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Abstract
The safety assessment of high-level radioactive waste repositories requires a high predictive accuracy for radionuclide dif-
fusion and a comprehensive understanding of the diffusion mechanism. In this study, a through-diffusion method and six 
machine-learning methods were employed to investigate the diffusion of ReO−

4
 , HCrO−

4
 , and I− in saturated compacted ben-

tonite under different salinities and compacted dry densities. The machine-learning models were trained using two datasets. 
One dataset contained six input features and 293 instances obtained from the diffusion database system of the Japan Atomic 
Energy Agency (JAEA-DDB) and 15 publications. The other dataset, comprising 15,000 pseudo-instances, was produced 
using a multi-porosity model and contained eight input features. The results indicate that the former dataset yielded a higher 
predictive accuracy than the latter. Light gradient-boosting exhibited a higher prediction accuracy ( R2

= 0.92 ) and lower error 
( MSE = 0.01 ) than the other machine-learning algorithms. In addition, Shapley Additive Explanations, Feature Importance, 
and Partial Dependence Plot analysis results indicate that the rock capacity factor and compacted dry density had the two 
most significant effects on predicting the effective diffusion coefficient, thereby offering valuable insights.

Keywords  Machine learning · Effective diffusion coefficient · Through-diffusion experiment · Multi-porosity model · 
Global analysis

1  Introduction

China is planning to build a deep geological repository for 
high-level radioactive waste in the Beishan area of Gansu 
Province [1]. Gaomiaozi (GMZ) bentonite from Inner Mon-
golia was selected as an engineering barrier for the reposi-
tory because of its high adsorption capacity, low permeabil-
ity, good thermal conductivity, and abundant reserves [2–4]. 
It is a porous clay mineral with a layered structure consist-
ing of tetrahedral-octahedral-tetrahedral sheets. Diffusion is 
the primary transport process of radionuclides through the 
bentonite barrier [5]. Anionic radionuclides with long half-
lives, such as 129I− , 36Cl− , 79SeO2−

3
 , 79HSeO−

3
 , 99TcO−

4
 , and 

HTO, are widely recognized as significant contributors to 
potential long-term dose due to the high diffusivity caused 
by the anionic exclusion effect from the negatively charged 
bentonite surface [6, 7]. Therefore, evaluating the release of 
anionic radionuclides from bentonite barriers is important 
for the safety assessment of repositories.
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Among diffusion parameters, the effective diffusion 
coefficient is a critical parameter in safety assessment. It 
is affected by many influencing factors, including porosity, 
the species diffusion coefficient in water, radionuclide con-
centration gradient, and tortuosity [8]. Numerous experi-
ments have been conducted to identify certain influencing 
factors, including the compacted dry density, ionic strength, 
different types of bentonites, and temperature [9–12]. The 
relationship between these factors and radionuclide diffusion 
has been established. For example, the effective diffusion 
coefficient increases with a decreasing compacted dry den-
sity [13–18] and increasing ionic strength [10, 19–24]. Ben-
tonites with a high montmorillonite content exhibit better 
radionuclide retardation owing to their low effective diffu-
sion coefficient [7, 13, 20, 25]. Furthermore, the relationship 
between the effective diffusion coefficient and temperature 
has been described using the Arrhenius equation [20, 26]. 
Several numerical models, including the multi-porosity 
model [27, 28], integrated sorption and diffusion models 
[19], and pore-scale models [9, 29], have been used to pre-
dict the effective diffusion coefficient and analyze the impact 
of these influencing factors. These models have generated 
theoretical results that align with experimental results. How-
ever, few studies have reported quantitative metrics, such as 
the coefficient of determination ( R2 ) or mean square error 
(MSE), to assess the models’ predictive accuracy.

Machine-learning methods can perform regression analy-
sis and interpret non-linear relationships and multi-factor 
situations, making them valuable tools in engineering appli-
cations  [30, 31]. Numerous studies have used machine-
learning methods, such as artificial neural networks (ANNs) 
and gradient-boosting models, to estimate the chloride diffu-
sion coefficient in cement [32]. The predictive accuracy can 
be increased by incorporating physical information into the 
model [33]. These studies implemented techniques such as 
Individual Conditional Expectation (ICE), Shapley Additive 
Explanations (SHAP), and Partial Dependence Plots (PDPs) 
to analyze the weight of the influencing factors on chloride 
diffusion [34]. Regression analysis has been used to predict 
the chloride diffusion coefficient, with input features rang-
ing from 4 to 23 and experimental instances ranging from 
72 to 843 [32, 34–37]. Recently, Light Gradient-Boosting 
(LightGBM) and ANN algorithms were developed to pre-
dict the effective diffusion coefficient of Re(VII) using 
pseudo-instances produced from a multi-porosity model. 
The ANN algorithm achieved an R2 of 0.97, whereas Light-
GBM achieved an R2 of 0.92 [27]. However, few studies 
have explained the correlation between the influencing fac-
tors and the effective diffusion coefficient of radionuclides 
using machine-learning models.

