
Vol.:(0123456789)

Nuclear Science and Techniques (2024) 35:103 
https://doi.org/10.1007/s41365-024-01472-8

Transverse mode‑coupling instability with longitudinal impedance

Hai‑Sheng Xu1,2  · Chun‑Tao Lin3 · Na Wang1,2  · Jing‑Ye Xu1,2 · Yuan Zhang1,2

Received: 19 October 2023 / Revised: 21 December 2023 / Accepted: 1 January 2024 / Published online: 18 June 2024 
© The Author(s), under exclusive licence to China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese 
Academy of Sciences, Chinese Nuclear Society 2024

Abstract
Transverse mode-coupling instability (TMCI) is a dangerous transverse single-bunch instability that can lead to severe par-
ticle loss. The mechanism of TMCI can be explained by the coupling of transverse coherent oscillation modes owing to the 
transverse short-range wakefield (i.e., the transverse broadband impedance). Recent studies on future circular colliders, e.g., 
FCC-ee, showed that the threshold of TMCI decreased significantly when both longitudinal and transverse impedances were 
included. We performed computations for the circular electron–positron collider (CEPC) and observed a similar phenom-
enon. Systematic studies on the influence of longitudinal impedance on the TMCI threshold were conducted. We concluded 
that the imaginary part of the longitudinal impedance, which caused a reduction in the incoherent synchrotron tune, was the 
primary reason for the reduction in the TMCI threshold. Additionally, the real part of the longitudinal impedance assists in 
increasing the TMCI threshold.

Keywords Transverse mode-coupling instability · Longitudinal impedance

1 Introduction

Collective effects limit the highest beam current (both single 
and multiple bunches) in circular accelerators and essentially 
limit the facility’s performance. Among the numerous types 
of collective effects, transverse mode-coupling instability 
(TMCI), a type of transverse single-bunch instability, is par-
ticularly dangerous and can lead to severe particle losses. 

Therefore, studies on TMCI to understand the mechanism, 
compute the threshold, and mitigate the instability have been 
conducted analytically, via simulations, and experimentally 
on several machines.

TMCI was first observed in PETRA and was studied by 
Kohaupt in 1980 [1]. The well-known “two-particle model” 
was proposed by Kohaupt [1] and was described in detail in 
Ref. [2]. The highly simplified “two-particle model” pro-
vides a clear physical picture of TMCI, using two macro-
particles with opposite synchrotron oscillation phases to 
represent a single bunch. After obtaining the total transfor-
mation for a full synchrotron oscillation period, the stability 
of the two-particle system can be analyzed by computing the 
eigenvalues of the transfer matrix.

Additionally, a method was proposed in Refs. [3–5] to 
analyze the so-called strong coherent beam–beam instabil-
ity in the head–tail � mode. By applying this method, the 
stability of each colliding bunch can be analyzed by comput-
ing the eigenvalues of the one-turn transfer matrix MWM0 , 
where the matrix M0 is the transfer matrix of one revolution 
representing the synchro-betatron motion, and MW denotes 
the momentum kick generated by the beam-beam cross-wake 
force. Subsequently, the method was extended to include 
the effects of longitudinal impedance in a study on the 
beam–beam effect [6].
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The aforementioned methods essentially analyze bunch 
stability in the time domain. Moreover, the stability anal-
yses of TMCI can also be performed in the frequency 
domain. The complex frequencies of the transverse coher-
ent modes can be obtained by solving the Vlasov equation. 
By performing mode analyses in the frequency domain, 
the mechanism of TMCI can be explained by the coupling 
of different transverse coherent modes driven by a trans-
verse short-range wakefield (i.e., transverse broadband 
impedance). When TMCI occurs, the analysis predicts 
violent bunch oscillation, leading to a significant particle 
loss during particle tracking.

Multiparticle tracking is another powerful method for 
studying TMCI. Several tracking codes, such as elegant 
[7] and its parallel version Pelegant [8], PyHEADTAIL 
[9], mbtrack [10] and its GPU-accelerated version mbtrack-
cuda [11], have been developed and widely used in studies 
on collective instabilities, including TMCI. Compared to the 
aforementioned analytical methods, multiparticle tracking is 
more flexible and can handle more complicated situations. 
However, because multiparticle tracking simulates the parti-
cle motion in a beamline, many macroparticles are required 
to guarantee that the interaction among the particles, as well 
as that between the beam and environment, assimilates the 
real case. Furthermore, many turns are required in track-
ing simulations to confirm the stability of the beam.

The transverse impedance is the fundamental cause of 
TMCI. In previous studies, only transverse impedance was 
included in the study of TMCI. For example, in the clas-
sic “two-particle model” and many Vlasov solvers (such as 
MOSES [12], NHTVS [13], DELPHI [14], and GALAC-
TIC [15]), linear longitudinal motion was assumed. The 
synchrotron oscillation frequencies were assumed to be 
constant within the bunch. However, this assumption is not 
fully self-consistent because it omits the effects of the non-
linear longitudinal motion. Nonlinear longitudinal motion 
can be driven by the longitudinal impedance or nonlinear 
RF potential, e.g., harmonic cavities [16], which are widely 
used in the fourth-generation synchrotron light sources [17, 
18]. These factors were not considered in previous mod-
els. Harmonic cavities can lengthen the bunch and induce 
synchrotron-tune spread, improving beam lifetime [19–21]. 
In recent years, some studies have attempted to include har-
monic cavity-induced nonlinear longitudinal motion [16, 
22]. However, systematic studies of the influence of longi-
tudinal impedance on TMCI are lacking.

In recent studies on the FCC-ee [23], tracking simulations 
observed a lower TMCI threshold when longitudinal and 
transverse impedances were simultaneously included. Here, 
we studied TMCI with and without considering longitudi-
nal impedance using the Circular Electron Positron Collider 
(CEPC) storage ring lattice [24] in “Z-mode”, which has the 
lowest beam energy (and therefore the weakest synchrotron 

radiation damping effect) among all the proposed opera-
tional modes of the CEPC collider ring. The primary lattice 
parameters used in these studies are listed in Table 1.

