

High-resolution neutronics model for ²³⁸Pu production in high-flux reactors

Qing-Quan Pan¹ · Qing-Fei Zhao¹ · Lian-Jie Wang² · Bang-Yang Xia² · Yun Cai² · Jin-Biao Xiong¹ · Xiao-Jing Liu¹

Received: 6 December 2023 / Revised: 19 February 2024 / Accepted: 14 March 2024 / Published online: 3 June 2024 © The Author(s), under exclusive licence to China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society 2024

Abstract

We proposed and compared three methods (filter burnup, single energy burnup, and burnup extremum analysis) to build a high-resolution neutronics model for 238Pu production in high-flux reactors. The filter burnup and single energy burnup methods have no theoretical approximation and can achieve a spectrum resolution of up to ~ 1 eV, thereby constructing the importance curve and yield curve of the full energy range. The burnup extreme analysis method combines the importance and yield curves to consider the influence of irradiation time on production efficiency, thereby constructing extreme curves. The three curves, which quantify the transmutation rate of the nuclei in each energy region, are of physical significance because they have similar distributions. A high-resolution neutronics model for ²³⁸Pu production was established based on these three curves, and its universality and feasibility were proven. The neutronics model can guide the neutron spectrum optimization and improve the yield of ²³⁸Pu by up to 18.81%. The neutronics model revealed the law of nuclei transmutation in all energy regions with high spectrum resolution, thus providing theoretical support for high-flux reactor design and irradiation production of ²³⁸Pu.

Keywords ²³⁸Pu · Neutronics model · High-flux reactor · Spectrum resolution · Spectrum optimization

1 Introduction

Plutonium-238 (²³⁸Pu) is a radioactive isotope with a halflife of 87.7 years. ²³⁸Pu releases α -particles of 5.49 MeV, which are easily blocked with a range of approximately 20 µm in an aluminum plate. Meanwhile, the α -decay of ²³⁸Pu produces Uranium-234 (²³⁴U), which has a half-life

This work was supported by Natural Science Foundation of China (No. 12305190), Lingchuang Research Project of China National Nuclear Corporation (CNNC), and the Science and Technology on Reactor System Design Technology Laboratory.

Qing-Quan Pan panqingquan@sjtu.edu.cn

Xiao-Jing Liu xiaojingliu@stu.edu.cn

- ¹ School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- ² Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610200, China

of 2.455×10^5 years. Equation (1) gives the decay chain of 238 Pu.

$$\overset{238}{_{94}}\text{Pu} \xrightarrow{(\alpha) \quad 87.7a} \overset{234}{_{92}}\text{U} \xrightarrow{(\alpha) \quad 2.455 \times 10^5 a} \overset{230}{_{90}}\text{Th} \rightarrow \dots \rightarrow \overset{206}{_{82}}\text{Pb}.$$
(1)

²³⁸Pu is an ideal heat source material without the need to consider the further decay of decay daughters [1]. ²³⁸Pu has a density of 19.8 g/cm³ (25 °C) and a heating power of 0.57 W/g, and it has been widely used in radioisotope thermoelectric generators (RTGs) [2] and radioisotope heater units, such as the general-purpose heat source radioisotope thermoelectric generator (GPHS-RTG) in Galileo spacecraft [3] and the isotopic pulse cardiac pacemakers (IPCP) [4], as shown in Fig. 1.

High-flux reactors [5, 6] have a stable and high neutron flux, facilitating ²³⁸Pu production. Two methods to produce ²³⁸Pu are available: (1) in-reactor irradiation of Americium-241 (²⁴¹Am) [7] and (2) in-reactor irradiation of Neptunium-237 (²³⁷Np) [8]. ²³⁸Pu can be extracted from the decay products of Curium-242 (²⁴²Cm) after the ²⁴¹Am target is irradiated in a reactor. Equation (2) provides the decay chain of this process.

Fig. 1 Structures of GPHS-RTG and IPCP

Fig. 2 Nuclide transmutation path of in-reactor irradiation of ²³⁷Np

$${}^{241}_{95}\operatorname{Am}(\mathbf{n},\gamma){}^{242}_{95}\operatorname{Am}\xrightarrow{\beta^{-16}\mathrm{h}}{}^{242}_{96}\operatorname{Cm}\xrightarrow{\alpha\,163\,\mathrm{d}}{}^{238}_{94}\operatorname{Pu}.$$
(2)

The purity of ²³⁸Pu produced by this method is high, but this process releases strong gamma rays (59.3 eV), which deteriorate the radioactivity environment. There is almost no radioactivity problem during the production of ²³⁸Pu by in-reactor irradiation of ²³⁷Np. Therefore, the production of ²³⁸Pu by in-reactor irradiation of ²³⁷Np is a mainstream process [9]. Various nuclear reaction channels are coupled, and many new nuclides appear after the long-term irradiation of ²³⁷Np targets, as shown in Fig. 2. This study analyzed this production process.

The irradiation production of ²³⁸Pu lacks a precise neutronics model, leading to a low transmutation rate of nuclei and high costs [10, 11]. To improve production efficiency, the reactions occurring for different nuclides in the chain should be different during the irradiation period. For example, the target nuclide ²³⁷Np should absorb as many neutrons as possible without any other reactions, the intermediate nuclide ²³⁸Np should only undergo β-decay, and the produced ²³⁸Pu should remain stable without any reaction occurring. It is difficult to regulate the nuclear reactions of the nuclide chains. The microscopic cross section of the nuclei is related to the energy spectrum [12]. Within some energy regions, the nuclide chain will have many of the required reactions, leading to a high efficiency of ²³⁸Pu production, and vice versa. Therefore, neutron spectrum analysis and regulation can help increase the transmutation rates and reduce production costs. The optimization of irradiation in ²³⁸Pu production can be theoretically divided into two topics: (1) determination of the optimal neutron spectrum, and (2) achievement of the optimal neutron spectrum.

