Bp = B
Expt.
p  . After the train-

ing process, the hyperparameters are determined as 
�b = 1.814 × 104 MeV1∕2 , lb = 1.821 × 104 , �b = 1937.218 , 
db = 414.771 , and �b = 0.093 MeV1∕2 . The larger value of 
�b indicates a stronger dependence between pairs of nuclei. 
Meanwhile, the larger values of lb , �b , and db result in a rela-
tively larger correlation range, which means that the change 
of binding energies is comparatively smoother. Moreover, 
they also assist in avoiding the rapid growth of the error 
bars of the binding energies for nuclei away from the train-
ing data [46].

After the hyperparameters have been determined, the 
binding energies can be calculated using the Gaussian 
process. To test the accuracy of the calculated results, we 
calculate the absolute value of the deviation between the 
experimental result and the theoretical one for each nucleus, 
defined by

Here, BExpt.
p  and BTheo.

p
 denote the experimental binding 

energy and theoretical result calculated using the Gauss-
ian process for the pth nucleus, respectively. The numerical 
results show that all absolute values of the deviations are 
smaller than 0.423 MeV, indicating a small global devia-
tion. We show the corresponding results in Fig. 1, in which 
the x- and y-axis indicate the neutron and proton numbers, 
respectively. The red squares depict the absolute values of 
the deviations, where darker colors are associated with larger 
deviations. The transverse and vertical dotted lines present 
N = 28, 50, 82, 126 and Z = 28, 50, 82 , respectively. It can 
be seen clearly from Fig. 1 that the colors of most squares 

(4)|ΔB| =
|||B

Expt.
p

− BTheo.
p

|||.
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are lighter, reflecting that the deviations for most nuclei are 
below 0.1 MeV. Additionally, the binding energies for nuclei 
near the shell closure are also well reproduced using the 
Gaussian process. Next, we calculate the average deviation

and the standard deviation

of the theoretical binding energies calculated using the 
Gaussian process for nuclei with Z > 20 and N > 20 . Here, 
ñB denotes the number of nuclei included in the calculations. 
The numerical values are ⟨�B⟩ = 0.046 MeV and √
�
2
B

= 0.066 MeV , respectively. The small deviations 

(5)⟨𝜎B⟩ =
1

ñB

ñB�

p=1

���B
Expt.
p

− BTheo.
p

���

(6)
√

𝜎
2
B
=

√√√√ 1

ñB

ñB∑

p=1

(
B
Expt.
p − BTheo.

p

)2

show that the theoretical binding energies calculated using 
the Gaussian process with the modified kernel function in 
the physically motivated feature space are in good agreement 
with the experimental data. These results demonstrate the 
good learning ability of the Gaussian process in the studies 
of binding energies.

To further evaluate the learning ability and predictive 
power of the Gaussian process in the studies of binding ener-
gies, we perform cross validation for the Gaussian process. 
In this work, we introduce the isotone-fold cross-validation 
that nuclei in each isotonic chain will be predicted using the 
Gaussian process based on the information provided by the 
remaining isotonic chains in the training set. The average 
deviations and the standard deviations of the theoretical 
binding energies for nuclei in each isotonic chain are calcu-
lated, with results depicted in Fig. 2. For comparison, the 
average deviations and the standard deviations of the binding 
energies calculated using the Bethe-Weizsäcker formula for 
each isotonic chain are also provided in Fig. 2. In Fig. 2a and 

Fig. 1  (Color online) The 
absolute values of deviations 
between experimental binding 
energies and the theoretical 
results calculated using the 
Gaussian process across the 
nuclear chart. The darker colors 
indicate larger deviations of 
binding energies. Numerically, 
the largest absolute value of the 
deviations is |Δ

B
| = 0.423 MeV

Fig. 2  (Color online) The cross-validation results for nuclei in each 
isotopic chain calculated using the Gaussian process. In Fig. 2a, the 
red squares and the blue circles depict the average deviations calcu-
lated using the Gaussian process and the Bethe-Weizsäcker formula, 

respectively. In Fig. 2b, the red squares and the blue circles show the 
standard deviations calculated using the Gaussian process and the 
Bethe-Weizsäcker formula separately
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b, the red squares denote the average deviations and the 
standard deviations calculated using the Gaussian process 
for each isotonic chain, respectively. The blue circles present 
the average deviations and the standard deviations calculated 
using the Bethe-Weizsäcker formula for each isotonic chain 
separately. It is straightforward to see that the deviations 
given by the Gaussian process are quite small, which means 
that the cross-validation result is pretty good. In addition, 
we can find that the deviations are significantly reduced 
compared with those given by the Bethe-Weizsäcker for-
mula. These results reflect the good learning ability and pre-
dictive power of the Gaussian process. Numerically, the total 
average deviation and standard deviation of the cross-vali-
dation for nuclei in the training set are ⟨�B⟩ = 0.100 MeV 
and 