The remainder of this paper is organized as follows. In 
Sect. 2, the study of TMCI in the CEPC collider ring in 
“Z-Mode” is presented. Tracking simulations are performed 
under the conditions with and without the inclusion of the 
longitudinal impedance. In Sect. 3, the theory of TMCI is 
briefly reviewed, and the possible influences of the longi-
tudinal impedance on the TMCI threshold are discussed. 
Systematic analyses of the influence of the longitudinal 
impedance are presented in Sect. 4 based on both analytical 
analyses and tracking results. Conclusions and a discussion 
are presented in Sect. 5.

2  Simulations of TMCI in the CEPC collider 
ring in “Z‑Mode”

Before studying TMCI in the CEPC collider ring, obtaining 
a reasonable impedance model of the entire ring was neces-
sary. During the CEPC technical design process, an imped-
ance model [25] was gradually established owing to the 
development of vacuum components. Analytical formulae 
[26] were mainly used to compute the resistive-wall (RW) 
impedance, and simulations were performed for the detailed 
computations of the geometric impedance of complicated 
vacuum components. The impedance of the CEPC collider 
ring in the vertical direction is illustrated in Fig. 1a, where 
the red and blue curves represent the real and imaginary 
parts of vertical impedance, respectively. To show the trans-
verse impedance data in a relatively low-frequency range, 

Table 1  Main Lattice Parameters of CEPC Collider Ring in 
“Z-Mode”

Parameters Values

Circumference (km) 99.635
Energy, E

0
 (GeV) 45.5

Natural emittance (nm) 0.27
Betatron tune, �x/�y 317.10/317.22
Damping partition numbers, Jx/Jy/JE 1.0/1.0/2.0
Radiation damping time, �x/�y/�� (s) 0.81/0.81/0.40
Radiation loss per turn, (MeV) 37.36
Equilibrium energy spread (%) 0.038
Momentum compaction factor, �

p
1.43e−5

Main RF frequency, f
RF

 (MHz) 652.391
Harmonic number of main RF 216,820
Bucket height, �

max
 (%) 1.7

Peak RF voltage, V
RF

 (MV) 116.66
RMS Bunch length at “zero current" (mm) 2.53
Beam pipe radius (mm) 28
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we zoomed in on  the frequency range from 0 to 1 GHz 
in the same figure. At present, only the transverse dipolar 
impedance is considered. The quadrupolar impedance has 
been ignored until now . The longitudinal impedances are 
shown in Fig. 1b, where the solid and dashed curves indicate 
the total longitudinal impedance and the longitudinal RW 
impedance, respectively. Limited by computing resources, 
the maximum frequencies of both the vertical and longitu-
dinal geometric impedance of the vacuum components were 
set to approximately 40 GHz. However, the RW impedance 
was cut off at a higher frequency (approximately 56 GHz). In 
principle, RW impedance data can reach higher frequencies. 
However, truncating the RW impedance at higher frequen-
cies does not provide a new physical picture. The limitation 
of the impedance model accuracy of the CEPC collider ring 
was the geometric impedance at that moment. More detailed 

computation of geometric impedance is an important ongo-
ing task.

In addition to impedance information, RF parameters are 
necessary to study TMCI. As listed in Table 1, the RF fre-
quency was selected as 652.391 MHz. The planned bucket 
height was 1.7%. The corresponding peak RF voltage and 
synchrotron tune were approximately 116.66  MV and 
�s0 = 0.0346 , respectively.

Systematic multiparticle simulations were performed 
using the elegant [7] code (and its parallel version Pel-
egant[8]) to study TMCI of the CEPC collider ring. To 
guarantee convergence of the simulations, 1,000,000 macro-
particles were used to represent a single bunch, making the 
simulations very time-consuming. The total number of turns 
in the tracking simulation was chosen as 50,000 turns, corre-
sponding to approximately 20 times the transverse radiation 
damping time. To speed up the simulations, tracking through 
the individual components of one revolution of the ring was 
simplified to using a “one-turn map”. The impedance of the 
entire ring was treated as a lumped component. To eliminate 
interference in TMCI threshold charge, neither synchrotron 
radiation damping, nor quantum excitation were included in 
the simulations presented in this section.

Simulations were performed under three different condi-
tions to study the influence of longitudinal impedance on the 
threshold of TMCI. The first condition includes the vertical 
impedance (as shown in Fig. 1a) without considering the 
longitudinal impedance, which is a widely used assumption 
in many previous TMCI analyses. The synchrotron motion 
was determined under this condition using the main RF 
parameters listed in Table 1, which can be assumed linear at 
small amplitudes. The second condition considers the total 
longitudinal impedance of the CEPC collider ring, as indi-
cated by the solid curves in Fig. 1b, along with the vertical 
impedance. The third condition includes the longitudinal 
RW impedance (indicated by the dashed curves in Fig. 1b) 
instead of the total longitudinal impedance. The original 
purpose of studying this situation was to supplement the 
first and second conditions, because the longitudinal effec-
tive impedance of the third condition was between the first 
and second conditions. The tracking results corresponding 
to the three scenarios are shown in Fig. 2 for left, middle, 
and right columns, respectively.