Considerable research has been conducted to build neutronics models for the production of transuranic isotopes (such as ²³⁸Pu and ²⁵²Cf). Pan et al. [13] proposed a rapid diagnosis method for evaluating radiation schemes, which not only avoids tedious burnup calculations, but also helps provide direction for optimization. However, this method uses the initial nuclides in the target to represent all nuclides in the transmutation chain during the entire irradiation period, and only absorption and fission reactions are considered, while the other reactions (such as β -decay) cannot be considered. Pan et al. [14] defined key nuclides for neutron spectrum analysis, identified three energy regions that harm the transmutation of nuclides, and used filtering materials to reduce the neutron flux in these energy regions. However, this study did not consider the complete nuclei chain during irradiation. Hogle et al. [15-17] of the Oak Ridge National Laboratory (ORNL) presented a sensitivity curve detailing the production efficiency in each energy region. However, the analysis process was based on point-burnup calculations, resulting in a conclusion with no universality. Recently, Pan et al. [18] conducted a refined spectrum analysis of heavy nuclei synthesis in reactors, revealing the law of nuclear transmutation in all energy regions with a high spectrum resolution. However, this method has only been analyzed and verified for the synthesis of ²⁵²Cf and has not been applied to other transuranic isotopes. Therefore, refined neutronics models of ²³⁸Pu production are lacking.

We proposed and compared three methods for the highresolution spectrum analysis of ²³⁸Pu production in highflux reactors. The transmutation rate of the nuclide chain in each energy region was quantified to build three relationship curves (referred to as "importance curve", "yield curve", and "extreme curve") between the production efficiency and neutron spectrum. A high-resolution neutronics model for ²³⁸Pu production was established. The remainder of this paper is structured as follows: Sect. 2 introduces the spectrum analysis, Sect. 3 introduces the spectrum optimization, and Sect. 4 concludes the paper.

2 Spectrum analysis

2.1 Reactor and target

All the analyses were performed using a high-flux isotope reactor (HFIR) [19]. Rated at 100 MW and currently operating at 85 MW, the HFIR has a high steady-state neutron heat flux of 2.6×10^{15} cm⁻² s⁻¹. We used a pure ²³⁷Np target, a 50 cm high and 0.85 cm diameter rod placed in an irradiation channel at the neutron flux trap. The HFIR and target were modeled using the RMC code, a self-developed Monte Carlo code [20], as shown in Fig. 3.

2.2 Computational method

The yield of ²³⁸Pu can be obtained by performing a Monte Carlo burnup calculation, which is a coupling of the Monte Carlo criticality and point-burnup calculations. The pointburnup equation describes the transmutation of nuclides over time when a target is irradiated in a high-flux reactor. For each nuclide in the burnup chain, the time-dependent pointburnup equation can be written as

$$\frac{\mathrm{d}n_i}{\mathrm{d}t} = \sum_{i \neq j} b_{j,i}^{\mathrm{eff}} \lambda_j^{\mathrm{eff}} n_j - \lambda_i^{\mathrm{eff}} n_i, \qquad (3)$$

where n_i is the density of the *i*th nuclide, λ_i^{eff} is the effective decay constant of the *i*th nuclide, and $b_{i,j}^{\text{eff}}$ is the branching ratio for transmuting the *i*th nuclide to the *j*th nuclide. λ_i^{eff} and $b_{i,j}^{\text{eff}}$ can be calculated from the following formula:

$$\begin{cases} \lambda_i^{\text{eff}} = \lambda_i + \phi \sum_j \sigma_{i,j} \\ b_{i,j}^{\text{eff}} = (b_{i,j}\lambda_i + \sigma_{i,j}\phi)/\lambda_i^{\text{eff}}, \end{cases}$$
(4)

where λ_i is the decay constant of the *i*th nuclide, ϕ is the neutron flux, and $\sigma_{i,j}$ is the one-group cross-sections where the *i*th nuclide's reaction generates the *j*th nuclide.

As shown in Eq. (4), one-group cross-sections of the target are required; therefore, the Monte Carlo criticality calculation should be performed.

$$(L+C-S)\phi = \frac{1}{k_{\text{eff}}}F\phi,$$
(5)

where *L* is the leakage operator, *C* is the collision operator, *S* is the scattering operator, *F* is the fission operator, and k_{eff} is the effective multiplication factor. The physical parameters around the target, such as the neutron flux, fission reaction rate, and absorption reaction rate, can be shown by solving Eq. (5), which is used to determine the one-group cross-sections.

The Monte Carlo burnup calculation requires one-group cross sections integrated according to the neutron spectrum over the entire energy range rather than the cross sections in each single energy region, which can only quantify the influence of the entire neutron spectrum on the production efficiency and not a closer analysis of each single energy region. Therefore, we cannot know which energy regions are favorable and which are unfavorable for ²³⁸Pu production, and thus, cannot provide a more refined theory for optimization.

We propose a filter burnup method and a single energy burnup method for refined spectrum analysis, quantifying the transmutation rate of the nuclide chain in each energy region, and building relationship curves between the production efficiency and neutron spectrum. We also propose an extreme burnup analysis method to investigate the influence

Fig. 3 (Color online) Modeling diagram of the high-flux isotope reactor (HFIR) and the target

of the irradiation time on the relationship curves. Therefore, three relationship curves (importance, yield, and extreme) were obtained using the three analytical methods.

2.2.1 Filter burnup method

The filter burnup method seems to perform subtraction on the neutron spectrum, i.e., reducing the neutron flux in a certain energy region to investigate the relationship between the change in grouped flux and the change in yield, quantifying the importance of the flux in a certain energy region on the transmutation rate of the nuclei. Because this is a sister paper to Reference [18], the detailed theory is not repeated and only the definition of importance is provided.

$$I_i = \frac{\Delta Y_i/Y}{\Delta \phi_i} = \frac{(Y - Y_i)/Y}{\phi_i - \phi'_i} = \frac{(Y - Y_i)/Y}{M \cdot \phi'_i},\tag{6}$$

Fig.4 Importance curve of $^{238}\mbox{Pu}$ production for the filter burnup method

where the subscript "*i*" is the energy region index, *Y* and *Y_i* are the yields of ²³⁸Pu before and after flux reduction in the *i*th energy region, respectively, ϕ and ϕ' are the grouped neutron flux before and after flux reduction, respectively, and *M* is the ratio of flux reduction. Previous analyses [18] have shown that the value of *M* (1/1, 1/2, 1/4, and 1/8) has little influence on the obtained importance curve; therefore, we take M = 1/8 directly.

The entire energy range was divided into 238 regions [21]. The energy division for the filter burnup method has no limitations, thereby achieving a high spectrum resolution. The importance of each energy region throughout the 90-day irradiation period was calculated, building up the importance curve of ²³⁸Pu production, as shown in Fig. 4. The ten maxima and minima in the importance curve are shown in Table 1.