√
�
2
B

= 0.144 MeV , respectively. The small deviations 
show that the predicted binding energies agree well with the 
experimental data, indicating that the binding energies can 
be well learned using the Gaussian process. Thus, we can 
conclude that the learning ability and predictive power of 
the Gaussian process are reliable for studying the binding 
energies.

Then, we further test the predictive power of the Gaussian 
process by calculating the binding energies for nuclei that 
are present in AME2020 but not in AME2012 using the 
Gaussian process. To perform this calculation, the training 
set is chosen to include nuclei that are provided in both 
AME2012 and AME2020. Based on the training set, we pre-
dict the binding energies for 108 nuclei that are provided in 
AME2020 but not in AME2012 using the Gaussian process. 
The theoretical average deviation and standard deviation for 
these nuclei are ⟨�B⟩ = 0.216 MeV and 

√
�
2
B

= 0.304 MeV , 

respectively. These deviations are acceptable results in the 
calculations of binding energies, verifying that the predicted 
power of the Gaussian process is commendable. Therefore, 
based on these theoretical results, it can be concluded that 
the Gaussian process is a reliable model for the studies of 
nuclear binding energies.

Next, we would like to calculate and discuss the theo-
retical results calculated using the Gaussian process with 
different kernel functions and physical feature spaces. 
First, we calculate the binding energies using the Gaussian 
process with the Matérn kernel function and the Rational 
Quadratic kernel function, respectively. The corresponding 
deviations of the binding energies for 2238 nuclei are �
⟨�B⟩,

�
�
2
B

�
= (0.059, 0.076) MeV for the Matérn kernel 

function and 
�
⟨�B⟩,

�
�
2
B

�
= (0.121, 0.166) MeV for the 

Rational Quadratic kernel function, respectively. The devi-
a t i o n s  f o r  1 0 8  n e w  n u c l e i  a r e �
⟨�B⟩,

�
�
2
B

�
= (0.278, 0.415) MeV for the Matérn kernel 

function and 
�
⟨�B⟩,

�
�
2
B

�
= (0.193, 0.249) MeV for the 

Rational Quadratic kernel function separately. Comparing 

with the deviations 
�
⟨�B⟩,

�
�
2
B

�
= (0.046, 0.066) MeV for 

2238 nuclei and 
�
⟨�B⟩,

�
�
2
B

�
= (0.216, 0.304) MeV for 

108 new nuclei calculated using the composite kernel 
function, it can be found that the deviations calculated 
with the composite kernel function are as small as those 
calculated using the Matérn kernel function for 2238 
nuclei and show better results than those calculated using 
the Matérn kernel function for 108 new nuclei. The devia-
tions calculated using the composite kernel function show 
results as good as those calculated using the Rational 
Quadratic kernel function for 108 new nuclei and are 
smaller than those calculated using the Rational Quadratic 
kernel function for 2238 nuclei. Therefore, the good inter-
polation power of the Gaussian process with the Matérn 
kernel function and extrapolation ability of the Gaussian 
process with the Rational Quadratic kernel function are 
inherited by the composite kernel function in the calcula-
tions of binding energies, which demonstrates that the 
modified kernel function is a good choice for the present 
work. Furthermore, we hope that the choice of the com-
posite kernel function can provide a new idea for modeling 
other physical problems using the Gaussian process.

We continue to compare the average deviations and stand-
ard deviations for 108 new nuclei using the Gaussian process 
in different physical feature spaces. We first calculate the 
deviations for nuclei using the Gaussian process in the fea-
ture space consisting of six features taken from the Bethe-
Weizsäcker formula, where the pth nucleus is described by 
xp = (Ap,A

2∕3
p , Z2

p
A
−1∕3
p , (Ap∕2 − Zp)

2∕Ap,A
−1∕2
p , �p) .  The 

theoretical deviations are 
�
⟨�

B
⟩,
�

�
2

B

�
= (0.437, 0.775) MeV. 