Figure 2a, b, and c show the frequency shifts of the trans-
verse coherent modes under the three aforementioned con-
ditions. The plots in the two lower rows show the vertical 
centroid oscillations (in red) and transmission rates (in blue, 
indicating the ratio of survival to total macroparticles) of sin-
gle bunches with different charges, which could be used to 
indicate the TMCI threshold. Taking Fig. 2d as an example, 
where the single-bunch charge was set to 13 nC, no growth 
of the bunch centroid was observed, and the transmission 
rate remained at 100% in the tracking. Therefore, Fig. 2d 

(a) Vertical Impedance

(b) Longitudinal Impedance

Fig. 1  Impedance of the CEPC collider ring. a Indicates the total ver-
tical impedance of the CEPC collider ring. b Represents the total lon-
gitudinal impedance and the longitudinal RW impedance by the solid 
and dashed curves, respectively. In both a, b, the solid red and blue 
curves represent the real and imaginary parts of the total impedance, 
respectively. b, the green and black dashed curves represent the real 
and imaginary parts of the longitudinal RW impedance, respectively 
(Color figure online)
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indicates that 13 nC/bunch is below the TMCI threshold. 
However, in Fig. 2g, one could see the growth of the bunch 
centroid, which is a clear sign of TMCI. Furthermore, 
remarkable particle loss was observed. Therefore, Fig. 2g 
indicates that 14 nC/bunch is above the TMCI threshold. 
The TMCI threshold charge was between 13 and 14 nC/
bunch under the first condition. Similarly, we can obtain 
the TMCI threshold charges corresponding to the second 

and third conditions in the ranges of 11–12 nC/bunch and 
8–9 nC/bunch, respectively.

This can be observed by comparing the plots in the left 
column with the plots in the middle column (or the plots in 
the right column) in Fig. 2. The threshold charge of TMCI 
in the CEPC collider ring was higher when longitudinal 
impedance was not considered. Reduction in TMCI thresh-
old current when considering longitudinal impedance in 
CEPC collider ring was similar to the phenomenon reported 

(c) w/o Zl, mod e shift (d) w/ Zl, mod e shift (e) w/ Zl−RW, mod e shift

(f) w/o Zl, 13 nC (g) w/ Zl, 11 nC (h) w/ Zl−RW, 8 nC

(i) w/o Zl, 14 nC (j) w/ Zl, 12 nC (k) w/ Zl−RW, 9 nC

Fig. 2  (Color online) TMCI tracking results under the conditions 
without longitudinal impedance (the left plots a, d, and g), with the 
total longitudinal impedance of CEPC collider ring (the middle plots 
b, e, and h), and longitudinal RW impedance (right plots c, f, and i). 
The three plots on the top row (a, b, and c) show the frequency shift 
of the transverse coherent modes under the three different conditions.
The colorbar indicates the amplitude of the modes (“−20 ” means the 

amplitude equals to log (−20) ). Higher values indicated that the mode 
was more significant. In all the pseudo-color figures in this manu-
script, the meanings of the color bars are the same. Therefore, we do 
not repeat the explanation. The plots in the two lower rows show the 
vertical centroid oscillations (in red color) and the transmission rates 
(in blue color) of the single bunches with different charges, which are 
used to indicate the TMCI threshold
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for the FCC-ee [23]. Because the only difference was the 
inclusion of longitudinal impedance in the simulations, it 
was straightforward to guess that the effects of longitudinal 
impedance, such as potential well distortion, longitudinal 
motion characteristics, and microwave instability, must be 
carefully checked.

Another interesting phenomenon can be observed in 
Fig. 2. The TMCI threshold current was even lower with 
only the longitudinal RW impedance (between 8 and 9 nC) 
compared with the result obtained using the total longitudi-
nal impedance (between 11 and 12 nC). However, the lon-
gitudinal RW impedance was significantly weaker than the 
total longitudinal impedance for the CEPC collider ring.

To better understand the physical reasons for the phe-
nomena, we believe that it is important to examine the lon-
gitudinal dynamics of the bunch in detail. Therefore, we 
performed multiparticle tracking simulations using only the 
longitudinal impedance. Again, we used 1,000,000 macro-
particles in a single bunch for tracking. The total number 
of turns in the tracking simulation was 50,000, which cor-
responds to approximately 40 damping cycles in the longitu-
dinal direction. The obtained “final” (the word “final” indi-
cated that the equilibrium state was reached) bunch length 
and energy spread, corresponding to different single-bunch 
charges, are shown in Fig. 3. As an increase in the energy 
spread can indicate microwave instability, we can observe 
that the threshold charges were approximately 10 nC per 
bunch and 40 nC/bunch, respectively, when the total lon-
gitudinal impedance and longitudinal RW impedance were 
considered. Interestingly, the microwave instability (MWI) 
threshold was lower than the TMCI threshold when using 
the total longitudinal impedance in the tracking simulations. 

However, when using longitudinal RW impedance in the 
simulations, the obtained TMCI threshold was lower than 
the MWI threshold. This difference allowed us to check 
whether MWI affects transverse stability. Furthermore, this 
phenomenon means that it would be more suitable to use the 
longitudinal RW impedance in analytic analyses of TMCI. 
Otherwise, the unstable longitudinal motion is difficult to 
treat analytically.

3  TMCI theory

The basic methods to determine the TMCI threshold using the 
“two-particle model” and by solving the Vlasov equation are 
briefly discussed in the Introduction section. In this section, 
we review the two methods in more detail.

The ingeniousness of the “two-particle model” is to divide 
one full synchrotron period into two halves to ensure that the 
“leading particle” and the “trailing particle” will not exchange 
positions in each half of the synchrotron period. Therefore, 
in the first half of the synchrotron period, the equation for 
the betatron motion of the leading particle (marked as No. 1) 
describes the free betatron oscillations. Meanwhile, the trans-
verse kick generated by the wakefield of the leading particle 
is included in the equation for the betatron motion of the trail-
ing particle (marked as No. 2). In the second half of the syn-
chrotron period, the positions of these two particles exchange, 
indicating that particle No. 2 becomes the leading particle. 
Therefore, the equations of the betatron motion can be written 
similarly as in the first half-synchrotron periods. After obtain-
ing the total transformation for the full synchrotron oscillation 
period, the stability of the two-particle system can be ana-
lyzed by computing the eigenvalues of the transfer matrix. The 
stability criterion obtained from the “two-particle model” is 
expressed as follows [2]

where Υ is a dimensionless parameter, Nb is the number of 
electrons per bunch, re is the classical electron radius, W0 is 
the assumed transverse constant wake, c is the speed of light. 
vacuum; � is the Lorentz factor; C is the circumference of 
the ring; and �� and �s represent the angular frequencies of 
betatron motion and synchrotron oscillation, respectively.