The maximum values indicate that the neutrons in these energy regions are productive, that is, increasing the neutron flux in these energy regions will increase the yield of 238 Pu. Meanwhile, the minima indicate that the neutrons in these energy regions are harmful, that is, increasing the neutron flux in these energy regions will decrease the yield of 238 Pu. Therefore, we should increase the neutron flux in the energy regions with maximum values (referred to as the "positive energy region") and reduce the neutron flux in the energy regions with minimum values (referred to as the "negative energy region") to promote the production of 238 Pu.

2.2.2 Single energy burnup method

The single energy burnup method does addition on the neutron spectrum, assuming that the target was irradiated with a single energy neutron source. We simulated the ²³⁸Pu production efficiency with single energy neutron sources, that is, the total neutron flux was the same, but all neutrons were in a certain energy region. The efficiency of a certain energy region was quantified by comparing the yields of ²³⁸Pu with those of single energy neutron sources. The full

Maximums		Minimums			
Energy regions (MeV)	Values	Energy regions (MeV)	Values		
$[1.45 \times 10^{-6}, 1.50 \times 10^{-6}]$	1.91×10^{-15}	$[1.85 \times 10^{-5}, 1.90 \times 10^{-5}]$	-2.34×10^{-16}		
$[4.50 \times 10^{-7}, 5.00 \times 10^{-7}]$	1.28×10^{-15}	$[2.77 \times 10^{-6}, 2.87 \times 10^{-6}]$	-1.33×10^{-16}		
$[5.00 \times 10^{-7}, 5.50 \times 10^{-7}]$	6.18×10^{-16}	$[2.87 \times 10^{-6}, 2.97 \times 10^{-6}]$	-7.46×10^{-17}		
$[1.30 \times 10^{-6}, 1.35 \times 10^{-6}]$	5.94×10^{-16}	$[5.00 \times 10^{-2}, 5.20 \times 10^{-2}]$	-4.64×10^{-17}		
$[1.40 \times 10^{-6}, 1.45 \times 10^{-6}]$	5.18×10^{-16}	$[1.15 \times 10^{-4}, 1.19 \times 10^{-4}]$	-3.07×10^{-17}		
$[1.50 \times 10^{-6}, 1.59 \times 10^{-6}]$	3.18×10^{-16}	$[1.00 \times 10^1, 1.28 \times 10^1]$	-2.59×10^{-17}		
$[1.35 \times 10^{-6}, 1.40 \times 10^{-6}]$	2.89×10^{-16}	$[8.19 \times 10^0, 1.00 \times 10^1]$	-2.55×10^{-17}		
$[4.00 \times 10^{-7}, 4.50 \times 10^{-7}]$	2.50×10^{-16}	$[6.43 \times 10^0, 8.19 \times 10^0]$	-2.38×10^{-17}		
$[1.20 \times 10^{-9}, 1.50 \times 10^{-9}]$	2.21×10^{-16}	$[1.70 \times 10^{-5}, 1.85 \times 10^{-5}]$	-2.29×10^{-17}		
$[1.25 \times 10^{-6}, 1.30 \times 10^{-6}]$	2.14×10^{-16}	$[1.85 \times 10^{0}, 2.35 \times 10^{0}]$	-2.10×10^{-17}		

Table 1Maxima and minima inthe importance curve

Fig. 5 Yield curve of 238 Pu production for the single energy burnup method

Table 2 Maxima and minima in the yield curve

Maximums		Minimums		
Energy regions (MeV)	Values	Energy regions (MeV)	Values	
$[1.45 \times 10^{-6}, \\ 1.50 \times 10^{-6}]$	1.17×10^{1}	$[1.57 \times 10^{1}, \\ 1.73 \times 10^{1}]$	4.60×10^{-4}	
$[4.50 \times 10^{-7}, 5.00 \times 10^{-7}]$	1.09×10^{1}	$[1.73 \times 10^{1}, 2.00 \times 10^{1}]$	4.60×10^{-4}	
$[1.30 \times 10^{-6}, 1.35 \times 10^{-6}]$	1.01×10^{1}	$[1.46 \times 10^{1}, 1.57 \times 10^{1}]$	5.24×10^{-4}	
$[1.40 \times 10^{-6}, 1.45 \times 10^{-6}]$	9.94×10^{0}	$[1.38 \times 10^1, 1.46 \times 10^1]$	6.04×10^{-4}	
$[5.00 \times 10^{-7}, 5.50 \times 10^{-7}]$	9.84×10^{0}	$[1.28 \times 10^{1}, 1.38 \times 10^{1}]$	6.69×10^{-4}	
$[1.50 \times 10^{-6}, 1.59 \times 10^{-6}]$	9.10×10^{0}	$[1.00 \times 10^1, 1.28 \times 10^1]$	8.55×10^{-4}	
$[1.35 \times 10^{-6}, 1.40 \times 10^{-6}]$	8.89×10^{0}	$[8.19 \times 10^0, 1.00 \times 10^1]$	1.06×10^{-3}	
$[1.25 \times 10^{-6}, 1.30 \times 10^{-6}]$	8.29×10^{0}	$[6.43 \times 10^{0}, 8.19 \times 10^{0}]$	1.51×10^{-3}	
$[3.73 \times 10^{-6}, 4.00 \times 10^{-6}]$	8.14×10^{0}	$[4.80 \times 10^{0}, 6.43 \times 10^{0}]$	2.97×10^{-3}	
$[4.00 \times 10^{-7}, 4.50 \times 10^{-7}]$	7.80×10^{0}	$[4.30 \times 10^{0}, 4.80 \times 10^{0}]$	3.99×10^{-3}	

energy range was divided into 238 regions, and the yields of ²³⁸Pu in each energy region throughout the 90-day irradiation were calculated, thereby constructing the yield curve for the single energy burnup method, as shown in Fig. 5. The ten maximum and minimum values in the yield curve are given in Table 2.