Then, we add the neutron-proton correlation and the shell 
information in the above feature space and compare the cor-
responding deviations. When the neutron-proton correlation 
is added in the feature space where xp = (Ap,A

2∕3
p , Z2

p
A
−1∕3
p ,

(Ap∕2 − Zp)
2∕Ap,A

−1∕2
p , �p, |Np − Zp|∕Ap) , the deviations 

become 
�
⟨�B⟩,

�
�
2
B

�
= (0.398, 0.712) MeV. The reduction 

in the deviations shows that the neutron-proton correlation 
is necessary for calculating the binding energies. When the 
shell information is included in the feature space, where 
xp = (Ap,A

2∕3
p ,Z2

p
A
−1∕3
p , (Ap∕2 − Zp)

2∕Ap,A
−1∕2
p , �p,�p, vp)  , 

the deviations are 
�
⟨�B⟩,

�
�
2
B

�
= (0.236, 0.365) MeV. The 

results reflect that the introduced features � and v provide 
useful shell information for nuclei in the calculations of 
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binding energies. Furthermore, it can be observed that the 
above deviations are larger than those calculated in the fea-
ture space with nine features established in the present work, 
indicating that our choice of feature space is reasonable. 
Notably, the importance of the physically motivated feature 
space has also been studied in the Bayesian neural network 
and the probabilistic Mixture Density Network [39, 41]. The 
physical feature space established in the present work is first 
studied in the Gaussian process on the research of binding 
energies.

It has been mentioned that the distribution of theoretical 
results can be provided by the Gaussian process. Here, we pre-
sent the intervals of error bars for the theoretical results calcu-
lated in this work. The lengths of error bars at 95% confidence 
interval range from 0.213 MeV to 0.258 MeV in the studies of 
2238 nuclei, while they range from 0.234 MeV to 4.022 MeV 
in the calculations of 108 new nuclei. These results show that 
the hyperparameters determined by the marginal likelihood are 
reasonable and that the theoretical binding energies calculated 
using the Gaussian process are reliable. Thus, we conclude 
that the Gaussian process with a modified kernel function and 
the physically motivated feature space is a reliable model for 
calculating binding energies.

Due to the successful calculations of the binding energies, 
it is expected that the �-decay energies, which are the differ-
ences among the binding energies of the parent nuclei, the 
daughter nuclei, and the �-particles, can be reproduced with 
good accuracy. Thus, we calculate the �-decay energies for 
1169 nuclei with 50 ≤ Z ≤ 110 and compare the calculated 
results with the experimental data taken from AME2020 
[27]. The deviations between the experimental �-decay ener-
gies and the theoretical results for these nuclei are depicted 
in Fig. 3. In Fig. 3, the blue circles denote the deviations and 
t h e  r e d  s h a d o w  s h o w s  t h e  d e v i a t i o n s 
|||Q

Expt.
�

− QTheo.
�

||| ≤ 0.3  MeV. The dashed line represents 
|||Q

Expt.
�

− QTheo.
�

||| = 0 MeV and the two dash dotted lines pre-

sent |||Q
Expt.
�

− QTheo.
�

||| = 0.5 MeV, respectively. The deviations 
for the �-decay energies of the 1169 nuclei are all clearly 
below 0.5 MeV and the deviations for most of these nuclei 
are less than 0.3 MeV. These results show good agreement 
between the theoretical �-decay energies derived from the 
binding energies which are calculated using the Gaussian 
process and the experimental data. Furthermore, it has been 
found in previous studies that �-decay energies are strongly 
affected by the shell effect, which leads to larger deviations 
for nuclei near the closed shell [56]. In Fig. 3, the deviations 
for nuclei near the shell closure are also less than 0.3 MeV. 
It can reflect that � and v features can successfully model the 
shell effect with the Gaussian process. We also calculate the 
average deviation and standard deviation for these nuclei, 
given by

and

Owing to the complexity of the quantum many-body theory, 
it is difficult to calculate the �-decay energies with deviations 
less than 0.1 MeV. These small deviations show that the �
-decay energies agree well with the experimental results.