It can be seen from Eq. (1) that the TMCI threshold pre-
dicted by the “two-particle model” is proportional to the beta-
tron frequency, synchrotron frequency, and beam energy and 
the circumference of the ring and is inversely proportional to 
the strength of the transverse wakefield. The TMCI study of 
the CEPC collider ring determined the betatron frequency, 
beam energy, circumference, and transverse wakefields, 

(1)Υ =
�NbreW0c

2

4�C���s

≤ 2,

Fig. 3  The “final” bunch length and energy spread vs. single-bunch 
charges when including the longitudinal total impedance and RW 
impedance, respectively. The shown mean values were computed by 
taking an average of the data from the 20,001st turn to the 50,000th 
turn, and the error bars were the corresponding standard derivations 
of the data in the same range (Color figure online)
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implying that more attention should be paid to the synchro-
tron frequency.

Analyzing the TMCI threshold by solving the Vlasov equa-
tion essentially computes the complex frequencies of the trans-
verse coherent modes. The starting point is the bunch distribu-
tion � in 4-D phase space (either in the polar coordinate phase 
space  (q, �, r, �; s) , or equivalently, (y, py, z, �; s)

where Ω is the complex mode frequency and f0 and f1 (g0 
and g1 ) are the unperturbed and perturbed transverse (lon-
gitudinal) beam distributions, respectively, satisfying the 
Vlasov equation

where the prime represents the derivative with respect to 
the independent variable s, for example, y� = dy∕ds . Here, 
TMCI is considered to have zero chromaticity. Assuming 
that only transverse motion is affected by the transverse wake 
force; however, the synchrotron motion is not perturbed, the 
Eq. (3) is reduced to an infinite set of equations [2]

where Z⟂

y
(��) denotes the transverse impedance in y direc-

tion with �� ≡ p�0 + �� + l�s . �l,Rl(r) are the Fourier coef-
ficients of g1(r,�) and g1(r,�) =

∑∞

l=−∞
�lRl(r)e

il� . Analyti-
cal studies eventually lead to eigenvalue problems. The real 
and imaginary parts of the eigenvalues Ω provide informa-
tion on mode frequency and growth rate. When the bunch 
intensity was low, Ω could be determined. As the intensity 
increased, the oscillation frequencies of some modes (usu-
ally the lowest-order mode, called the 0 mode) shift toward 
other modes. Above a threshold current, the two modes cou-
ple, and the bunch becomes unstable.

Using the “air-bag model” to represent the longitudi-
nal bunch distribution g0(r) , the scaling for the instability 
threshold Nth is approximately

From Eq. (5), the “mode-coupling model” gives the same 
trend as the “two-particle model,” which is the higher TMCI 
threshold charge that can be expected if any value among the 

(2)� = f0(q)g0(r) + f1(q, �)g1(r,�)e
−iΩs∕c

(3)
��

�s
+ y�

��

�y
+ p�

y

��

�py
+ z�

��

�z
+ ��

��

��
= 0

(4)

(
Ω − �� − l�s

)
�lRl(r) = −i

�r0�s

���T
2
0
�
g0(r)

×

∞∑

l�=−∞
∫

∞

0

r�dr���
l
R�
l

(
r�
)
il−l

�

×

∞∑

p=−∞

Z⟂

y

(
��
)
Jl

(
��r

c

)
J�
l

(
��r�

c

)

l = 0,± 1,± 2,… ,

(5)Nth ∝ �s��E.

synchrotron frequency, betatron frequency, and beam energy 
can be increased. Similar to the aforementioned analysis of 
the “two-particle model,” this method demonstrates the 
importance of synchrotron frequency.

4  Analyses with longitudinal impedance

4.1  Development of the analytic method

As mentioned above, a method to analyze the stability of 
colliding bunches is to compute the eigenvalues of the 
matrix product of the synchro-betatron transfer matrix M0 
and the matrix MW , which represents the momentum kick 
induced by the beam–beam cross-wake force. This method 
was developed in Ref. [3, 4]. The method was then extended 
to include the longitudinal impedance in a study on the 
beam–beam effect [6]. In the following text, we mainly fol-
low the procedure proposed in Ref. [6] to develop an ana-
lytical method for analyzing TMCI considering longitudinal 
impedance.

TMCI in the horizontal and vertical directions is usu-
ally studied separately. In the following section, the vertical 
direction is considered as an example. Vertically normalized 
coordinates ( Y ,Py ) instead of the vertical phase-space coor-
dinates ( y, py ) were used in the following computations. The 
normalized coordinates ( Y ,Py ) can be expressed as

where �y and �y are Courant-Snyder parameters. For simplic-
ity, in the following analyses, we assume that the vertical 
wake force is lumped at the position where �y = 0.

