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Abstract
Based on the dinuclear system model, the calculated evaporation residue cross sections matched well with the current 
experimental results. The synthesis of superheavy elements Z = 121 was systematically studied through combinations of 
stable projectiles with Z = 21–30 and targets with half-lives exceeding 50 d. The influence of mass asymmetry and isotopic 
dependence on the projectile and target nuclei was investigated in detail. The reactions 254 Es ( 46Ti, 3n) 297121 and 252 Es ( 46Ti, 
3n) 295121 were found to be experimentally feasible for synthesizing superheavy element Z = 121 , with maximal evaporation 
residue cross sections of 6.619 and 4.123 fb at 219.9 and 223.9 MeV, respectively.
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1  Introduction

The production of new superheavy nuclei (SHN) is a chal-
lenging frontier in low-energy nuclear reactions. Over the 
years, experimental and theoretical nuclear physicists have 
explored SHN synthesis since the prediction of the “island of 
stability” around Z = 114, N = 184 [1, 2]. The Skyrme–Har-
tree–Fock method considers Z = 120, 124, or 126 and N = 
172 or 184 as magic numbers [3]. The synthesis of super-
heavy elements (SHEs) Z = 107–112 was accomplished in 
GSI using cold fusion reactions with Pb and Bi targets [4]. 

However, despite the successful synthesis of SHE Z = 113 
via the cold fusion reaction 70 Zn + 209 Bi at RIKEN [5], the 
evaporation residue cross section (ERCS) �ER was only 
0.03 pb, reaching the limit of experimental detection at 
that time [6]. To overcome this challenge, researchers in 
Dubna focused on hot fusion reactions with 48 Ca beams 
and actinide targets. This method produces SHEs with Z = 
114–118 [7–12], which complete the seventh period of the 
periodic table.

In recent years, several new isotopes with Z ≤ 118 have 
been synthesized using modern accelerators, such as the 
DC-280 and U-400 of the Dubna SHE factory, RILAC of 
RIKEN, SFC of HIRFL, and UNILAC of GSI [7, 12–16]; 
however, the production of SHEs with Z > 118 remains a chal-
lenge. Previous attempts to produce SHEs with Z = 120 using 
58Fe+244 Pu [6] and 54 Cr + 248 Cm [17] reactions at Dubna and 
GSI, respectively, did not observe any � decay chains associ-
ated with this element. The three events reported by the GSI 
in Ref. [17] were later determined to be random events [18]. In 
2020, with the gas-filled recoil separator TASCA at GSI, the 
search for synthesizing SHEs with Z = 119 and Z = 120 was 
conducted via the reactions 50 Ti + 249 Bk and 50 Ti + 249Cf, yet 
neither was detected [19]. In 2022, RIKEN estimated the opti-
mal incident energy for synthesizing SHE Z = 119 through the 
reaction 51V+248Cm [20]. Therefore, the synthesis of SHEs 
Z > 118 requires not only more advanced detection and iden-
tification techniques but also an appropriate reaction system.
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Several models and different fusion mechanisms have been 
proposed to accurately describe the process of fusion-evapo-
ration reactions. The improved quantum molecular dynamics 
(ImQMD) model [21], time-dependent Hartree-Fock theory 
[22–25], fusion-by-diffusion model [26], cluster dynamical 
decay model [27], two-step model [28, 29], dinuclear system 
(DNS) model [30–44], and other methods [45–48] have proved 
to be reliable in reproducing experimental data and have pro-
vided predictions about the synthesis of unknown nuclei [22, 
45, 49–56].

The synthesis and decay of elements Z = 119 and Z = 120 
have been extensively studied  [22, 33, 35, 45, 52, 57–59], 
whereas only a limited number of calculations have been 
conducted for the synthesis of SHE Z = 121 . To address this 
research gap, this study aims to investigate the optimal pro-
jectile-target combinations for synthesizing SHE Z = 121 and 
provide a reference for future experimental attempts.

The remainder of this paper is organized as follows: In 
Sect. 2, the DNS model is described, and its reliability is 
examined. The ERCSs of Z = 121 isotopes in different reac-
tion channels are discussed in Sect. 3. Finally, the conclusions 
are provided in Sect. 4.