Recently, some actinide nuclei, including 204 Ac [57] and 
207 Th [10], were synthesized experimentally. Theoretical �
-decay properties provide useful references for these experi-
ments. Here, we present the theoretical �-decay energies cal-
culated using the Gaussian process for the actinide nuclei in 
Table 1. In Table 1, the first column lists the actinide nuclei. 
The second column denotes the experimental data and the 
third column presents the theoretical results. The fourth col-
umn gives the deviations ΔQ

�
= Q

Expt.
�

− QTheo.
�

 between the 
experimental results and the theoretical ones. The experi-
mental �-decay energies for two new nuclides 204 Ac and 
207 Th are taken from Ref. [57] and Ref. [10] separately. It can 
be clearly seen that the theoretical results obtained using the 
Gaussian process are in good agreement with the experimen-
tal data for the actinide nuclei. For the new nuclide 204Ac, 
the theoretical �-decay energy calculated using the Gaussian 
process is nearly equivalent to the experimental result, with 
a small deviation of ΔQ

�
= Q

Expt.
�

− QTheo.
�

= 0.0004 MeV. 
For another new nuclide, 207Th, the deviation is 
ΔQ

�
= Q

Expt.
�

− QTheo.
�

= 0.051 MeV, indicating that the cal-
culated result is in good agreement with the experimental 
one. These results demonstrate that the �-decay energies for 
the actinide nuclei can be well reproduced by deriving from 
the theoretical binding energies calculated using the Gauss-
ian process. Overall, the above results show the reliability of 
the Gaussian process in the calculations of nuclear binding 
energies and �-decay properties.

Finally, we predict the �-decay energies for some 
unknown actinide nuclei using the Gaussian process. With 
the predicted �-decay energies, we also calculate the �-decay 
half-lives using the new Geiger-Nuttall law (NGNL) [58]. 
The corresponding results are given in Table 2. In Table 2, 
the first column lists the �-emitters. The second and third 
columns present the �-decay energies calculated using the 
Gaussian process and the FRDM, respectively. The fourth 
and fifth columns give the predictive �-decay half-lives 
calculated using the NGNL with the �-decay energies pre-
dicted by the Gaussian process and the FRDM, respectively. 
It can be found that most predicted �-decay energies agree 
well with those calculated using the FRDM. Nevertheless, 

(7)⟨𝜎
𝛼
⟩ = 1

ñ
𝛼

ñ
𝛼�

p=1

���Q
Expt.,p
𝛼

− QTheo.,p
𝛼

��� = 0.047 MeV

(8)
√

𝜎2
𝛼
=

√√√√ 1

ñ
𝛼

ñ
𝛼∑

p=1

(
Q

Expt.,p
𝛼

− Q
Theo.,p
𝛼

)2

= 0.070 MeV.
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Table 1  The theoretical �-decay 
energies calculated using the 
Gaussian process for some 
actinide nuclei

Nucl Q
Expt.
�

 (MeV) Q
Theo.
�

 (MeV) ΔQ
�
 (MeV)

204 Ac [57] 8.107 8.107 0.000
205Ac 8.093 8.083 0.010
206Ac 7.958 7.943 0.015
207Ac 7.845 7.863 −0.018
208Ac 7.729 7.736 −0.007
209Ac 7.730 7.703 0.027
210Ac 7.586 7.608 −0.022
211Ac 7.568 7.569 −0.001
212Ac 7.540 7.490 0.050
213Ac 7.498 7.491 0.007
214Ac 7.352 7.531 −0.179
215Ac 7.746 7.718 0.028
216Ac 9.241 9.012 0.229
217Ac 9.832 9.931 −0.099
218Ac 9.384 9.437 −0.053
219Ac 8.826 8.818 0.008
220Ac 8.348 8.324 0.024
221Ac 7.791 7.741 0.050
222Ac 7.137 7.226 −0.089
223Ac 6.783 6.761 0.022
224Ac 6.327 6.318 0.009
225Ac 5.935 5.924 0.011
226Ac 5.506 5.483 0.023
227Ac 5.042 5.115 −0.073
228Ac 4.721 4.697 0.024
229Ac 4.444 4.382 0.062
230Ac 3.893 3.934 −0.041
231Ac 3.655 3.679 −0.024
232Ac 3.345 3.345 0.000
233Ac 3.215 3.197 0.018
234Ac 2.930 2.942 −0.012
235Ac 2.852 2.886 −0.034
236Ac 2.723 2.668 0.055
207 Th [10] 8.328 8.277 0.051
208Th 8.202 8.210 −0.008
210Th 8.069 8.065 0.004
211Th 7.937 7.947 −0.010
212Th 7.958 7.927 0.031
213Th 7.837 7.817 0.020
214Th 7.827 7.813 0.014
215Th 7.665 7.840 −0.175
216Th 8.072 8.056 0.016
217Th 9.435 9.184 0.251
218Th 9.849 9.971 −0.122
219Th 9.506 9.531 −0.025
220Th 8.973 8.994 −0.021
221Th 8.625 8.595 0.030
222Th 8.133 8.084 0.049
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Table 1  (continued) Nucl Q
Expt.
�

 (MeV) Q
Theo.
�

 (MeV) ΔQ
�
 (MeV)

223Th 7.567 7.656 −0.089
224Th 7.299 7.275 0.024
225Th 6.921 6.884 0.037
226Th 6.453 6.491 −0.038
227Th 6.147 6.068 0.079
228Th 5.520 5.598 −0.078
229Th 5.168 5.124 0.044
230Th 4.770 4.758 0.012
231Th 4.213 4.289 −0.076
232Th 4.082 4.052 0.030
233Th 3.745 3.757 −0.012
234Th 3.672 3.643 0.029
235Th 3.376 3.406 −0.030
236Th 3.333 3.344 −0.011
237Th 3.196 3.146 0.050
211Pa 8.481 8.467 0.014
212Pa 8.411 8.418 −0.007
213Pa 8.384 8.354 0.030
214Pa 8.271 8.265 0.006
215Pa 8.236 8.212 0.024
216Pa 8.099 8.269 −0.170
217Pa 8.489 8.492 −0.003
218Pa 9.791 9.533 0.258
219Pa 10.128 10.233 −0.105
220Pa 9.704 9.762 −0.058
221Pa 9.248 9.225 0.023
222Pa 8.789 8.784 0.005
223Pa 8.343 8.270 0.073
224Pa 7.694 7.788 −0.094
225Pa 7.401 7.379 0.022
226Pa 6.987 6.965 0.022
227Pa 6.580 6.610 −0.030
228Pa 6.265 6.226 0.039
229Pa 5.835 5.866 −0.031
230Pa 5.439 5.432 0.007
231Pa 5.150 5.102 0.048
232Pa 4.627 4.658 −0.031
233Pa 4.375 4.403 −0.028
234Pa 4.076 4.110 −0.034
235Pa 4.101 4.035 0.066
236Pa 3.755 3.810 −0.055
237Pa 3.795 3.795 0.000
238Pa 3.628 3.573 0.055
215U 8.588 8.569 0.019
216U 8.531 8.570 −0.039
218U 8.775 8.840 −0.065
219U 9.950 9.780 0.170
221U 9.889 9.965 −0.076



Reliable calculations of nuclear binding energies by the Gaussian process of machine learning  Page 9 of 15 105

Table 1  (continued) Nucl Q
Expt.
�

 (MeV) Q
Theo.
�

 (MeV) ΔQ
�
 (MeV)

222U 9.481 9.459 0.022
223U 9.158 9.113 0.045
224U 8.628 8.580 0.048
225U 8.007 8.107 −0.100
226U 7.701 7.662 0.039
227U 7.235 7.230 0.005
228U 6.800 6.828 −0.028
229U 6.476 6.413 0.063
230U 5.992 6.030 −0.038
231U 5.576 5.608 −0.032
232U 5.414 5.345 0.069
233U 4.909 4.994 −0.085
234U 4.858 4.860 −0.002
235U 4.678 4.629 0.049
236U 4.573 4.551 0.022
237U 4.234 4.290 −0.056
238U 4.270 4.273 −0.003
239U 4.130 4.078 0.052
240U 4.035 4.067 −0.032
219Np 9.207 9.238 −0.031
220Np 10.226 10.100 0.126
222Np 10.200 10.222 −0.022
223Np 9.650 9.664 −0.014
224Np 9.329 9.323 0.006
225Np 8.818 8.765 0.053
226Np 8.328 8.363 −0.035
227Np 7.816 7.847 −0.031
229Np 7.020 7.061 −0.041
230Np 6.778 6.757 0.021
231Np 6.368 6.338 0.030
233Np 5.627 5.645 −0.018
234Np 5.356 5.376 −0.020
235Np 5.194 5.184 0.010
236Np 5.007 5.021 −0.014
237Np 4.957 4.908 0.049
238Np 4.691 4.723 −0.032
239Np 4.597 4.640 −0.043
240Np 4.557 4.474 0.083
241Np 4.363 4.363 0.000
242Np 4.098 4.123 −0.025
228Pu 7.940 7.910 0.030
229Pu 7.598 7.532 0.066
230Pu 7.178 7.207 −0.029
231Pu 6.839 6.890 −0.051
232Pu 6.716 6.689 0.027
233Pu 6.416 6.426 −0.010
234Pu 6.310 6.261 0.049
235Pu 5.951 6.011 −0.060
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Table 1  (continued) Nucl Q
Expt.
�

 (MeV) Q
Theo.
�

 (MeV) ΔQ
�
 (MeV)

236Pu 5.867 5.883 −0.016
237Pu 5.748 5.697 0.051
238Pu 5.593 5.555 0.038
239Pu 5.245 5.332 −0.087
240Pu 5.256 5.248 0.008
241Pu 5.140 5.094 0.046
242Pu 4.984 4.982 0.002
243Pu 4.757 4.787 −0.030
244Pu 4.666 4.661 0.005
229Am 8.137 8.123 0.014
235Am 6.576 6.622 −0.046
236Am 6.256 6.378 −0.122
238Am 6.042 6.038 0.004
239Am 5.922 5.909 0.013
240Am 5.707 5.731 −0.024
241Am 5.638 5.667 −0.029
242Am 5.589 5.519 0.070
243Am 5.439 5.413 0.026
244Am 5.138 5.207 −0.069
245Am 5.160 5.152 0.008
233Cm 7.473 7.518 −0.045
234Cm 7.365 7.382 −0.017
236Cm 7.067 7.041 0.026
237Cm 6.770 6.815 −0.045
238Cm 6.670 6.676 −0.006
239Cm 6.540 6.498 0.042
240Cm 6.398 6.396 0.002
241Cm 6.185 6.248 −0.063
242Cm 6.216 6.208 0.008
243Cm 6.169 6.083 0.086
244Cm 5.902 5.910 −0.008
245Cm 5.624 5.657 −0.033
246Cm 5.475 5.489 −0.014
247Cm 5.354 5.311 0.043
248Cm 5.162 5.207 −0.045
249Cm 5.148 5.154 −0.006
250Cm 5.170 5.155 0.015
234Bk 8.099 7.882 0.217
243Bk 6.874 6.909 −0.035
244Bk 6.779 6.724 0.055
245Bk 6.455 6.419 0.036
246Bk 6.074 6.149 −0.075
247Bk 5.890 5.896 −0.006
248Bk 5.827 5.765 0.062
249Bk 5.521 5.610 −0.089
237Cf 8.220 8.249 −0.029
239Cf 7.763 7.886 −0.123
240Cf 7.711 7.745 −0.034
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Table 1  (continued) Nucl Q
Expt.
�

 (MeV) Q
Theo.
�

 (MeV) ΔQ
�
 (MeV)