The vertical coordinates of the particles ( Y ,Py ) are func-
tions of the longitudinal phase-space coordinates. To pro-
ceed with our analysis, we use the longitudinal action-angle 
variables (J,�) instead of (z, �) phase-space coordinates 
to represent the vertical coordinates of the particles (i.e., 
Y = Y(J,�) and Py = Py(J,�) ). z and � denote the relative 
longitudinal position and energy spread, respectively. The 
two sets of phase-space coordinates are related by Lee [27]:

where F2(z, J) is the second-type generating function defined 
as follows:

Because Y(J,�) and Py(J,�) are periodic functions of � with 
a period of 2� , we can expand the expression of the normal-
ized coordinates azimuthally to obtain

(6)Y = y∕
√

�y, Py = py ⋅

√
�y + �y ⋅ y∕

√
�y,

(7)J =
1

2� ∮ �dz, � =
�F2(z, J)

�J
,

(8)F2(z, J) = ∫
z

�(J, z�)dz�.
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Transfer matrix M0 to the transform vector

per revolution without wakefield can be written as

where �y = 2��y , �y is the vertical tune. �s(J) is the syn-
chrotron tune expressed as a function of J. Under condi-
tions without consideration of longitudinal impedance and 
assuming that the particles experience small-amplitude 
synchrotron oscillations at a single frequency RF system 
(where the synchrotron oscillation can be simplified as a 
simple harmonic oscillator), the synchrotron tune can be 
treated as a constant value for different J (i.e., �s(J) = �s0 ). 
However, when we include the longitudinal impedance, �s 
in Eq. (11) varies according to J, indicating that the spread 
of synchrotron tune can be included in the analyses of trans-
verse stability (TMCI). In addition, considering the longi-
tudinal impedance, the particle’s trajectory in the longitudi-
nal phase space is distorted from an ellipse and can be any 
shape. As discussed later, this distortion can also be included 
in the analysis.

Furthermore, one must consider that the transverse wake-
field generated by the leading particles acts on trailing particles 
as they move along the accelerator. As mentioned previously, 
the vertical impedance of the entire ring was lumped into one 
location, providing a vertical momentum kick to the parti-
cles at each revolution. This vertical momentum kick can be 
expressed as [2]

Using �
(
z�
)
= ∫ �

(
J�,��

)
d�� , where �(J,�) is the particle 

longitudinal phase-space distribution, and the normalized 
variables defined in Eq. (6), we rewrite the equation in terms 
of (J,�)

where z = z(J,�), z� = z(J�,��) . We assume that the longitu-
dinal phase-space distribution is stationary; thus, �(J,�) is 
only a function of J, that is, �(J,�) = �(J) . In this study, we 
chose the smooth accelerator model, and the value of �y was 
�y ≈ R∕�y , where R is the average radius of the storage ring. 
Substituting the expansion of Eqs. (9) into (13), multiplying 

(9)Y(J,�) =

∞∑

l=−∞

Yl(J)e
il�, Py(J,�) =

∞∑

l=−∞

Pl(J)e
il�.

(10)(Yl(J),Pl(J)),

(11)M0 = e−i2�l�s(J)
(
cos�y sin�y

− sin�y cos�y

)
,

(12)Δpy = −
Nbre

� ∫
∞

−∞

y(z)Wy(z − z�)�(z�)dz�.

(13)
ΔPy(J,�) = −

Nbre�y

� ∫
∞

0

dJ� ∫
2�

0

d��

×Wy(z − z�)Y(J,�)�(J�,��)�(z�),

e−il� on both sides, and integrating � from 0 to 2� , we obtain 
the momentum kick for each azimuthal mode Pl(J) induced 
by the transverse wakefield

where

Wll′

(
J, J′

)
 can be regarded as a weight function that describes 

the interaction strength between the two azimuthal modes l, l′ 
of the two different action particles J, J′.

After synchro-betatron transformation of Eq. (11) and 
the momentum kick of Eq.  (14) induced by wakefield, 
we attempt to determine the stability of the circulating 
bunches. The objective was to obtain the eigenvalues of 
the transformations. To achieve this, we first truncated the 
infinite summation l of Eq. (9) at ±lmax . Then, we discre-
tized and sampled continuous variables J at specific values 
Ji, i = 1, 2,… , nJ , where nJ is the number of grids [28]. 
The transferred dipole-moment vector in Eq. (10) becomes

where l = 0,±1,±2,…± lmax , J = J1, J2,… , JnJ . The length 
of this vector was 2 × nJ × (2lmax + 1) . Therefore, the syn-
chro-betatron transformation and momentum kick from the 
transverse wakefield for vector  (16) can be written directly 
from Eqs. (11) and (14),

and

where

For the transverse wake function Wy(z) of a real machine, the 
weight function Wll′

(
Ji, Ji′

)
 in (15) can assume an arbitrary 

form. Therefore, the integration of � takes the form of a 
discrete summation

(14)ΔPl(J) = −
�y

2�

∑

l�
∫ dJ�Wll�

(
J, J�

)
�
(
J�
)
Yl�

(
J�
)
,

(15)Wll�

(
J, J�

)
=

Nbre

� ∬ d�d��e−il�+il
���

Wy

(
z − z�

)
.

(16)
(
Yl
(
Ji
)
,Pl

(
Ji
))
,

(17)M0 = e−2�li�s(Ji)
(
cos�y sin�y

− sin�y cos�y

)
,

(18)ΔPl

(
Ji
)
=
∑

l�

∑

i�

Mlil�i�Yl�
(
Ji�
)
,

(19)Mlil�i� = −
�y

2�
ΔJi�Wll�

(
Ji, Ji�

)
�
(
Ji�
)
.

(20)
Wll�

(
Ji, Ji�

)
=
Nbre

�

∑

j

∑

j�

e−il�j+il
��j�

×Wy

(
z
(
Ji,�j

)
− z

(
Ji� ,�j�

))
Δ�jΔ�j� .



 H.-S. Xu et al.103 Page 8 of 14

The transverse wakefield kick in Eq. (18) can be written in 
a more intuitive matrix form as

This matrix can be regarded as a thin-lens quadruple with 
different focal lengths for different particles and azimuthal 
modes.

Finally, the total one-turn transfer matrix is M0MW with 
dimensions of (2 × nJ × (2lmax + 1))2 . The stability of the 
revolving beam was determined using eigenvalues (��s) 
of M0MW.