2.2.3 Burnup extremum analysis method

The importance curve obtained using the filter burnup method and the yield curve obtained using the single energy burnup method exhibited similar variation trends in the resonance energy range, proving the physical nature of Figs. 4 and 5. However, the specific values shown in Figs. 4 and 5 are inconsistent. Eight of the ten maxima in Tables 1 and 2 correspond to the same energy regions, but only three of the ten minima, which is due to the different physical assumptions of the two analysis methods. The filter burnup method perturbs a particular energy spectrum to perform a perturbation analysis that describes the importance of a particular neutron spectrum, whereas the single energy burnup method is not limited to a particular spectrum. Taking the highenergy regions as an example, the neutrons in these regions are almost useless for ²³⁸Pu production. Therefore, the yield calculated by the single energy burnup method is zero, and the importance calculated by the filter burnup method is also zero. However, the filter burnup method can also find the energy regions that are negative for ²³⁸Pu production under a particular spectral environment. Therefore, the importance can be negative numbers, which explains why only three of the ten minimum values in Tables 1 and 2 correspond to the same energy regions.

The ²³⁷Np target [22] was irradiated in the neutron flux trap for 90 days using both the filter burnup and single energy burnup methods. Significant differences in ²³⁸Pu production efficiency exist among different energy regions, resulting in different irradiation times required. For some energy regions, a 90-day irradiation exceeded the time required for the yield to peak, resulting in an increase first and then a decrease in the yield during the entire irradiation period (which is referred to as "excessive irradiation"), whereas in other energy regions, a 90-day irradiation cannot lead to peak production. We used the single energy burnup method to calculate the yields of ²³⁸Pu with 5-day and 10-day irradiation to investigate the influence of the irradiation time on the yield, as shown in Fig. 6.

As shown in Fig. 6, different irradiation times affected the curves. We proposed a burnup extreme analysis method to eliminate the influence of irradiation time on the importance curve (Fig. 4) and yield curve (Fig. 5), that is, the maximum derivative between the importance (or yield) and irradiation time was calculated and used to quantify the production efficiency in the 238 energy regions, building two extreme curves, as shown in Fig. 7.

It can be observed that the two curves have a similar distribution trend, regardless of the analysis method. Therefore, the importance curve in Fig. 4, the yield curve in Fig. 5, and the extreme curves in Fig. 7 have physical significance and can jointly guide the spectrum optimization for 238 Pu production.

Fig. 7 (Color online) Two extreme curves

2.3 Universality testing

All curves in Sect. 2.2 are calculated based on the HFIR, a thermal reactor. To test the universality of these curves, we performed the same calculations in another reactor with a fast spectrum [23–32], a high-flux lead–bismuth reactor (HFLBR). Detailed parameters of this reactor can be found in a previous study [13]. As previously discussed, the filter burnup method is based on a particular neutron spectrum, whereas the single energy burnup method is not limited to a particular neutron spectrum. Therefore, the yield curve is independent of the reactor model, whereas the importance curve is related to it. The importance curve of the HFLBR for ²³⁸Pu production was calculated and compared to that of the HFIR, as shown in Fig. 8. The ten maxima and minima in the importance curves are shown in Table 3.

The two reactors exhibited different neutron spectra and flux levels. As shown in Fig. 8, the two importance curves coincide well in the resonance-energy region and exhibit large deviations in the high- and low-energy regions, proving that the neutron spectrum influences the importance

Fig. 8 Importance curves of the HFLBR and HFIR

curve. However, as shown in Table 2, nine of the ten maxima and eight of the ten minima correspond to the same energy regions, proving that the importance curves are not completely dependent on the neutron spectrum and are of physical significance, which can be used to determine the positive and negative energy regions. Therefore, the importance curve is universal and can be used for neutron spectrum optimization.

Energy (MeV)

3 Verification and application

3.1 Neutronics model verification

We obtained the importance curve (Fig. 4, marked as " I_i ") by the filter burnup method, the yield curve (Fig. 5, marked as " Y_i ") by the single energy burnup method, and the two extremes curves by the burnup extremum analysis method (Fig. 7, marked as " $E_i(I_i)$ " and " $E_i(Y_i)$ "). These curves were

	HFIR		HFLBR		
	Energy regions (MeV)	Values	Energy regions (MeV)	Values	
Maximum	$[1.45 \times 10^{-6}, 1.50 \times 10^{-6}]$	1.91×10^{-15}	$[1.45 \times 10^{-6}, 1.50 \times 10^{-6}]$	4.66×10^{-15}	
	$[4.50 \times 10^{-7}, 5.00 \times 10^{-7}]$	1.28×10^{-15}	$[4.50 \times 10^{-7}, 5.00 \times 10^{-7}]$	3.72×10^{-15}	
	$[5.00 \times 10^{-7}, 5.50 \times 10^{-7}]$	6.18×10^{-16}	$[5.00 \times 10^{-7}, 5.50 \times 10^{-7}]$	1.99×10^{-15}	
	$[1.30 \times 10^{-6}, 1.35 \times 10^{-6}]$	5.94×10^{-16}	$[1.40 \times 10^{-6}, 1.45 \times 10^{-6}]$	1.97×10^{-15}	
	$[1.40 \times 10^{-6}, 1.45 \times 10^{-6}]$	5.18×10^{-16}	$[1.30 \times 10^{-6}, 1.35 \times 10^{-6}]$	1.48×10^{-15}	
	$[1.50 \times 10^{-6}, 1.59 \times 10^{-6}]$	3.18×10^{-16}	$[1.50 \times 10^{-6}, 1.59 \times 10^{-6}]$	1.17×10^{-15}	
	$[1.35 \times 10^{-6}, 1.40 \times 10^{-6}]$	2.89×10^{-16}	$[1.35 \times 10^{-6}, 1.40 \times 10^{-6}]$	1.01×10^{-15}	
	$[4.00 \times 10^{-7}, 4.50 \times 10^{-7}]$	2.50×10^{-16}	$[4.00 \times 10^{-7}, 4.50 \times 10^{-7}]$	7.45×10^{-16}	
	$[1.20 \times 10^{-9}, 1.50 \times 10^{-9}]$	2.21×10^{-16}	$[1.25 \times 10^{-6}, 1.30 \times 10^{-6}]$	7.18×10^{-16}	
	$[1.25 \times 10^{-6}, 1.30 \times 10^{-6}]$	2.14×10^{-16}	$[3.73 \times 10^{-6}, 4.00 \times 10^{-6}]$	7.08×10^{-16}	
Minimum	$[1.85 \times 10^{-5}, 1.90 \times 10^{-5}]$	-2.34×10^{-16}	$[1.85 \times 10^{-5}, 1.90 \times 10^{-5}]$	-7.63×10^{-1}	
	$[2.77 \times 10^{-6}, 2.87 \times 10^{-6}]$	-1.33×10^{-16}	$[2.77 \times 10^{-6}, 2.87 \times 10^{-6}]$	-4.20×10^{-1}	
	$[2.87 \times 10^{-6}, 2.97 \times 10^{-6}]$	-7.46×10^{-17}	$[2.87 \times 10^{-6}, 2.97 \times 10^{-6}]$	-2.72×10^{-10}	
	$[5.00 \times 10^{-2}, 5.20 \times 10^{-2}]$	-4.64×10^{-17}	$[1.28 \times 10^1, 1.38 \times 10^1]$	-2.34×10^{-10}	
	$[1.15 \times 10^{-4}, 1.19 \times 10^{-4}]$	-3.07×10^{-17}	$[1.70 \times 10^{-5}, 1.85 \times 10^{-5}]$	-1.18×10^{-10}	
	$[1.00 \times 10^1, 1.28 \times 10^1]$	-2.59×10^{-17}	$[1.15 \times 10^{-4}, 1.19 \times 10^{-4}]$	-6.58×10^{-17}	
	$[8.19 \times 10^0, 1.00 \times 10^1]$	-2.55×10^{-17}	$[2.67 \times 10^{-6}, 2.77 \times 10^{-6}]$	-6.54×10^{-17}	
	$[6.43 \times 10^0, 8.19 \times 10^0]$	-2.38×10^{-17}	$[1.00 \times 10^1, 1.28 \times 10^1]$	-5.02×10^{-17}	
	$[1.70 \times 10^{-5}, 1.85 \times 10^{-5}]$	-2.29×10^{-17}	$[8.19 \times 10^0, 1.00 \times 10^1]$	-4.76×10^{-17}	
	$[1.85 \times 10^{0}, 2.35 \times 10^{0}]$	-2.10×10^{-17}	$[6.43 \times 10^0, 8.19 \times 10^0]$	-4.47×10^{-17}	