2 � Theoretical descriptions

In the DNS model, the ERCS for synthesizing SHN in the 
center-of-mass frame can be obtained using the following 
expression:

Here, T
(
Ec.m., J

)
 represents the transmission probability of 

the colliding system overcoming the Coulomb barrier Vb . 
PCN

(
Ec.m., J

)
 is the fusion probability for the formation of 

a compound nucleus [60]. Wsur

(
Ec.m., J

)
 denotes the prob-

ability that the excited compound nucleus emits neutrons 
instead of undergoing fission to reach the ground state [61]. 
The nucleus–nucleus interaction potential considering quad-
rupole deformation is expressed as follows  [62]:

where �1,2 and �0
1,2

 denote the dynamic quadrupole and static 
deformation parameters of the projectile and target nucleus, 
respectively. �1,2 are the collision angles of the deformed 
projectile and target nucleus, respectively. The stiffness 
parameters C1,2 are expressed as follows  [63]:
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� = 2 represents the quadrupole deformation. The Coulomb 
potential VC is determined using Wang’s formula [64]:

The nuclear potential VN is given by the Woods–Saxon 
potential [64]:

During the capture process, the transmission probability 
T(Ec.m.,B, J) is described using Ahmed’s formula [65, 66]:
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Considering the barrier distribution function f (B) , 
T
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 can be written as:

The asymmetric barrier distribution parameters are pre-
sented in Refs.  [68]. The capture cross section �cap is calcu-
lated as follows [62]:
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potential energy surface, expressed as [62]
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is taken from Ref.  [69]. VCN denotes the nucleus–nucleus 
interaction potential.

Nucleon transfer is treated as a diffusion process at 
the lowest point on the potential energy surface, known 
as the driving potential  [62]. To form a compound 
nucleus, the dinuclear system must surpass the inner 
fusion barrier Bfus along the mass asymmetry degree 
� =

(
AP − AT

)
∕
(
AP + AT

)
 , which denotes the poten-

tial energy disparity between the incident point and the 
Businaro–Gallone (B.G.) point (the peak of the driving 
potential) [70], defined as Bfus = U

(
�B.G.

)
− U

(
�i
)
 . The 

fusion probability PCN(Ec.m., J) is determined through the 
summation of the distribution probabilities of crossing the 
B.G. point P

(
N1, Z1,E1, t

)
 as follows:

Here, the interaction time �int(J) is calculated using the 
deflection function method [71]. P
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N1, Z1,E1, t

)
 is calculated 

by solving the two-dimensional master equation.
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′
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state (N1, Z1) to state (N�

1
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 is the micro-
scopic dimension of state (N1, Z1) . The quasi-fission rate Λqf 
and fission rate Λfis are given by the one-dimensional Kram-
ers formula [73].

The survival process is determined primarily by the 
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survival probability at excitation energy E∗
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expressed as

P
(
E∗
CN

, x, J
)
 denotes the realization probability of emitting x 
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pound nucleus that emits i − 1 neutrons [57].
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the Weisskopf–Ewing theory [76]:
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 . � and Bn represent the pair-

ing correction and the neutron separation energies  [33], 
respectively. The level density � is expressed as in 
Refs.   [77], and �inv denotes the inverse reaction cross 
section [78].

Γf (E
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, J) is the fission decay width given by the 

Bohr–Wheeler transition-state method [79]:
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81]. The temperature-dependent fission barrier Bf (E
∗
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, J) was 

calculated using the following expression [82, 83]:

where Bf
LD denotes the macroscopic portion of the fission 

barrier. Ti and xLD represent the nuclear temperature and 
temperature-dependent parameters, respectively,  [82]. Bf

M 
is the microscopic shell correction energy in the ground 
state  [69] and ED = 25 MeV  [50]. Jg.s. and Js.d. are as 
expressed in Refs.  [84, 85].