To perform the analysis of TMCI using the aforemen-
tioned method, according to Eqs. (17) and (18), the syn-
chrotron tune �s(J) and particle longitudinal phase-space 
distribution �(J) at equilibrium state is needed. This can be 
obtained from the single-particle Hamiltonian by consider-
ing the longitudinal impedance (wakefield),

where �p is the phase slippage factor, C is the circumfer-
ence of the ring, �z = 2��s is the synchrotron phase advance 
per revolution, Wz(z) is the longitudinal wakefield (pseudo-
green function or short-bunch wake potential). Owing to the 
synchrotron radiation damping and quantum excitation, the 
equilibrium distribution is in � is considered Gaussian with 
an RMS value ��,

The equilibrium longitudinal bunch distribution �(z) = �eq(z) 
can be computed either numerically by solving the Haïssin-
ski equation or by multiparticle tracking simulations. The 
detailed process to solve the Haïssinski equation is not dis-
cussed in this paper because it has been presented in many 
previous publications, for example, [29–31].

We can then substitute the equilibrium longitudinal bunch 
distribution �eq(z) into Eq. (22) to obtain the expression of 
the “equilibrium” Hamiltonian Heq . The Hamiltonian tori 
corresponding to the given values of the oscillation ampli-
tudes zamp (i.e., J) can be obtained numerically based on Heq . 
It is then straightforward to extract the information of �s(J) 
by numerically solving the mapping equations of the longi-
tudinal motion using the standard method provided in text-
books, for instance, in Refs. [27, 32].

(21)MW =

(
1 0

Mlil�i� 1

)
.

(22)
H = −

�p

2
�2 −

�2
z

2�pC
2
z2

+
1

C

Nbre

� ∫
z

0

dz�� ∫
∞

−∞

dz�Wz

(
z�� − z�

)
�
(
z�
)
.

(23)�(z, �) =
1√
2���

exp

�
−

�2

2�2
�

�
�(z).

The same process can be applied to the study without 
considering longitudinal impedance except for solving the 
Haïssinski equation.

4.2  Study of the TMCI both analytically 
and by simulations

Using the analytical method, the TMCI can be studied with 
and without consideration of the longitudinal impedance. To 
benchmark the analytical method, a TMCI study was con-
ducted under conditions without a longitudinal impedance. 
The mode angular frequency Ω and the growth rate are given 
by �0∕(2�) ⋅ tan

−1(Im(�)∕Re(�)) and log � , respectively. A 
comparison of the analytical and tracking results is presented 
in Fig. 4a, where a pseudo-color plot is obtained via multi-
particle tracking, as shown in Fig. 2a, and the white dots are 
computed using the aforementioned analytical method. The 
analytical results indicate that the two lowest modes ( l = 0 

(a) Modes Shift

(b) Growth

Fig. 4  (Color online) TMCI analyses without longitudinal imped-
ance. a represents the betatron frequency shift, indicating the shift 
and coupling of the head–tail modes. The pseudo-color plot was the 
result of the multiparticle tracking. The white dots were obtained 
using the analytic method. The red dots given in b were the growth 
rates of the modes at different single-bunch charges. The blue dashed 
line in b indicated the synchrotron radiation damping rate
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and l = −1 ), coupled at approximately 13–14 nC/bunch, 
exhibited excellent agreement with the tracking results.

Furthermore, the growth rates of TMCI are indicated by 
the red dots in Fig. 4b. We observed that the growth rate 
remained at zero when the single-bunch charge was below 
approximately 13 nC and became nonzero when the single-
bunch charge was above 14 nC. This is consistent with the 
mode-coupling analyses presented in Fig. 4a. Furthermore, 
the blue dashed lines in Fig. 4b indicates the synchrotron 
radiation damping. The growth rate was compared to that 
of the synchrotron radiation damping rate, we determined 
whether the bunch was stable.

In Fig. 4a, excellent agreement between the analytical 
analysis and multiparticle tracking simulations without con-
sidering the longitudinal impedance is shown. In the next 
step, we do not assume linear synchrotron motion in the lon-
gitudinal direction. Instead, the longitudinal impedance was 
included in the TMCI study. The longitudinal equilibrium 
distribution was obtained by considering the longitudinal 
impedance.

However, as presented in Sect. 2 or, more precisely, in 
Figs. 2b and 3, when the longitudinal impedance of CEPC 
(the red and blue curves in Fig. 1b), the MWI threshold 
charge was lower than the TMCI threshold. Since no equi-
librium Haïssinski solution exists above the MWI threshold, 
the corresponding longitudinal bunch distribution change 
turn after turn, making the analytic analysis of TMCI impos-
sible. Figures 2c and 3 show that MWI threshold charge is 
much higher than the TMCI threshold charge when using the 
longitudinal RW impedance (green and black dashed curves 
in Fig. 1b), indicating that the equilibrium longitudinal dis-
tribution always exists when studying TMCI considering 
longitudinal RW impedance. Therefore, we use the longi-
tudinal RW impedance (green and black dashed curves in 
Fig. 1b) in the TMCI studies. The computational results are 
presented in Fig. 5.