In this study, machine-learning models were employed 
to investigate the diffusion of several simulated radionu-
clide anions ( ReO−

4
 as an analogue for 99TcO−

4
 , HCrO−

4
 as an 

analogue for some redox sensitive mono-valent radionuclide 
anions, and I− as an analogue for 129I− ) in compacted ben-
tonite. The effective diffusion coefficient prediction accu-
racy was evaluated based on two training datasets: one was 
collected from the diffusion database system of the Japan 
Atomic Energy Agency (JAEA-DDB) and 15 publications; 
the other contained pseudo-instances produced using the 
multi-porosity model. The main goals of this study can be 
summarized as follows: (i) improve the diffusion database 
by measuring the effective diffusion coefficient of ReO−

4
 , 

HCrO−

4
 , and I− in compacted bentonite; (ii) Select machine-

learning algorithms with high predictive performance among 
six models, including LightGBM, Extreme Gradient-Boost-
ing (XGBoost), Categorical Gradient-Boosting (Catboost), 
ANN, Random Forest (RF), and Support Vector Machine 
(SVM); (iii) Determine whether the machine-learning mod-
els have a sufficient understanding of the diffusion mecha-
nism by quantitative analyzing the influencing factors on 
diffusion. The main novelty of this study lies in the devel-
opment of a machine-learning model with high predictive 
accuracy and the interpretation of correlations between the 
influencing factors and the effective diffusion coefficient of 
radionuclides.

2 � Materials and methods

2.1 � Materials

GMZ and Anji bentonite powders were obtained from 
Gaomiaozi, Inner Mongolia, and Anji, Zhejiang Province, 
respectively. The GMZ bentonite has a grain density of 
2660 kg/m3, particle size (d50) of 7.1 μ m, cation exchange 
capacity of 77.3 meq/100 g, and external surface area of 25.6 
m2/g. The mineral composition is 74.5% montmorillonite, 
12 wt% quartz, 7 wt% cristobalite, 4 wt% feldspar, 1 wt% 
calcite, and 1 wt% kaolinite [38]. In contrast, the Anji ben-
tonite has a particle size (d50) of 11.6 μ m, cation exchange 
capacity of 76 meq/100 g, and external surface area of 60.3 
m2/g. The mineral composition is 46 wt% montmorillonite, 
33 wt% quartz, 10 wt% orthoclase, 8 wt% microcline, and 
3 wt% calcite [27].

Stock solutions of ReO−

4
 , HCrO−

4
 , and I− were prepared 

by weighing certain amounts of KReO4 , K2Cr2O7 , and 
NaI, and then dissolving them in 200 mL of NaCl solu-
tion. The initial concentrations of ReO−

4
 , HCrO−

4
 , and I− 

were 1.12 × 10−3 mol/L, (0.26 − 2.14) × 10−3 mol/L, and 
0.04 × 10−3 mol/L, respectively. An Optima 7000DV induc-
tively coupled plasma optical emission spectrometer (ICP-
OES,PerkinElmer, USA) was used to measure the concen-
trations. All reagents used in this study were of analytical 
grade.
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2.2 � Diffusion method

A through-diffusion method, which measures the diffusion 
parameters of ions through a specific thickness of porous 
materials, was applied to investigate the anion ( ReO−

4
 , 

HCrO−

4
 , and I− ) diffusion in compacted bentonite. The exper-

iments were performed using 0.10–0.50 mol/L NaCl solu-
tion, with the compacted dry density ranging from 1300 to 
1700 kg/m3 , pH of 5.6 ± 0.1 , and a temperature of 15 ± 3◦C.

The bentonite powder was compacted into blocks ( Φ 
2.54 cm × 1.2 cm). Two stainless-steel filters ( Φ2.54 cm × 
0.1 cm) were used to sandwich the blocks. Then, the entire 
assembly was inserted into a cylindrical cell. After the ben-
tonite blocks were saturated with 0.10–0.50 mol/L NaCl 
solution for one month, a reservoir connected to one side of 
the diffusion cells ( x = 0 ) was replaced with 200 mL of the 
prepared stock solution containing ReO−

4
 , HCrO−

4
 , and I− . 

The other side of the diffusion cell ( x = L ) was connected 
to a target reservoir filled with 10 mL of NaCl solution. The 
target reservoir was replaced at given intervals to maintain a 
low anion concentration gradient, ensuring that it remained 
at less than 5% of the concentration at x = 0 . A detailed 
description of the equipment and experimental procedure 
can be found in the literature [12].

The self-programmed Fitting for Diffusion Parameters 
software was used to calculate the rock capacity factor and 
effective diffusion coefficient by analyzing the accumulated 
mass as a function of time. The reliability of the two param-
eters was evaluated by examining the consistency between 
the calculated and experimental flux results.