Table 3 Maxima and minima inthe two importance curves

used to build a high-resolution neutronics model for ²³⁸Pu production in high-flux reactors, which could be used to guide neutron spectrum optimization to improve production efficiency.

To demonstrate that these curves can be used to guide the neutron spectrum optimization for ²³⁸Pu production in high-flux reactors, we constructed a variety of irradiation schemes by dispersing nuclides into the target to obtain many different neutron spectra. We determined whether the yields of these irradiation schemes were positively correlated with the corresponding total spectral efficiency. The total spectrum efficiency (marked as "*T*") of an irradiation scheme was calculated as follows:

$$T = \sum_{i=1}^{N} \phi_i \cdot X_i,\tag{7}$$

where *N* is the total number of divided energy regions, ϕ_i is the neutron flux in the *i*th energy region, X_i represents the efficiency of the *i*th energy region, preferably I_i , Y_i , $E_i(I_i)$, or $E_i(Y_i)$, where *T* corresponds to T_1 , T_2 , T_3 , and T_4 .

 $E_i(Y_i)$, where *T* corresponds to T_1 , T_2 , T_3 , and T_4 . The nuclides we selected included ¹⁰⁷Ag, ¹⁵²Eu, ¹⁵⁷Gd, ¹⁷⁰Tm, ¹⁶¹Dy, ¹⁵³Eu, ¹⁵¹Sm, ¹⁰⁸Pd, ¹⁴⁰Ba, ⁴⁰Ar, ⁷Li, ⁶⁴Ni, ⁴⁹Ti, ¹⁵¹Eu, ⁴He, ¹³⁸La, ¹⁴⁷Sm, and ¹⁸⁶W. The number of nuclides added could be 10^{-2} , 10^{-3} , 10^{-4} , and 10^{-5} (in (10^{24}#/cm^3)). A total of 56 irradiation schemes were constructed. The correlation coefficients between ΔY and ΔT were calculated as follows:

$$r(\Delta Y, \Delta T_n) = \frac{\operatorname{Cov}(\Delta Y, \Delta T_n)}{\sqrt{\operatorname{Var}[\Delta Y]\operatorname{Var}[\Delta T_n]}} \quad n = 1, 2, 3, 4$$
(8)

where ΔY is the variation of ²³⁸Pu yield, ΔT is the variation of the total spectrum efficiency, Cov(x,y) is the covariance of x and y, and Var[x] is the variance of x. The variation in the total spectrum efficiency T of these radiation schemes and the corresponding variation in ²³⁸Pu yield are shown in Table 4.

As can be show from Table 4, as the filter burnup method is based on a particular neutron spectrum, ΔY is positively correlated with ΔT_1 and ΔT_3 , with correlation coefficients larger than 0.9. The single burnup method is not based on a particular neutron spectrum, and hence ΔY is not positively correlated with ΔT_2 and ΔT_4 . Therefore, the importance curve based on the filter burnup method and the extreme curve based on the importance curve can be used to guide the optimization of a particular irradiation **Table 4** Variation in T and
corresponding variation in 238 Pu
yield