Figure 5a shows excellent agreement between the ana-
lytical and tracking results when the longitudinal RW 
impedance is included. Furthermore, the threshold charge 
predicted by the tracking simulations corresponds to the 
position where l = 0 and l = −1 modes are coupled, as pre-
dicted by the analytical analyses. It is interesting to note 
the following analytical results predicted that the spread of 
each azimuthal mode (corresponding to the indices of the 
vertical axis (Ω − ��y)∕�s ) increases as the single-bunch 
charge increases. Therefore, couplings between the higher-
order modes below the threshold charge correspond to the 
coupling between l = 0 and l = −1 modes. For instance, 
the coupling between l = 2 and l = 3-modes and coupling 
between the l = −3  and l = −2 modes occurred in the 
ranges of approximately 3 and 4 nC/bunch. Moreover, the 
coupling between l = 1 and l = 2 modes and the coupling 
between l = −2 and l = −1 modes occurred in the range of 

approximately 7 and 8 nC/bunch. However, no instability 
was observed, corresponding to the coupling of the afore-
mentioned higher-order modes in the multiparticle track-
ing. It can be seen in Fig. 5b the growth rate was already 
nonzero at approximately 6 nC/bunch. However, the growth 
was slow at a relatively low charge (e.g., 6 nC/bunch). Con-
sidering the low growth rate and finite number of turns in 
the tracking simulations, growth is not easily observed from 
the tracking results; for example, the pseudo-color plot in 
Fig. 5a. Furthermore, by comparing analytic results of the 
growth rate and the synchrotron radiation damping rate, it 
can be seen that the growth rate below approximately 12 nC/
bunch is smaller than the synchrotron radiation damping 
rate. Therefore, we predict that if we include synchrotron 
radiation effects in the tracking simulations, the obtained 
threshold should be in the range of 11 and 12 nC/bunch. The 
tracking results considering the longitudinal RW impedance 
and synchrotron radiation effects are shown in Fig. 6, which 
confirms the prediction using simulations.

(a) Mode Shift

(b) Growth

Fig. 5  (Color online) TMCI analyses with longitudinal RW imped-
ance. a represents the betatron frequency shift, indicating the shift 
and coupling of the head–tail modes. The pseudo-color plot was the 
result of the multiparticle tracking. The white dots were obtained 
using the analytic method. The red dots given in b were the growth 
rates of the modes at different single-bunch charges. The blue dashed 
line in b indicated the synchrotron radiation damping rate
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4.3  Influences of the real and imaginary parts 
of the longitudinal impedance

The studies showed that longitudinal impedance leads to a 
reduction in the TMCI threshold. Furthermore, it was con-
firmed that both the developed analytical method and multi-
particle tracking can be used to investigate this phenomenon. 
In this study, we conducted systematic investigations into the 
underlying physics.

The first question we aimed to understand is how the real 
and imaginary parts of the longitudinal impedance affect the 
TMCI. It would be of great significance to know the answer 
because this may guide more precise optimization of the 
longitudinal impedance.

The studies were first conducted using multiparticle 
tracking by including either the real part of the total longitu-
dinal impedance (red solid curve in Fig. 1b) or the imaginary 
part of the total longitudinal impedance ( solid blue curve in 
Fig. 1b). The total number of turns in the tracking process is 
50,000. Synchrotron radiation effects were not considered in 
this study. The mode frequency shifts corresponding to these 
two conditions are shown in Fig. 7.

Compared with the results obtained for the entire longi-
tudinal impedance (shown in Fig. 2b), the TMCI threshold 
charge increases when only the real part of the longitudi-
nal impedance is included. However, the TMCI threshold 
decreased significantly when only the imaginary part of the 
longitudinal impedance was included in tracking. We first 
performed tracking simulations in the longitudinal direction 
to determine the reason. The same settings were used as 
those described above. The obtained “final” bunch lengths 
and energy spreads are shown in Fig. 8a, b.

It can be seen in Fig. 8, the purely imaginary longitu-
dinal impedance causes bunch lengthening as the single-
bunch charge increases, without driving MWI. Moreover, 
the simulations demonstrated that the purely real longitudi-
nal impedance was responsible for the MWI, significantly 

reducing the MWI threshold. No significant increase in 
bunch length was observed below the threshold current 
with only the real longitudinal impedance. However, the 
bunch lengthened as MWI occurred. In general, as shown 
in Fig. 8a, the bunch lengths under the three different con-
ditions were not significantly different for a relatively large 
range of bunch charges, for instance, from 5 to 15 nC/
bunch. The charge densities corresponding to the same 
single-bunch charge should not differ significantly under 
these three conditions. More detailed information needs 
to be obtained by carefully analyzing the bunch distribu-
tions and the corresponding incoherent synchrotron tune at 
different single-bunch charges when the total longitudinal 
impedance Zl , purely real longitudinal impedance Re(Zl ), 
and purely imaginary longitudinal impedance Im(Zl ) are 
used. The results are shown in Fig. 9.

Figure 9 clearly shows that the real part of the longi-
tudinal impedance causes a shift in the longitudinal cen-
troid positions and head–tail asymmetry, which indicates 
that particles lost energy, and potential well distortion 

Fig. 6  (Color online) TMCI analyses with longitudinal RW imped-
ance and synchrotron radiation effect via multiparticle tracking

(a) w/ Re(Zl)

(b) w/ Im(Zl)

Fig. 7  (Color online) Modes frequency shift vs. single-bunch charge. 
a, b were obtained with the consideration of the real part and imagi-
nary part of the longitudinal impedance, respectively. 50,000  turns 
were used for the tracking. The synchrotron radiation effects were not 
included
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occurred because of the real longitudinal impedance, but 
no incoherent synchrotron-tune shift, indicating that the 
spread of the synchrotron tune was not enlarged. Interest-
ingly, the bunch length remained unchanged below the 
MWI threshold, as shown in Figs. 8a and 9b. The bunch 
length were longer when MWI occurred. A more interest-
ing phenomenon is observed when comparing the results 
shown in Figs. 2a and 7a, indicating a higher TMCI thresh-
old when considering only the real part of the longitudinal 
impedance. The theory described in Sect. 3 cannot directly 
explain this phenomenon.

However, the imaginary part of the longitudinal imped-
ance causes bunch lengthening without a centroid shift 
or driving the MWI. Incoherent tune shifts, and enlarge-
ment of the synchrotron-tune spread can also be observed. 
This phenomenon indicates that the imaginary part of the 

longitudinal impedance does not lead to energy loss. Mean-
while, Fig. 9f indicates that the purely imaginary longitudi-
nal impedance causes a significant reduction in the incoher-
ent synchrotron tune and significantly increases the spread 
of synchrotron tune.