2.3 � Multi‑porosity model

A multi-porosity model was established for the microstruc-
ture of montmorillonite because montmorillonite is the pre-
dominant mineral in bentonite. This model considers only 
the through-pores of compacted bentonite, where the total 
porosity ( �tot ) is subdivided into three components: dif-
fuse double-layer porosity ( �ddl ), interlayer porosity ( �il ), 
and free-layer porosity ( �free ) [27, 39]. When compacted 
bentonite is saturated with an aqueous solution, the diffuse 
double-layer pores form transition zones from the surface 
of the bentonite particles to free pore water, containing a 
deficit of anions, water molecules, and an excess of cations. 
The interlayer pores contain cations and water molecules. 
Excess cations compensate for the charge deficit of the tet-
rahedral-octahedral-tetrahedral layers. By contrast, water 
molecules are arranged in layers [7]. Free-layer pores are 
spaces that comprise charge-balanced anions, cations, and 
water molecules.

Owing to the anionic exclusion effect, anionic radionu-
clides can barely enter the interlayer pores of bentonite. 
Therefore, the model assumes that the free-layer pores are 

the predominant diffusion paths, and the accessible poros-
ity �acc is defined as

The diffuse double-layer porosity �ddl , which depends on the 
ionic strength, external surface area, mass ratio of montmo-
rillonite, and compacted dry density, can be estimated as

The interlayer porosity depends on the compacted dry 
density, water layer fraction, and the mass ratio of mont-
morillonite. The interlayer water is related to the degree 
of compaction, namely, one water layer ranged between 
12.2–12.7 Å at a compacted dry density of 1600–2000 kg/
m3 , two water layers ranged between 15.2–15.7 Å at a com-
pacted dry density of 1300–1600 kg/m3 , and three water 
layers ranged between 18.4–19 Å at compacted dry densi-
ties below 1300 kg/m3 [40]. The interlayer porosity �il is 
approximately given by [39]: 

(1)	 At �d ≤ 1300 kg/m3 , 

(2)	 At �d > 1300 kg/m3 , 

 where the amount of interlayer water wi  is given by

•	 0.119 kg H 2O/kg clay for one water layer at 
1600 kg/m3 ≤ �d ≤ 2000 kg/m3,

•	 0.238 kg H 2O/kg clay for two water layers at 
1300 kg/m3 ≤ �d ≤ 1600 kg/m3,

•	 0.357 kg H 2O/kg clay for three water layers at �d ≤ 
1300 kg/m3.

The layer faction, x i  , is approximately calculated as fol-
lows, where the subscript i denotes one, two, or three water 
layers [27, 39].

•	 At 1300 kg/m3
≤ �d ≤ 1600 kg/m3 , 

•	 At 1600 kg/m3
≤ �d ≤ 2000 kg/m3 , 

(1)�acc ≈ �free = �tot − �ddl − �il.

(2)�ddl =
3.09 × 10−10

√

I
Aext ⋅ m ⋅ �d.

(3)�il =
m ⋅ If ⋅ 1300 ⋅ w3

1000
.

(4)�il =
m ⋅ If ⋅ �d ⋅

∑

xi ⋅ wi

1000
,

(5)

x1 = 0, x2 =
�d − �d,3WL→2WL

�d,2WL→1WL − �d,3WL→2WL

, x3 = 1 − x2.

(6)x1 =
�d − �d,2WL→1WL

�d,1WL − �d,2WL→1WL

, x2 = 1 − x1, x3 = 0.
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The effective diffusion coefficient is estimated by combining 
Eq. (1) with Archie’s equation, as follows:

where Dw denotes the species diffusion coefficient in water. 
ReO−

4
 is 1.46 × 10−9 m 2/s, HCrO−

4
 is 1.13 × 10−9 m 2/s, and 

I− is 2.0 × 10−9 m 2 /s [41]. n(−) denotes the cementation 
factor.

2.4 � Database description and analysis

The training dataset was obtained from two sources. One is 
a dataset containing experimental instances from the JAEA-
DDB (223 instances, 1989–2005) [42] and 15 publications 
(99 instances, 2006–2024), which are listed in Table S1 in 
the Supporting Information. The other database contained 
pseudo-instances produced using the multi-porosity model 
(15,000 instances) [27]. Table 1 summarizes the statistical 
information for the datasets. For the dataset collected from 
JAEA-DDB and the literature, only instances of anion dif-
fusion in bentonite were chosen.

Data pre-processing was performed using the Mahalano-
bis distance (MD) to remove outliers. MD is a distance 
measure used extensively in multivariate spaces. This 
accounts for the mean and covariance of the data. The cutoff 
point ( di ) is defined as [37]

where C, Xi , and X are the covariance matrix of the sample, 
the object vector, and the arithmetic mean vector, respec-
tively. In this study, the cutoff point was set to five, resulting 
in 29 instances as outliers. Therefore, the dataset contained 
197 instances from JAEA-DDB and 96 instances from pub-
lications on machine-learning models.