Nuclides	Amount	$\Delta Y(\%)$	ΔT_1	ΔT_2	ΔT_3	ΔT_4
¹⁰⁷ Ag	10 ⁻⁴	0.05	8.45×10^{-3}	-3.83×10^{13}	4.78×10^{-3}	7.92×10^{9}
	10^{-5}	0.04	5.82×10^{-3}	-1.82×10^{13}	3.60×10^{-3}	3.38×10^{9}
¹⁵² Eu	10 ⁻⁴	-1.50	-4.96×10^{-2}	-1.33×10^{15}	-4.24×10^{-2}	-1.95×10^{11}
	10^{-5}	0.21	1.43×10^{-3}	-2.31×10^{14}	-2.47×10^{-3}	-2.57×10^{10}
¹⁵⁷ Gd	10 ⁻⁴	-11.62	-3.31×10^{-1}	-7.70×10^{15}	-2.79×10^{-1}	-1.23×10^{12}
	10^{-5}	-2.48	-8.80×10^{-2}	-1.93×10^{15}	-7.61×10^{-2}	-3.25×10^{11}
¹⁷⁰ Tm	10-4	-0.20	5.40×10^{-4}	-9.66×10^{13}	1.91×10^{-4}	-6.89×10^{9}
	10-5	-0.07	6.32×10^{-3}	-5.90×10^{13}	2.68×10^{-3}	7.37×10^{8}
¹⁶¹ Dy	10-4	-0.11	-1.81×10^{-3}	-1.47×10^{14}	-2.23×10^{-4}	-1.20×10^{10}
152	10 ⁻³	-0.16	3.14×10^{-3}	-1.37×10^{14}	-5.80×10^{-4}	-1.04×10^{10}
¹³⁵ Eu	10^{-4}	-0.07	5.08×10^{-3}	-1.14×10^{14}	2.22×10^{-3}	-2.26×10^{9}
151.0	10 5	-0.07	$3.6/\times 10^{-2}$	-2.80×10^{15}	1.60×10^{-3}	$2.15 \times 10^{\circ}$
Sm	10-7	-0.22	-5.32×10^{-2}	-1.50×10^{13}	-5.04×10^{-2}	-2.29×10^{11}
1080 1	10-4	-0.16	-2.14×10^{-3}	-2.40×10^{13}	$-4.3/\times 10^{-3}$	-3.07×10^{9}
Pa	10^{-5}	-0.08	4.08×10^{-4}	-3.63×10^{13} -4.52×10^{13}	1.16×10^{-4}	-1.69×10^{9} -1.09×10^{9}
140 D o	10^{-2}	0.05	4.02×10^{-2}	-4.32×10^{15}	1.84×10^{-2}	-1.09×10^{11}
Da	10^{-3}	-0.39	-3.05×10^{-3}	-4.52×10^{14}	4.27×10^{-4}	-3.10×10^{10}
	10-4	-0.06	4.94×10^{-3}	-1.13×10^{14}	2.72×10^{-3}	-3.80×10^{9}
	10^{-5}	-0.05	1.54×10^{-3}	-4.37×10^{13}	1.57×10^{-3}	6.16×10^{8}
⁴⁰ Ar	10 ⁻²	-0.68	9.07×10^{-3}	1.12×10^{13}	4.87×10^{-3}	9.10×10^{9}
	10^{-3}	-0.11	9.96×10^{-4}	-7.68×10^{13}	1.13×10^{-3}	-1.68×10^{9}
	10^{-4}	-0.02	1.82×10^{-3}	1.30×10^{12}	2.73×10^{-3}	3.75×10^9
7	10 5	0.01	1.68×10 ⁺	-1.04×10^{14}	1.95×10^{-3}	-4.00×10^{2}
'Lı	10^{-2} 10^{-3}	-0.70	9.71×10^{-4}	2.69×10^{13}	1.00×10^{-5}	8.71×10^{9}
	10^{-4}	-0.08	-4.37×10^{-3}	-1.04×10 -4.90×10^{13}	4.02×10 4.14×10^{-3}	-0.03×10^{-9}
	10^{-5}	-0.10	1.51×10^{-4}	-4.18×10^{13}	-1.09×10^{-4}	-3.68×10^{9}
⁶⁴ Ni	10^{-2}	-0.70	1.25×10^{-3}	2.92×10^{13}	3.56×10^{-3}	8.88×10^{9}
	10 ⁻³	-0.14	6.81×10^{-3}	-1.08×10^{14}	1.20×10^{-4}	-1.02×10^{10}
	10 ⁻⁴	-0.08	-2.32×10^{-4}	-2.80×10^{13}	6.53×10^{-4}	2.87×10^{9}
	10 ⁻⁵	-0.11	4.52×10^{-4}	-1.07×10^{14}	1.81×10^{-4}	-7.04×10^{9}
⁴⁹ Ti	10^{-2}	-0.61	3.98×10^{-3}	8.77×10^{13}	4.48×10^{-3}	1.19×10^{10}
	10^{-3}	0.01	2.94×10^{-3}	-2.84×10^{11}	3.28×10^{-3}	6.06×10^{3}
	10^{-5}	-0.06	7.71×10^{-3}	-9.80×10^{12} -3.74×10^{13}	8.98×10^{-3}	3.24×10^{5} - 1.09 × 10 ⁹
151 _E .	10^{-2}	1.24	4.43×10^{-2}	1.15×10^{15}	2.48×10^{-2}	1.62×10^{11}
Eu	10^{-3}	-0.24	-4.43×10^{-3}	-1.89×10^{14}	-7.86×10^{-4}	-1.66×10^{10}
	10^{-4}	- 5.46	-1.75×10^{-1}	-4.13×10^{15}	-1.34×10^{-1}	-6.03×10^{11}
	10^{-5}	-0.69	-2.38×10^{-2}	-6.42×10^{14}	-1.55×10^{-2}	-8.29×10^{10}
⁴ He	10^{-2}	-0.66%	1.07×10^{-3}	1.59×10^{13}	1.76×10^{-3}	4.09×10^{9}
	10 ⁻³	-0.06	-2.15×10^{-3}	-1.25×10^{14}	8.74×10^{-4}	-6.80×10^{9}
	10^{-4}	-0.13	-1.99×10^{-4}	-1.12×10^{14}	6.50×10^{-4}	-8.23×10^{9}
138-	10 2	-0.18	-1.90×10^{-3}	-9.50×10^{15}	-9.98×10^{-9}	-1.12×10^{13}
¹³⁸ La	10^{-2} 10^{-3}	- 1.33	-2.73×10^{-2}	-1.21×10^{13}	-1.80×10^{-2}	-1.34×10^{11}
	10^{-4}	-0.07	5.75×10^{-3}	-6.28×10^{13}	1.40×10^{-3}	-2.08×10^{9}
	10^{-5}	-0.14	-2.00×10^{-5}	-5.80×10^{13}	2.16×10^{-3}	2.08×10^9
¹⁴⁷ Sm	10 ⁻²	-0.39	-4.53×10^{-2}	-1.90×10^{15}	-1.84×10^{-2}	-1.71×10^{11}
	10 ⁻³	0.32	-3.05×10^{-3}	-4.52×10^{14}	4.27×10^{-4}	-3.10×10^{10}
	10-4	-0.03	9.17×10^{-3}	-1.39×10^{14}	1.12×10^{-3}	-1.05×10^{10}
105	10-5	-0.10	3.78×10^{-4}	-5.79×10^{13}	1.74×10^{-3}	-1.98×10^{9}
¹⁸⁵ W	10^{-2}	-0.88	-3.10×10^{-2}	-9.95×10^{14}	-1.54×10^{-2}	-1.10×10^{11}
	10^{-3}	0.45	1.12×10^{-2}	-1.65×10^{14}	4.10×10^{-3}	-1.02×10^{10}
	10^{-5}	-0.03	1.03×10^{-3} 4 75 × 10 ⁻³	-2.71×10^{13} 2 90 $\times 10^{13}$	3.16×10^{-3}	$-1.3 \times 10^{\circ}$ 2 67 $\times 10^{9}$
Correlation coefficients	hetween	ΛY and ΛT	0.040	-0.452	0.033	0.130