242Cf 7.517 7.541 −0.024
244Cf 7.329 7.337 −0.008
245Cf 7.258 7.169 0.089
246Cf 6.862 6.862 0.000
247Cf 6.503 6.585 −0.082
248Cf 6.361 6.358 0.003
249Cf 6.293 6.263 0.030
250Cf 6.129 6.174 −0.045
251Cf 6.177 6.175 0.002
252Cf 6.217 6.166 0.051
253Cf 6.126 6.166 −0.040
254Cf 5.927 5.915 0.012
241Es 8.259 8.336 −0.077
242Es 8.160 8.062 0.098
243Es 8.072 7.905 0.167
245Es 7.909 7.610 0.299
247Es 7.464 7.378 0.086
251Es 6.597 6.709 −0.112
252Es 6.739 6.702 0.037
253Es 6.739 6.683 0.056
254Es 6.617 6.676 −0.059
255Es 6.436 6.415 0.021
243Fm 8.689 9.127 −0.438
246Fm 8.379 8.391 −0.012
247Fm 8.258 8.105 0.153
248Fm 7.995 7.980 0.015
249Fm 7.709 7.713 −0.004
250Fm 7.557 7.563 −0.006
251Fm 7.424 7.359 0.065
252Fm 7.154 7.255 −0.101
253Fm 7.198 7.192 0.006
254Fm 7.307 7.256 0.051
255Fm 7.241 7.259 −0.018
256Fm 7.025 7.032 −0.007
257Fm 6.864 6.882 −0.018
246Md 8.889 9.193 −0.304
247Md 8.764 8.983 −0.219
248Md 8.497 8.647 −0.150
250Md 8.155 8.135 0.020
251Md 7.963 7.982 −0.019
253Md 7.573 7.814 −0.241
255Md 7.906 7.834 0.072
257Md 7.557 7.505 0.052
258Md 7.271 7.263 0.008
251No 8.752 8.833 −0.081
252No 8.549 8.555 −0.006
253No 8.415 8.406 0.009
254No 8.226 8.327 −0.101
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the predicted �-decay energies for Einsteinium, Fermium, 
Mendelevium, and Nobelium are relatively larger than those 
given by the FRDM, which results in different �-decay half-
lives. We hope that future experimental �-decay properties 
for Einsteinium, Fermium, Mendelevium, and Nobelium 
can provide useful information for improving the Gaussian 
process. The �-decay properties predicted by the Gaussian 
process can complement existing theoretical models and 
provide valuable guidance for future studies of � decay. In 
addition, some actinide isotopes are being synthesized at the 
Heavy Ion Research Facility in Lanzhou (HIRFL), China. 
Therefore, it is expected that the predicted �-decay proper-
ties can be used as theoretical references for identifying new 
nuclides in the future.

4  Summary

In this work, the Gaussian process with a composite kernel 
function is applied to study the binding energies. First, we 
calculate the binding energies for 2238 nuclei with Z > 20 
and N > 20 within the framework of the Gaussian process 
using a physically motivated feature space. The calculated 
average deviation and standard deviation are 0.046 MeV and 
0.066 MeV, respectively. The results demonstrate that the 
binding energies are successfully modeled by the Gaussian 
process, reflecting the good learning ability of the Gauss-
ian process in the calculations of binding energies. Then, 
we calculate the binding energies for 108 nuclei, which are 
newly included in AME2020. The calculated results are in 
good agreement with the experimental data, which indicates 

the good predictive power of the Gaussian process in the 
studies of binding energies. Moreover, the application of 
the composite kernel function provides a novel perspec-
tive in studying other physical problems using the Gauss-
ian process. Next, we calculate the �-decay energies due to 
the successful calculations of the binding energies using the 
Gaussian process. The average deviation and the standard 
deviation for 1169 nuclei with 50 ≤ Z ≤ 110 are 0.047 MeV 
and 0.070 MeV, respectively. Notably, the theoretical �

Table 1  (continued) Nucl Q
Expt.
�

 (MeV) Q
Theo.
�

 (MeV) ΔQ
�
 (MeV)

255No 8.428 8.413 0.015
256No 8.582 8.480 0.102
257No 8.477 8.496 −0.019
259No 7.854 7.859 −0.005

The first column denotes the actinide nuclei. The second and third columns list the experimental �-decay 
energies and the theoretical values calculated using the Gaussian process separately. The last column pre-
sents the deviations ΔQ

�
= Q

Expt.
�

− Q
Theo.
�

 . The experimental data for the new nuclides 204 Ac and 207 Th are 
taken from Ref. [57] and Ref. [10], respectively

Fig. 3  The deviations between the experimental �-decay energies and 
the theoretical results for 1169 nuclei with 50 ≤ Z ≤ 110 . The blue 
circles depict the deviations for these nuclei. The dashed line denotes 
|||Q

Expt.
�

− Q
Theo.
�

||| = 0 MeV. The red shadow and the dash dotted lines 

present |||Q
Expt.
�

− Q
Theo.
�

||| ≤ 0.3 MeV and |||Q
Expt.
�

− Q
Theo.
�

||| = 0.5 MeV, 
respectively
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-decay energies for the new nuclides 204 Ac and 207 Th are 
well reproduced with ΔQ

�
= 0.0004 MeV for 204 Ac and 

ΔQ
�
= 0.051 MeV for 207Th. The good results also show 

that the Gaussian process is reliable for the studies of bind-
ing energies. Finally, the �-decay properties for the actinide 
nuclei are predicted using the Gaussian process. We expect 
the predicted results will be useful for future studies of the 
binding energies and the �-decay properties.
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