We concluded that the imaginary part of the longitudi-
nal impedance was the main reason for the reduction in the 
TMCI threshold, and the real part of the longitudinal imped-
ance helped to raise the TMCI threshold.

The analytical method was used to check further the 
influence of the synchrotron tune conditions on the TMCI 
threshold. Here, we carried out analytic computations using 
four different synchrotron-tune situations: the real synchro-
tron-tune distribution �s(J) , unchanged constant synchro-
tron tune �s0 , average values of the incoherent synchrotron 
tune ⟨�s(J)⟩ , and minimum value of the synchrotron tune 
min(�s(J)) . The results are shown in Fig. 10.

Figure 10a shows that the downward shift of l=0 mode 
is identical regardless of the synchrotron-tune values used. 
This phenomenon indicates that the frequency of l=0 mode 
does not depend on the value of synchrotron tune. However, 
this can also be observed in Fig. 10a, the frequencies of all 
other modes (except l = 0 mode) are different when differ-
ent values of the synchrotron tune are used in the computa-
tion. By comparing the green, blue, and black dots shown 
in Fig. 10a, we can see that the coupling between the l = 0 
and l = −1 modes occurs at lower single-bunch charges if the 
synchrotron tune decreases, indicating that the reduction in 
the synchrotron tune is responsible for the lower threshold. 
The same conclusion was drawn by comparing the growth 
rates under different conditions, as shown in Fig. 10b. Fur-
thermore, it can be observed from the red dots in Fig. 10a, 
the mode-shift trends are different when a synchrotron-tune 
spread exists. The frequency spread of each mode becomes 
larger as the bunch charge increases, which suggests that 
different “modes” couple at lower charges (e.g., lower than 
5 nC). The growth rates are shown in Fig. 10b, no significant 
growth is observed when the bunch charge is lower than 
approximately 10 nC. This phenomenon is related to the 
effects of the synchrotron-tune spread on the TMCI thresh-
old, which is left for future study.

5  Conclusions and discussions

TMCI is an important single-bunch instability in circular 
accelerators. Various studies on TMCI have been conducted 
through analytical methods, simulations, and experiments. 
Widely used analytical methods to study TMCI involve 
solving the linearized Vlasov equation. However, previous 
Vlasov solvers usually do not consider longitudinal imped-
ance, which is not fully self-consistent.

(a) σz vs. charge

(b) σδ vs. charge

Fig. 8  (Color online) Final bunch length (in a) and energy spread 
(in b) under the following three different conditions: the first condi-
tion is with both the real and imaginary parts of the total longitudinal 
impedance shown by Fig.  1b, the second condition is with only the 
real part of the total longitudinal impedance, and the third condition 
is with only the imaginary part of the total longitudinal impedance. 
The shown mean values were computed by taking an average of the 
data from the 20,001st turn to the 50,000th turn, and the error bars 
were the corresponding standard derivations of the data in the same 
range
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Recently, studies on TMCI in FCC-ee reported a lower 
TMCI threshold current when longitudinal impedance was 
included in multiparticle tracking simulations. The lower 

synchrotron tune caused by the longitudinal impedance was 
identified as the main reason for the lower TMCI threshold. 
We conducted similar studies for the CEPC collider ring and 

(a) bunch dist. w/ Zl (b) bunch dist. w/ Re(Zl) (c) bunch dist. w/ Im(Zl)

(d) νs dist. w/ Zl (e) νs dist. w/ Re(Zl) (f) νs dist. w/ Im(Zl)

Fig. 9  (Color online) Distributions of the single bunches and dis-
tributions of the synchrotron tune. The three different conditions of 
longitudinal impedance, which were the condition with longitudinal 

impedance (a, d), with only the real part of the longitudinal imped-
ance (b, e) and with only the imaginary part of the longitudinal 
impedance (c, f), were used in the tracking simulations

(a) mode shift vs. charge (b) growth rate vs. charge

Fig. 10  (Color online) Comparison of the mode shift and growth 
rates with the assumption of different synchrotron tune. The red dots 
represent the results obtained by using the real distribution of syn-
chrotron tune �s(J) . The results shown by the green, blue, and black 
dots were obtained, assuming the synchrotron tune was constant. The 

green dots, the blue dots, and the black dots represented the results 
obtained when using the maximum value 

(
max(�s(J)) = �s0

)
 , the 

mean value 
�
⟨�s(J)⟩

�
 , and the minimum value 

(
min(�s(J))

)
 of �s(J) , 

respectively.
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observed a similar phenomenon. To explore the physical 
picture in detail, we developed an analytical method that 
includes longitudinal impedance in TMCI computations 
(inspired by previous work on the beam–beam effect with 
longitudinal impedance). The key is that we did not assume 
a linear longitudinal motion. Instead, the distorted phase-
space trajectories and corresponding distributions of the 
synchrotron tune were used as the input information for the 
code. The Haïssinski solution was used as the equilibrium 
distribution. However, it should be noted that the equilib-
rium Haïssinski solution does not always exist. When MWI 
occurs, the physics indicates that no equilibrium Haïssinski 
solution exists; therefore, it is not suitable to address situa-
tions above the threshold current of the MWI. Multiparticle 
tracking is suitable in such complicated situations.

In this paper, we present studies of TMCI with longitu-
dinal impedance performed using both the analytic method 
and multiparticle tracking simulations. The reduction in the 
incoherent synchrotron tune caused by the imaginary part 
of the longitudinal impedance was the main reason for the 
reduction in the TMCI threshold current after considering 
the longitudinal impedance. However, the real part of the 
longitudinal impedance increases the TMCI threshold. This 
conclusion provides clear guidance for the optimization of 
longitudinal impedance.
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