Fig. 9 (Color online) Results of $\Delta Y(\%)$, T_1 , and T_3

scheme, that is, to further increase the yield of ²³⁸Pu of a particular irradiation scheme. The yield curve based on the single energy burnup method and the extreme curve based on the yield curve cannot be used to guide the optimization of a particular irradiation scheme. However, the single energy burnup method can better determine the positiveand negative energy regions, particularly when the neutron flux in the energy region accounts for a small amount of the total neutron flux. Therefore, the single energy burnup method can amplify the difference in importance of the filter burnup method, which is not sufficiently explicit in some energy regions. Consequently, the two methods complement each other.

3.2 Neutronics model application

As shown by the importance, yield, and extreme curves, neutrons in low-energy regions are conducive to the production of 238 Pu. Therefore, we slowed the neutrons in the target by dispersing ¹H in the target and constructing thermalized neutron energy spectra. The amount of hydrogen added started from 0.0 (10^{24} #/cm³), increased by 0.2 (10^{24} #/cm³) each time, and ended at 3.0 (10^{24} #/cm³), resulting in a total of 16 irradiation schemes (including the original scheme). The results of $\Delta Y(\%)$, T_1 and T_3 are shown in Fig. 9, drawn as a dot plot.

As shown in Fig. 9, the yield of 238 Pu can be increased by regulating the neutron spectrum around the target. In the above 16 irradiation schemes, the rate of increase in the yield of 238 Pu was the highest when the amount of ¹H added was 2.6 (10^{24} #/cm³), reaching 18.81%. Meanwhile, the rate of increase was positively correlated with the total spectrum efficiency, implying that the yield of 238 Pu can be further improved by a more refined neutron spectrum optimization. Therefore, a high-resolution neutronics model based on the importance curve, yield curve, and two extreme curves can guide the neutron spectrum optimization to improve the production efficiency of ²³⁸Pu.

4 Conclusion

²³⁸Pu is an ideal heat source material widely used in radioisotope heater units. The production of ²³⁸Pu by in-reactor irradiation of ²³⁷Np is a mainstream process that involves complex nuclear transmutation. The irradiation production of ²³⁸Pu lacks a precise neutronics model, which leads to a low transmutation rate of the nuclei and high costs. We proposed and compared three methods (filter burnup, single energy burnup, and burnup extremum analysis) to build a high-resolution neutronics model for ²³⁸Pu production in high-flux reactors.

The filter burnup and single energy burnup methods have no theoretical approximation and can achieve a spectrum resolution of up to ~1 eV, thereby constructing the importance and yield curves of the full energy range. The filter burnup method is based on a particular neutron spectrum, whereas the single energy burnup method is not limited to a particular neutron spectrum. The burnup extreme analysis method combines the importance and yield curves to consider the influence of irradiation time on production efficiency, thereby constructing extreme curves. The three curves, which quantify the transmutation rate of the nuclei in each energy region, are of physical significance because they have similar distributions. A high-resolution neutronics model for ²³⁸Pu production was established based on these three curves, and its universality and feasibility were proven.

The neutronics model can guide the neutron spectrum optimization and improve the yield of ²³⁸Pu by up to 18.81%. The neutronics model revealed the law of nuclei transmutation in all energy regions with high spectrum resolution, providing theoretical support for high-flux reactor design and irradiation production of ²³⁸Pu. Moreover, the flowchart of the three methods for spectrum analysis of other scarce isotopes. In the future, we will conduct research on the following three aspects: (1) target design from an engineering perspective, (2) spectrum optimization based on the proposed neutronics model, and (3) irradiation channel construction for ²³⁸Pu production in a high-flux reactor.

Author contributions All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Q-QP, Q-FZ, L-JW, B-YX, YC, J-BX, and X-JL. The first draft of the manuscript was written by Q-QP and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. **Data availability** The data that support the findings of this study are openly available in Science Data Bank at https://cstr.cn/31253.11.scien cedb.18402 and https://doi.org/10.57760/sciencedb.18402.

Declarations

Conflict of interest Xiao-Jing Liu is an editorial board member for Nuclear Science and Techniques and was not involved in the editorial review, or the decision to publish this article. All authors declare that there are no competing interests.