The input features were the rock capacity factor, com-
pacted dry density, mass ratio of montmorillonite, species 
diffusion coefficient in water, ionic strength, and tempera-
ture. The input features for the multi-porosity model dataset 
were the external surface area, mass ratio of montmoril-
lonite, ionic strength, accessible porosity, compacted dry 
density, cementation factor, fitting parameter, and species 
diffusion coefficient in water. Among these features, the rock 
capacity factor indicates the ability of the bentonite barrier 
to impede radionuclide diffusion into the granite rock. If 
the rock capacity factor is less than the total porosity, it is 
equal to the accessible porosity. The external surface area, 
accessible porosity, and cementation factor indicate the 
bentonite characteristics, while the species diffusion coef-
ficient in water indicates the radionuclide properties. The 
remaining features, such as the temperature, ionic strength, 
and compacted dry density, are parameters related to the 

(7)De = Dw ⋅ �acc
n
= Dw ⋅ (�tot − �ddl − �il)

n,

(8)di =

√

(Xi − X) ⋅ C−1
⋅ (Xi − X),

experimental conditions. The effective diffusion coefficient 
is the only output feature.

The test dataset consisted of eight instances obtained from 
the diffusion of ReO−

4
 , HCrO−

4
 , and I− using the through-dif-

fusion method. Given that both the effective diffusion coef-
ficient and the species diffusion coefficient in water were 
in the range of 10−13 to 10−9m2

∕s , a logarithmic conversion 
was applied to maintain consistency with the range of other 
features, which spanned values from 0 to 2000. This data 
pre-processing improves the performance [37].

2.5 � Performance evaluation 
of the machine‑learning model

The predictive accuracy was evaluated using R2 and MSE. 
These parameters were respectively calculated as follows:

where N is the number of instances. logDexp

e,i
 and logDpred

e,i
 

represent the experimental and predicted output values, 
respectively. logDexp

e,ave denotes the average of experimental 
instances. Increased predictive accuracy is associated with 
an increase in R2 and a decrease in MSE.

Five-fold cross-validation (CV) was employed to miti-
gate overfitting, a situation characterized by high predictive 
performance in the training or validation datasets, but low 
accuracy in the test dataset, resulting in poor generalization 
and reduced robustness of the machine-learning model. In 
this approach, the dataset was randomly divided into five 
equally sized subsamples, with four subsamples used for 
training and one used for testing.

3 � Results and discussion

3.1 � Database distribution and characteristics

Figure 1a-f show the dependence of the effective diffu-
sion coefficient on each input feature for the JAEA-DDB/
publications dataset. The dependence of the multi-poros-
ity model can be found in a previous study [27]. The 
histograms and kernel curves displayed on the top and 
right sides of each plot correspond to the distribution 
of the input features and effective diffusion coefficient. 
The shape of the curves is determined by the data point 

(9)R2
= 1 −

N
∑

i=1

�

logD
exp

e,i
− logD

pred

e,i

�2

N
∑

i=1

�

logD
exp

e,i
− logD

exp
e,ave

�2
,

(10)MSE =

1

N

N
∑

i=1

(

logD
exp

e,i
− logD

pred

e,i

)2

,
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concentration; a high data point concentration results in a 
higher peak amplitude.

The rock capacity factor can be obtained directly using 
the through-diffusion method, or calculated as follows [27, 
39]:

where � (−), �d (kg/m3), and Kd (m3/kg) denote the porosity, 
compacted dry density, and distribution coefficient, respec-
tively. Specifically, the total porosity of compacted bentonite 
is equivalent to that of neutral molecules, such as HTO [10, 
11, 17]. In contrast, the accessible porosity was assumed to 
be the porosity of anionic radionuclides such as 36Cl− and 
125I− [10–12]. This assumption is based on the ionic exclu-
sion effect in which radionuclides are hindered from access-
ing the negatively charged bentonite surface [17, 43]. The 
rock capacity factor ranged from 0.01 to 19.08 (Table 1). 
Most data points are concentrated below two. Specifically, 
13.3% of the data points exceeded two, 23.2% ranged from 
unity to two, and 63.5% were less than unity. Notably, only 
nine data points were higher than ten (Fig. 1a). Oscarson 
et al. [44] reported that the rock capacity factors of 99TcO−

4
 

and 125I− were greater than five, accounting for 4.9% of the 
high values. This abnormal observation may be attributed to 
the calculation method using Eq. (10). The distribution coef-
ficient may have been overestimated, because it was meas-
ured through sorption experiments with powdered bentonite.

The effective diffusion coefficient increased with a 
decrease in the compacted dry density (Fig. 1b), which is 
consistent with previous experimental results [13–18]. It 

(11)� = � + �d ⋅ Kd,

was not surprising that the effective diffusion coefficient 
increased with increasing species diffusion coefficient in 
water and temperature (Fig. 1c, d). This observed behav-
ior can be attributed to adherence to two diffusion laws: 
one is known as Archie’s law, which can be expressed as 
De = Dw ⋅ �

n [39, 43]. The second is represented by the 
Arrhenius equation given by De = A ⋅ e−Ea∕RT  [45]. Fig-
ure 1e, f show that the data point distribution is smeared 
out for concentrated data within a limited range. This can 
be explained by the fact that there is no strict one-to-one 
dependency of the effective diffusion coefficient on the ionic 
mass ratio of montmorillonite and ionic strength.