To evaluate the accuracy of our model in predicting the 
ERCSs of SHN, Fig.  1 presents the comparisons between 
the calculated ERCSs and the experimental data in the reac-
tions 48 Ca + 245 Cm [12, 86], 48 Ca + 248 Cm [87], 48 Ca + 
249 Bk [88] and 48 Ca + 249 Cf [12, 89, 90]. Calculation uncer-
tainties arise from the relatively subjective choice of the ED 
range [91]. The fission barrier relies heavily on the con-
tribution of the shell correction energy, and the reduction 
in the shell correction energy with increasing excitation 
energy is described by ED values, which lie in the range of 
10 MeV ≤ ED ≤ 30 MeV [92].

As shown in Fig. 1a–d, the ERCSs show a decreasing 
trend with increasing proton number of compound nucleus. 
For the reactions 48 Ca + 245 Cm and 48 Ca + 249Cf, the maxi-
mal ERCSs of both the calculation and experiment appeared 
in the 3n-emission channels. The 4n-emission channels are 
more favorable for the synthesis of SHN with the reactions 
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48 Ca + 248 Cm and 48 Ca + 249Bk. The predicted ERCSs 
aligned well with the experimental results, particularly for 
the reaction 48 Ca + 249Cf. A maximal ERCS of 0.42+0.87

−0.30
 pb 

for the reaction 48 Ca + 249 Cf was predicted at the 3n-emis-
sion channel at E∗

CN
 = 32.0 MeV. This is consistent with 

the experimental value of 0.5+1.6
−0.3

 pb with E∗
CN

 = 32.1 − 36.6 
MeV in the same channel. This validates the applicability of 
the DNS model for predicting the synthesis of new elements 
via fusion–evaporation reactions.

3 � Results and discussion

To prevent facility contamination by unstable beams, we 
chose stable projectiles with Z = 21–30 and actinide tar-
gets with half-lives exceeding 50 d for the experimental 
duration; the optimal reaction systems are summarized in 
Table 1. The most favorable reactions and ERCSs (optimal 
Ec.m. ) for producing isotopes 295−302121 are 252 Es ( 46Ti, 3n) 
295121 , 4.123 fb (223.9 MeV), 248 Cf ( 50 V, 3n) 296121 , 0.566 
fb (239.1 MeV), 254 Es ( 46Ti, 3n) 297121 , 6.619 fb (219.9 
MeV), 254 Es ( 47Ti, 3n) 298121 , 1.331 fb (222.3 MeV), 257 Fm 
( 45Sc, 3n) 299121 , 8.778 fb (213.6 MeV), 254 Es ( 49Ti, 3n) 
300121 , 0.453 fb (228.5 MeV), 254 Cf ( 50 V, 3n) 301121 , 3.705 
fb (229.0 MeV), and 254 Cf ( 51 V, 3n) 302121 , 0.524 fb (234.1 
MeV).

As mentioned in the previous paragraph, the largest maxi-
mal ERCS corresponding to the synthesis of the SHE with 

Z = 121 is 8.778 fb in the reaction 45Sc+257Fm. In addition, 
the reactions 46Ti+252 Es and 46Ti+254 Es offer large maxi-
mal ERCSs of 4.123 and 6.619 fb, respectively. Consider-
ing its experimental feasibility, the 254 Es target is currently 
available among several Es targets in the laboratory [94], 
with a half-life of 275.70 d. The 252 Es target has a com-
paratively long half-life (1.29 y), making it a potential target 
for experimental purposes. Therefore, despite the slightly 
higher ERCS of the reaction 45Sc+257Fm, the reactions 46
Ti+252,254 Es are more feasible for experimental purposes.

In Fig. 2a–c, we present the calculated ERCSs of the reac-
tions 45Sc+257Fm, 48Ti+254Es, and 51V+251Cf. These reac-
tions yield the same compound nuclei of 302121 . Notably, 
our analysis revealed a consistently decreasing trend in the 
maximal ERCSs for synthesizing the same isotopes, 299121 
via the 3n-emission channel and 298121 via the 4n-emission 
channel, as the charge number of the projectiles increased. 
This trend can be attributed to the reduced fusion probability 
resulting from the increased mass asymmetry. To further 
investigate the influence of mass asymmetry on the fusion-
evaporation reaction, the fusion probabilities and driving 
potentials for the reactions 45Sc+257Fm, 48Ti+254Es, and 51
V+251 Cf are presented in Figs.  3 and  4.