3.2 � Measurement of diffusion parameters using 
the through‑diffusion method

The through-diffusion method was used to determine the 
diffusion parameters of ReO−

4
 , HCrO−

4
 , and I − in com-

pacted bentonite. Figure 2 shows the breakthrough curves 
under various salinity and compaction conditions. The 
impact of salinity on diffusion in GMZ bentonite is shown 
in Fig. 2a–e, while the effect of compacted dry density in 
Anji bentonite is presented in Fig. 2f–h. The red dots and 
lines represent the flux results, while the blue dots and 
lines represent the accumulated mass results. The solid 
dots represent the experimental data, the lines represent 
the calculated results for the relationship between the 
accumulated mass or flux over time, and the shaded area 
indicates the calculated upper and lower limits, which 
consider the uncertainties of the rock capacity factor and 
the effective diffusion coefficient. These uncertainties 

Table 1   Statistical information for the training dataset for machine-learning models

Std = Standard deviation; Skw = Skewness

Data source Parameters Mean Min Max Std Skw

JAEA-DDB/publications Input Rock capacity factor, � 1.45 0.01 19.08 2.79 4.33
Compacted dry density, �d (kg/m3 ) 1303.89 400 2000 326.16 −0.38
Species diffusion coefficient in water, logDw −8.74 −9.30 −8.24 0.14 −0.54
Temperature, T ( ◦C) 29.38 12.00 90.00 15.36 2.18
Mass ratio of montmorillonite, m 0.78 0.33 1.00 0.18 −1.08
Ionic strength, I (mol/L) 0.25 0.01 1.03 0.21 1.02

Output Effective diffusion coefficient, logDe
−10.25 −12.60 −9.17 0.72 −1.02

Multi-porosity model Input External surface area, A
ext

 ( m 2 /g ) 69.20 10.00 129.98 34.5 0.03
Mass ratio of montmorillonite, m 0.65 0.30 1.00 0.20 0.00
Ionic strength, I (mol/L) 0.78 0.05 1.50 0.42 −0.02
Accessible porosity, �acc 0.22 0.00 0.53 0.11 0.32
Compacted dry density, �

d
 (kg/m3 ) 1497 1000 2000 287 0.01

Cementation factor, n 2.71 2.00 3.40 0.40 −0.03
Fitting parameter, I

f
0.85 0.70 1.00 0.09 0.01

Species diffusion coefficient in water, logDw
−8.54 −9.09 −8.24 0.22 −0.66

Output Effective diffusion coefficient, logDe
−10.51 −19.73 −8.88 0.88 −1.93
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are associated with various factors, such as the sample 
weight, volume of bentonite block and stainless-steel fil-
ters, dead volume of the diffusion cells, and ICP-OES 
measurements. The ionic strength I (mol/L) was calcu-
lated as follows:

(12)I =
1

2

n
∑

i=0

Ciz
2
i
,

Fig. 1   Distribution and characteristics of the input features and output variable

Fig. 2   Flux, J(L, t), and accumulated mass, Acum , as a function of time. pH = 5.6 ± 0.1 ; C
0
(Re) = 1.12 × 10

−3 mol/L; C
0
(Cr) = ( 0.26 − 2.14 ) 

× 10
−3 mol/L; C

0
(I) = 0.04 × 10

−3 mol/L; T = 15 ± 3
◦C
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where C i  is the total concentration of each species i in a 
solution, including Na+ , K + , Cl− , ReO−

4
 , HCrO−

4
 , and I − . zi 

is the charge number of species i.
Table 2 lists the diffusion parameters of ReO−

4
 , HCrO−

4
 , 

and I− in compacted bentonite. Both the rock capacity factor 
and effective diffusion coefficient in compacted bentonite 
increase as the ionic strength increase and the compacted 
dry density decrease. These trends are consistent with those 
reported in previous experimental studies [9, 16–19, 24]. 
However, when comparing these results with those of pre-
vious studies on GMZ bentonite [24], it was observed that 
ReO−

4
 had a higher effective diffusion coefficient, which can 

be explained by the fact that a lower compacted dry density 
was investigated in this study. In comparison with previ-
ous studies [9, 18], higher effective diffusion coefficient 
values for HCrO−

4
 and I− were observed. This could also be 

explained by the higher ionic strength and lower mass ratio 
of montmorillonite in the HCrO−

4
 diffusion experiments and 

the higher ionic strength and compacted dry density in the 
I− diffusion experiments. The experimental results comply 
with the diffusion rules for anions and fall within the train-
ing dataset range. Therefore, the test dataset was deemed 
suitable for evaluation purposes. It is noteworthy that the 
rock capacity factors of the measured ReO−

4
 , HCrO−

4
 , and I− 

are less than the total porosity, indicating that they cannot 
be adsorbed onto the bentonite surface. The rock capacity 
factors are equivalent to the accessible porosity.