Figure  3 reveals that the fusion probabilities exhibit an 
increasing trend with increasing E∗

CN
 . This occurred because 

of the heightened dissipated energy within the dinuclear sys-
tem at higher E∗

CN
 , thus rendering the reaction system more 

likely to overcome the inner fusion barrier. Additionally, 
Fig. 3 shows that the reaction 45Sc+257 Fm exhibits a much 

Fig. 1   (Color online) Com-
parison of the predicted 
ERCSs with the experimental 
results [12, 86–90] for the 
synthesis of Lv (a, b), Ts (c), 
and Og (d). The calculated 
ERCSs in the 2n-, 3n-, 4n-, 
and 5n-emission channels 
are denoted by the dashed, 
solid, dash-dot, and dotted 
lines, respectively. The shades 
indicate the uncertainties of 
the calculated ERCSs. The 
experimental results for the 2n-, 
3n-, 4n-, and 5n-emission chan-
nels are denoted by inverted 
triangles, circles, squares and 
triangles, respectively
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larger fusion probability than the other two reactions. Con-
versely, the reaction 51V+251 Cf exhibits the lowest fusion 
probability. This significant difference can be attributed to 
the different Bfus values influenced by the change in mass 
asymmetry.

Figure 4 shows that as the mass asymmetry of the reac-
tion system decreases, the entrance channel approaches the 
B.G. point, resulting in a corresponding decrease in Bfus . 
For the reaction 45Sc+257Fm, the Bfus is 13.1 MeV, which is 
lower than the reactions 48Ti+254 Es ( Bfus=17.1 MeV) and 
51V+251 Cf ( Bfus=17.8 MeV). Consequently, the reaction 45
Sc+257 Fm is more likely to overcome the inner fusion bar-
rier, resulting in an enhanced fusion probability, as shown 
in Fig. 3. Evidently, the heightened fusion probabilities, 
stemming from the reduced mass asymmetry, establish the 
superiority of Sc- and Ti-induced reactions for producing 
the SHE with Z = 121.

In Fig. 5, we present an analysis of the calculated maxi-
mal ERCSs, corresponding incident energies, and Q val-
ues for reactions involving 46−50 Ti projectiles and 252,254 Es 
targets. Figure 5a reveals that the reactions employing the 
neutron-rich 254 Es target consistently yielded larger maximal 
ERCSs than those employing the 252 Es target. Moreover, the 
maximum ERCSs decreased as the neutron number of the 
projectile increased. Notably, odd–even effects also impact 
the maximal ERCSs, with even-A Ti projectiles resulting 
in relatively enhanced ERCSs. Figure 5b illustrates that the 
optimal incident energies for reactions with the 252 Es target 
are approximately 3–4 MeV higher than those with the 254 Es 
target. Additionally, the optimal incident energies exhibited 
a discernible increase, with evident odd–even effects as the 
neutron number of the projectiles increased.

For all reactions 46−50Ti+252 Es and 46−50Ti+254Es, the 
corresponding E∗

CN
 falls within the range of 35–37 MeV. 

This range has a limited effect on the optimal incident 
energy. The increasing trend in the optimal incident 
energy can be attributed to the differences in the Q val-
ues. Figure 5c reveals that a high neutron excess of the 
target nuclei enhances the Q values of the reaction sys-
tem, whereas a high neutron excess of the projectile nuclei 
exerts the opposite effect. The odd–even effects of the pro-
jectiles also have a significant influence on the Q values, 
with reactions utilizing even-A Ti projectiles displaying 

Table 1   Favorable reaction systems for producing SHEs Z = 121

The isotopes, reaction systems, and half-lives of corresponding tar-
gets [93] are presented in columns 1–3. The optimal incident energies 
Ec.m.

 and E∗
CN

 are listed in columns 4–5, respectively. The maximal 
calculated ERCSs for certain neutron emission channels are shown in 
column 6

Isotope Reaction T1∕2(target) Ec.m.
(MeV) E∗

CN
(MeV) �

ER
(fb)

295121 252Es(46
Ti,3n)

1.29 yr 223.9 36.0 4.123
+5.52
−2.495

296121 248Cf(50
V,3n)

333.50 d 239.1 36.0 0.566
+0.758
−0.342

297121 254Es(46
Ti,3n)

275.70 d 219.9 35.0 6.619
+9.196
−4.073

249Cf(51
V,3n)

351.00 yr 240.3 35.0 0.306
+0.426
−0.188

298121 254Es(47
Ti,3n)

275.70 d 222.3 36.0 1.331
+1.827
−0.813

299121 257Fm(45
Sc,3n)

100.50 d 213.6 36.0 8.778
+11.923
−5.339

254Es(48
Ti,3n)

275.70 d 227.6 36.0 1.677
+2.293
−1.02

252Cf(50
V,3n)

2.64 yr 232.3 34.0 1.368
+1.936
−0.842

251Cf(51
V,3n)

898.00 yr 238.2 35.0 0.540
+0.748
−0.332

300121 254Es(49
Ti,3n)

275.70 d 228.5 36.0 0.453
+0.594
−0.272

301121 254Cf(50
V,3n)

60.50 d 229.0 33.0 3.705
+4.912
−2.249

254Es(50
Ti,3n)

275.70 d 232.5 35.0 0.541
+0.688
−0.321

302121 254Cf(51
V,3n)

60.50 d 234.1 34.0 0.524
+0.636
−0.306

Fig. 2   (Color online) Predicted ERCSs of the reactions 45Sc +257 Fm , 48Ti +254 Es , and 51V +251 Cf . The 3n- and 4n-emission channels are indi-
cated by the blue solid and red dotted lines, respectively. The shades indicate the uncertainties of the calculated ERCSs
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relatively suppressed Q values compared to those employ-
ing odd-A Ti projectiles.

A comprehensive investigation of the capture, fusion, 
and survival stages is essential for determining the isotopic 
dependence of the maximal ERCSs and the corresponding 
optimal incident energies. In Fig. 6a, we present the cap-
ture cross sections for the combinations involving 46−50 Ti 
projectiles colliding with 252 Es and 254 Es targets at exci-
tation energies of E∗

CN
 = 35 MeV and 50 MeV. Notably, 

the capture cross sections exhibit an increasing trend with 
increasing E∗

CN
 , as the ability to surpass the Coulomb bar-

rier increases with higher E∗
CN

 . Furthermore, the capture 
cross sections of the reactions involving 252 Es targets are 
notably enhanced compared to those with 254 Es targets. 
Additionally, there is an upward trend in the capture cross 
sections with a higher neutron excess in the projectiles. 

These trends can be attributed to a decrease in the Cou-
lomb barrier.

In Fig. 6b, the excitation energies associated with the 
Coulomb barriers Vb + Q of the corresponding reactions 
are plotted. The Vb + Q values decreased with increasing 
neutron excess in the projectiles. Moreover, the reaction 
systems with the 252 Es target exhibited lower Vb + Q val-
ues than those with 254 Es targets. Consequently, reactions 

Fig. 3   (Color online) Calculated fusion probabilities of the reactions 
45Sc+257 Fm (black solid line), 48Ti+254 Es (red dashed line), and 51
V+251 Cf (blue dash-dot line)

Fig. 4   (Color online) Driving potential for the reaction 45Sc+257Fm, 
48Ti+254Es, and 51V+251 Cf as a function of mass asymmetry. The 
arrows indicate the entrance channel

Fig. 5   (Color online) a Calculated maximal ERCSs, b corresponding 
optimal incident energies, and c the Q values of the reactions 46−50
Ti+252 Es and 46−50Ti+254Es
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involving 252 Es as target nuclei coupled with neutron-rich 
Ti projectiles have an increased likelihood of overcoming 
the Coulomb barrier, thereby enhancing the corresponding 
capture cross sections.