3.3 � Prediction by the machine‑learning algorithms

Six machine-learning algorithms, namely LightGBM, 
XGBoost, Catboost, ANN, RF, and SVM, were employed 
to predict the effective diffusion coefficient using two train-
ing datasets. One dataset comprised eight input features and 
15,000 pseudo-instances produced by the multi-porosity 
model. The other dataset included six input features and 
293 instances sourced from JAEA-DDB and 15 publica-
tions (Table 1). The datasets were divided into training 
and validation sets at a ratio of 4:1. The test dataset for the 
machine-learning models consisted of the experimental 

results listed in Table 2. LightGBM, XGBoost, Catboost, 
and RF are ensemble-learning algorithms, while ANN and 
SVM are traditional learning algorithms. Table 3 lists the 
mean values of the two performance metrics for the test 
datasets of the six machine-learning models using the five-
fold cross-validation technique. LightGBM outperformed 
the other machine-learning models in terms of predictive 
performance, achieving the highest R2

CV
 of 0.87 and the low-

est MSECV of 0.01.
Hyperparameters, which are an integral part of machine-

learning models, cannot be learned from the dataset. They 
were set prior to model training to control the models’ learn-
ing process. The grid search (GS) method was used to tune 
the hyperparameters. Reasonable settings for each hyperpa-
rameter were manually predefined. The model was iterated 
through each combination of the specified values. For the 
training datasets, the cross-validation method was used for 
guidance. After evaluating all combinations, the parameter 
combination with the best model performance was obtained. 
Table 4 summarizes the tuned hyperparameters for each 
machine-learning model.

A comparison between the experimental and predicted 
effective diffusion coefficients is presented in Fig. 3, where 
the dots indicate the experimental data, the red lines rep-
resent the linear fit of the experimental data, and the 
shaded areas represent the 95% confidence interval. For the 

Table 2   Overview of the 
diffusion parameters for anions 
in compacted bentonite

Clay Anion I (mol/L) �
d
 (kg/m3) C

0
 ( ×10−3 mol/L) D

e
 ( ×10−11 m 2/s) � (−) �

tot
 (−)

GMZ ReO−

4
 0.12 1300 1.12 ± 0.05 7.1 ± 0.7 0.32 ± 0.04 0.51

ReO−

4
 0.32 1300 1.12 ± 0.05 8.1 ± 0.7 0.40 ± 0.06 0.51

HCrO−

4
 0.12 1300 2.14 ± 0.07 5.6 ± 0.7 0.46 ± 0.04 0.51

HCrO−

4
 0.32 1300 2.14 ± 0.07 6.4 ± 0.6 0.50 ± 0.04 0.51

I− 0.42 1300 0.04 ± 0.01 9.1 ± 0.7 0.30 ± 0.06 0.51
Anji HCrO−

4
 0.50 1300 0.26 ± 0.01 7.1 ± 0.4 0.42 ± 0.04 0.54

HCrO−

4
 0.50 1500 0.27 ± 0.01 3.8 ± 0.2 0.35 ± 0.03 0.46

HCrO−

4
 0.50 1700 0.26 ± 0.01 1.2 ± 0.2 0.22 ± 0.02 0.39

Table 3   Mean values of different performance metrics using the five-
fold cross-validation technique for the test dataset

Algorithm JAEA-DDB/publications Multi-porosity 
model

R
2

CV
MSE

CV R
2

CV
MSE

CV

LightGBM 0.87 0.01 0.74 0.02
CatBoost 0.85 0.01 0.73 0.02
XGBoost 0.73 0.02 0.75 0.02
SVM 0.72 0.02 0.78 0.02
RF 0.79 0.02 0.61 0.03
ANN 0.72 0.02 0.50 0.04
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multi-porosity model, the predictive accuracy is ranked in 
descending order as SVM> XGBoost> RF> LightGBM> 
CatBoost> ANN (Fig. 3a–f). The SVM outperformed the 
other machine-learning models in terms of predictive per-
formance, with an MSE of 0.01 and R2 of 0.83. By contrast, 
when using the JAEA-DDB/publications dataset, the predic-
tive accuracy is ranked in descending order as LightGBM> 
CatBoost> XGBoost> SVM> RF> ANN (Fig. 3g–l). All 
gradient-boosting algorithms exhibited high performance, 
with R2 values above 0.88. LightGBM and XGBoost 
achieved similar predictive accuracies, with an MSE of 0.01 
and R2 of 0.91. The JAEA-DDB/publications outperformed 
the multi-porosity model. This can be attributed to the com-
plexity of the predictive tasks that involve predicting multi-
ple species ( ReO−

4
 , HCrO−

4
 , and I− ) under different salinity 

and compaction conditions. This complexity poses a sig-
nificant challenge for effectively training machine-learning 
models using the dataset generated from the multi-porosity 
model, as the predictive accuracy is notably influenced 
by the quality of the model. In general, boosting models 
that combine weak learners using weight-based aggrega-
tion exhibit stronger prediction capabilities. This finding 
is consistent with the results of previous studies [27, 46]. 
Notably, LightGBM achieves a higher predictive accuracy 
among boosting models because it utilizes two innovative 
techniques: gradient-based one-side sampling and exclusive 
feature bundling [27, 47].