The fusion process in Fig.  7a shows the fusion prob-
abilities of reactions 46−50Ti+252 Es and 46−50Ti+254 Es at 
E∗
CN

 = 35 MeV and 50 MeV. As the probability of over-
coming the inner fusion barrier increased, the fusion prob-
abilities were amplified with a higher E∗

CN
 . These fusion 

probabilities exhibit a decreasing trend with increasing 
neutron excess in the projectile. Notably, the employment 
of the neutron-rich 254 Es target leads to a relative enhance-
ment in the fusion probability, which can be attributed 
to the reduced inner fusion barrier. Figure 7b shows the 
inner fusion barriers for the corresponding reactions. 
Notably, the Bfus values increase with increasing neutron 

excess in the projectiles and are higher in reaction sys-
tems with lighter 252 Es targets. This can be attributed to 
the increased mass asymmetry of projectiles with a higher 
neutron excess and targets with a lower neutron excess, 
which subsequently enhances the Bfus values and hinders 
the fusion process.

In Fig. 8a, the survival probabilities of the compound 
nuclei in the 3n-emission channel for reactions 46−50Ti+252 Es 
and 46−50Ti+254 Es at E∗

CN
 = 35 MeV and 50 MeV are plotted. 

Notably, the survival probabilities exhibited a decreasing 
trend as E∗

CN
 increased. This is due to the damped shell effect 

at increased E∗
CN

 , which results in diminished compound 
nucleus stability. Additionally, the 254Es-based reactions 
exhibited relatively high fusion probabilities with an evi-
dent odd–even staggering pattern. This can be ascribed to 
the influences of the Bn and Bf values of the corresponding 

Fig. 6   (Color online) a Calculated capture cross sections of the reac-
tions 46−50Ti+252 Es and 46−50Ti+254 Es with E∗

CN
 = 35 MeV and E∗

CN
 = 

50 MeV. b Excitation energies of the corresponding Coulomb barri-
ers Vb + Q of the reactions 46−50Ti+252 Es and 46−50Ti+254Es

Fig. 7   (Color online) a Calculated fusion probabilities of the reac-
tions 46−50Ti+252 Es and 46−50Ti+254 Es with E∗

CN
 = 35 MeV and E∗

CN
 = 

50 MeV. b Bfus values of the reactions 46−50Ti+252 Es and 46−50Ti+254

Es
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compound nuclei, as shown in Fig. 8b and c). The com-
pound nuclei formed via the even-A projectiles are more 
likely to de-excite through neutron emission because of 
their relatively higher Bf values and lower Bn values. This 
behavior results in odd–even staggering in both the survival 

probabilities and maximal ERCSs of the Ti-induced reac-
tions. Furthermore, the combined effect of the Bn and Bf val-
ues contributes to the generally higher survival probabilities 
in reactions with the 254 Es target compared with those with 
252 Es targets. This dual enhancement in the fusion and sur-
vival stages highlights the advantage of employing a 254 Es 
target for the synthesis of isotopes with Z = 121.

4 � Summary

The calculated ERCSs using the DNS model were assessed 
using the experimental results of the reactions 48 Ca + 245Cm, 
48 Ca + 248Cm, 48 Ca + 249Bk, and 48 Ca + 249Cf. Our analysis 
indicates consistency between the theoretical predictions 
and the experimental results. Based on the DNS model, we 
investigated the synthesis of the SHE Z = 121 using stable 
projectiles with Z = 21 − 30 and actinide targets with half-
lives longer than 50 d, revealing that this element is expected 
to be produced via reactions 45Sc+257Fm, 46 Ti + 254Es, and 
46 Ti + 252Es. Considering the experimental feasibility, the 
reactions 46 Ti + 254 Es and 46 Ti + 252 Es are more favorable 
with maximal ERCSs and optimal incident energies of 6.619 
fb at 219.9 MeV and 4.123 fb at 223.9 MeV.

We investigated the mass asymmetry effect, revealing 
enhanced fusion probabilities for Sc- and Ti-induced reac-
tions. Additionally, the influences of the Q values, Coulomb 
barriers, inner fusion barriers, fission barriers, and neutron 
separation energies on the isotopic dependence of the reac-
tions with Ti projectiles and Es targets were analyzed in 
detail. Our results indicate that employing a 254 Es target and 
even-A Ti projectiles with a smaller neutron excess is favora-
ble for synthesizing the element Z = 121.
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 = 50 MeV. 
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