3.4 � Shapley additive explanation and feature 
importance analyses

The Shapley Additive Explanation (SHAP) and Feature 
Importance (FI) methods are two widely used feature attri-
bution methods that can identify the weight or significance 
of input features driving the predictions [34]. Although 
SHAP and FI analyses employ distinct techniques to char-
acterize their importance, they can reflect the influence on 
the predicted output by ranking the importance of the input 

Table 4   Hyperparameters and other parameters for machine learning 
models

Algorithm Parameter Values

Multi-
porosity 
model

JAEA-
DDB/publi-
cations

LightGBM Num_boost_round 10,000 10,000
Max_depth 2 1
Learning_rate 0.001 0.05
Num_leaves 30 30
Min_data_in_leaf 21 14
Feature_fraction 0.5 0.45
Boosting gbdt gbdt
Bagging_freq 30 4
Bagging_seed 25 1
Bagging_fraction 0.5 0.5
Lambda_l1 9 0.01
Lambda_l2 0 0.08

CatBoost Iterations 2000 200
Depth 11 7
Learning_rate 0.01 0.48
Subsample 0.70 0.81
Metric_period 500 100
L2_leaf_reg 39 0.97
Rsm 0.4 0.4
Random_seed 87 43

XGBoost Num_boost_round 1500 1000
Max_depth 3 10
Eta 0.1 0.04
Gamma 2 0.01
Lambda 1 0.33
Subsample 0.17 0.72
Min_child_weight 7 12
Reg_alpha 3 0.1
Booster gbtree gbtree
Colsample_bytree 0.8 0.2

SVM Cache_size 100 1
Gamma 0.001 0.01
Kernel Rbf Rbf
C 0.05 31
Epsilon 0.01 0.44

RF N_estimators 3 21
Max_depth 4 1
Max_features auto auto
Min_samples_split 2 2
Min_samples_leaf 4 0.15
Min_weight_fraction_leaf 0.04 0.05
Random_state 85 4

Table 4   (continued)

Algorithm Parameter Values

Multi-
porosity 
model

JAEA-
DDB/publi-
cations

ANN Epochs 10,000 10,000ara>

Learning_rate 0.005 0.005

Hidden layers 3 3

Number of neurons 64 100

Activation function PReLU PReLU

Dropout 0.2 0.2
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features [48]. In this study, they were applied to the Light-
GBM model using the JAEA-DDB/publications dataset, 
which yielded the highest predictive accuracy among the 
six machine-learning models. Higher SHAP and FI values 
for a feature indicate a greater impact on the effective dif-
fusion coefficient. As can be seen in Fig. 4, the rock capac-
ity factor and the compacted dry density are the top-two 
important input features for effective diffusion coefficient 
prediction. For the remaining four features, the FI analysis 
is ranked in descending order as follows: T > logDw> I > 
m, while the SHAP analysis ranked them as: logDw ≈ T > m 
>I . The difference in the montmorillonite mass ratio ranking 
between the two analyses can be attributed to the underlying 
principles and assumptions of the two analysis technologies.

Ionic strength is closely associated with the electrical 
double layer located at the bentonite interface [9]. Although 
ionic strength had a limited effect on the effective diffusion 
coefficient prediction (Fig. 4), its influence on radionuclide 
diffusion has been investigated in previous experimental 
diffusion studies [9, 19, 24]. The effective diffusion coeffi-
cient increases in solutions with high salinity until the ionic 
strength exceeds 0.5 mol/L. This observation is explained 

by the minimum thickness of the electrical double layer, 
which results in negligible diffuse double-layer pores and a 
maximum width of free layer pores [9, 19, 24]. In addition, 
there is an ongoing debate on the effect of the electrical 
double layer on radionuclide diffusion [9, 49]. This can be 
explained by the small porosity proportion in the diffused 
double-layer pores [28]. It is worth noting that the weight of 
a feature relies on input features, instances, and algorithms. 
Further research is needed to clarify the importance of ionic 
strength in radionuclide diffusion.

3.5 � Partial dependence plot analysis

Partial Dependence Plot (PDP) analysis indicates the ability 
to analyze the relationship between each input and output 
features [34]. These plots provide a quantitative assessment 
of the positive and negative effects of the six input features 
on the effective diffusion coefficient (Fig. 5). A feature with 
a strong impact on the output variable exhibits significant 
changes in the PDP curves, indicating a significant contri-
bution to the model’s prediction. By contrast, a feature with 
little impact results in flat or nearly constant PDP curves.

Fig. 3   (Color online) Comparison between the experimental and pre-
dicted effective diffusion coefficient results based on a−f the multi-
porosity (MP) model dataset and g−l the diffusion database system 
from the Japan Atomic Energy Agency (JAEA-DDB) and 15 publica-

tions using the a, g Light Gradient-Boosting, b, h Extreme Gradient-
Boosting, c, i Categorical Gradient-Boosting, d, j Artificial Neural 
Network, e, k Random Forest, and f, l Support Vector Machine mod-
els
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The rock capacity factor, species diffusion coefficient in 
water, ionic strength, and temperature positively impacted 
the effective diffusion coefficient, whereas the compacted 
dry density and montmorillonite mass ratio negatively 
impacted it. In other words, the effective diffusion coeffi-
cient increases with increasing species diffusion coefficient 
in water, temperature, and ionic strength, which is consistent 
with Archie’s law [39, 43], the Arrhenius equation [45], and 
previous experimental results [10, 19–24]. Conversely, the 
effective diffusion coefficient decreases in compacted ben-
tonite with a high compacted dry density and high montmo-
rillonite mass ratio, which is also consistent with previous 
experimental results [9, 13–15].

Among the input features, the rock capacity factor had 
the most significant influence on the effective diffusion 
coefficient, which is in agreement with the SHAP and FI 
analyses. An increase from 0.01 to 19.08 in the rock capac-
ity factor resulted in a significant increase in the PDP value 
from −11.16 to −9.90 , representing a substantial increase 
of approximately 11.3% (Fig. 5a). It is worth noting that 
the rock capacity factor of radionuclide anions should be 
lower than the total porosity if the anionic exclusion effect is 
considered [39, 43], indicating that some anionic instances 
with a rock capacity factor above the total porosity threshold 
should be removed from JAEA-DDB. Nonetheless, these 
instances were retained in this study for database integ-
rity. The percentage increase in the PDP value is ranked in 

Fig. 4   Feature Importance and absolute mean Shapley Additive 
Explanations values for each feature using the Light Gradient-Boost-
ing model

Fig. 5   Partial Dependence Plot analysis of the effect of input features on the effective diffusion coefficient. The blue lines represent the partial 
dependence value, while the gray columns represent the data point distribution for each input feature at a certain value
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descending order as follows: � (11.3%)> T (8.8%) > logDw 
(6.5%) > I (1.3%).

The compacted dry density had a negative impact, as an 
increase from 400 to 1700 kg/m3 led to a decrease in the PDP 
value from −9.85 to −10.74, corresponding to a decrease 
of approximately 9.0% (Fig. 5b). This finding is consist-
ent with the results of previous studies [13–18]. Addition-
ally, the montmorillonite mass ratio had a negative impact; 
an increase from 0.33 to 1.0 led to a decrease in the PDP 
value from −10.02 to −10.31, corresponding to a decrease 
of approximately 2.8% (Fig. 5e). This indicates that benton-
ite has a low montmorillonite mass ratio, such as the illite/
smectite mixed-layer (I/S) (m = 0.33) and Kunigel V1 (m = 
0.46−0.49) bentonites, and exhibits a higher effective diffu-
sion coefficient, which is in agreement with the findings of 
previous studies [7, 9, 13, 16, 25]. Generally, bentonite bar-
riers with a higher montmorillonite mass ratio exhibit better 
blocking abilities against radionuclides [5]. As can be seen 
in Fig.  5d, f, the predicted effective diffusion coefficient 
increases with increasing ionic strength and temperature. 
The effect becomes significant when the ionic strength and 
temperature range from 0.01 to 0.6 mol/L and from 22 to 60 
◦ C, respectively, which is consistent with the findings of pre-
vious studies [20, 26]. This indicates that the PDP analysis 
provides interpretability of the diffusion law and mechanism.

4 � Conclusion

The effective diffusion coefficients of ReO−

4
 , HCrO−

4
 , and 

I− in compacted Gaomiaozi and Anji bentonites under vari-
ous ionic strength and compacted dry density conditions 
were investigated using a through-diffusion method and six 
machine-learning models. Based on the results, the main 
findings of this study can be summarized as follows: 

	 (i)	 The training and validation datasets were obtained 
from two sources: experimental instances and 
pseudo-instances. The former outperformed the lat-
ter.

	 (ii)	 The Light Gradient-Boosting algorithm demonstrated 
a higher predictive accuracy than others machine-
learning algorithms, achieving an MSE of 0.01 and 
R2 of 0.92, for the dataset obtained from the JAEA-
DDB and 15 publications.

	 (iii)	 Analyses of the input features of the prediction using 
the Shapley Additive Explanation, Feature Impor-
tance, and Partial Dependence Plot methods revealed 
that the rock capacity factor and compacted dry den-
sity were the two most important features. The rock 
capacity factor had a positive influence, whereas the 
compacted dry density had a negative impact.

In this paper, a novel machine-learning model for radio-
nuclide diffusion prediction with high accuracy is intro-
duced and the diffusion mechanism is explored by ranking 
the influencing factors and analyzing the dependency of 
the effective diffusion coefficient on each influencing fac-
tor. This suggests that machine-learning algorithms can be 
powerful tools, offering a new paradigm for studying the 
diffusion of radioactive anions in bentonite barriers. Fur-
ther research is necessary to evaluate the applicability of 
this method for improving machine-learning models by 
incorporating additional characteristic parameters of ben-
tonite, complex chemical species, and a broader range of 
geochemical conditions related to high-level radioactive 
waste repositories.
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