References

- E.D. Collins, R.N. Morris, J.L. McDuffee et al., Plutonium-238 production program results, implications, and projections from irradiation and examination of initial NpO₂ test targets for improved production. Nucl. Technol. **208**, S18–S25 (2022). https://doi.org/10.1080/00295450.2021.2021769
- R.M. Ambrosi, H. Williams, E.J. Watkinson et al., European radioisotope thermoelectric generators (RTGs) and radioisotope heater units (RHUs) for space science and exploration. Space Sci. Rev. 215, 55 (2019). https://doi.org/10.1007/s11214-019-0623-9
- R.C. O'Brien, R.M. Ambrosi, N.P. Bannister et al., Safe radioisotope thermoelectric generators and heat sources for space applications. J. Nucl. Mater. **377**, 506–521 (2008). https://doi.org/10. 1016/j.jnucmat.2008.04.009
- A.A. Gage, W.M. Chardack, A.J. Federico, Clinical use of an isotopic cardiac pacemaker. Am. J. Cardiol. 33, 138 (1974). https:// doi.org/10.1016/0002-9149(74)90816-9
- D. Chandler, C.D. Bryan, High flux isotope reactor (HFIR). Encycl. Nucl. Energy 234, 64–73 (2021). https://doi.org/10.1016/ B978-0-12-819725-7.00051-9
- W. Xu, J. Li, H. Xie et al., Conceptual design and safety characteristics of a new multi-mission high flux research reactor. Nucl. Sci. Tech. 34, 34 (2023). https://doi.org/10.1007/s41365-023-01191-6
- A.N. Shmelev, N.I. Geraskin, G.G. Kulikov et al., The problem of large-scale production of plutonium-238 for autonomous energy sources. J. Phys. Conf. Ser. 1689, 012030 (2020). https://doi.org/ 10.1088/1742-6596/1689/1/012030
- C.R. Daily, J.L. McDuffee, Design studies for the optimization of ²³⁸Pu production in NpO₂ targets irradiated at the high flux isotope reactor. Nucl. Technol. **206**, 1182–1194 (2020). https://doi.org/10. 1080/00295450.2019.1674594
- H. Steven, C. Douglas, N. Jorge, et al. Economical production of Pu-238. Idaho National Laboratory, 2013, INL/CON-11-23900. https://www.osti.gov/biblio/1082364
- J. Urban-Klaehn, D. Miller, B.J. Gross et al., Initial phase of Pu-238 production in Idaho National Laboratory. Appl. Radiat. Isot. 169, 109517 (2021). https://doi.org/10.1016/j.apradiso.2020. 109517
- G. Spencer, F. David, B. Reeder et al. Progress on Pu-238 production at INL From March 2021 to February 2022. Idaho National Laboratory, 2022, INL/CON-22–66710-Rev000. https://www.osti. gov/biblio/1866417
- M.B. Chadwick, M. Herman, P. Obložinský et al., ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112, 2887–2996 (2011). https://doi.org/10.1016/j.nds.2011.11.002
- Q.Q. Pan, Q.F. Zhao, L.J. Wang et al., Rapid diagnostic method for transplutonium isotope production in high flux reactors. Nucl. Sci. Tech. 34, 44 (2023). https://doi.org/10.1007/s41365-023-01185-4

- Q.F. Zhao, Q.Q. Pan, L.J. Wang et al., Neutron spectrum optimization for Cf-252 production based on key nuclides analysis. Radiat. Phys. Chem. 214, 111294 (2024). https://doi.org/10.1016/j.radph yschem.2023.111294
- S. Hogle, C.W. Alexander, J.D. Burns et al., Sensitivity studies and experimental evaluation for optimizing transcurium isotope production. Nucl. Sci. Eng. 185, 473–483 (2017). https://doi.org/ 10.1080/00295639.2016.1272973
- S. Hogle, G.I. Maldonado, C. Alexander, Increasing transcurium production efficiency through directed resonance shielding. Ann. Nucl. Energy 60, 267–273 (2013). https://doi.org/10.1016/j.anuce ne.2013.05.018
- S. Hogle, Optimization of transcurium isotope production in the high flux isotope reactor. Doctoral dissertations at University of Tennessee, Knoxville, 2012. https://trace.tennessee.edu/utk_gradd iss/1529/
- Q. Pan, Q. Zhao, X. Liu, Spectrum importance model for heavy nuclei synthesis in reactors: Taking ²⁵²Cf as an Example. Comput. Phys. Commun. (2024).
- S. Hogle, G.I. Maldonado, Modeling of the high flux isotope reactor cycle 400 with KENO-VI. Trans. Am. Nucl. Soc. 104, 915 (2011). https://www.ans.org/pubs/transactions/article-12169/
- K. Wang, Z.G. Li, D. She et al., RMC—A Monte Carlo code for reactor core analysis. Ann. Nucl. Energy 82, 121–129 (2015). https://doi.org/10.1016/j.anucene.2014.08.048
- M. Di Filippo, J. Krepel, K. Mikityuk et al., Analysis of major group structures used for nuclear reactor simulations, in Proceedings of 2018 26th International Conference on Nuclear Engineering July 22–26, 2018, London, England (2018). https://doi.org/10. 1115/ICONE26-81445
- J. Li, J. Zhao, Z. Liu, et al. Conceptual design study on Plutonium-238 production in a multi-purpose high flux reactor. Nucl. Eng. Technol. (2023) (in press). https://doi.org/10.1016/j.net. 2023.09.019
- L.Y. He, S.P. Xia, X.M. Zhou et al., Th–U cycle performance analysis based on molten chloride salt and molten fluoride salt fast reactors. Nucl. Sci. Tech. 31, 83 (2020). https://doi.org/10. 1007/s41365-020-00790-x
- Y. Peng, G.F. Zhu, Y. Zou et al., Neutronics physics analysis of a large fluoride-salt-cooled solid-fuel fast reactor with Th-based fuel. Nucl. Sci. Tech. 28, 158 (2017). https://doi.org/10.1007/ s41365-017-0321-9
- M. Cheng, Z. Dai, Development of a three dimension multi-physics code for molten salt fast reactor. Nucl. Sci. Tech. 25, 010601 (2014). https://doi.org/10.13538/j.1001-8042/nst.25.010601
- X. Luo, C. Wang, Z.R. Zou et al., Development and application of a multi-physics and multi-scale coupling program for lead-cooled fast reactor. Nucl. Sci. Tech. 33, 18 (2022). https://doi.org/10. 1007/s41365-022-01008-y
- Y.N. Dai, X.T. Zheng, P.S. Ding, Review on sodium corrosion evolution of nuclear-grade 316 stainless steel for sodium-cooled fast reactor applications. Nucl. Eng. Technol. 53, 3474–3490 (2021). https://doi.org/10.1016/j.net.2021.05.021
- Z.Y. Ma, N.N. Yue, M.Y. Zheng et al., Basic verification of THACS for sodium-cooled fast reactor system analysis. Ann. Nucl. Energy 76, 1–11 (2015). https://doi.org/10.1016/j.anuce ne.2014.09.025
- P. Song, D.L. Zhang, T.T. Feng et al., Numerical approach to study the thermal-hydraulic characteristics of reactor vessel cooling system in sodium-cooled fast reactors. Prog. Nucl. Energy 110, 213–223 (2019). https://doi.org/10.1016/j.pnucene.2018.09. 021
- Y. Liang, D.L. Zhang, J. Zhang et al., A subchannel analysis code SACOS-Na for sodium-cooled fast reactor. Prog. Nucl. Energy 166, 104959 (2023). https://doi.org/10.1016/j.pnucene.2023. 104959

- P. Du, Q.W. Xiong, J.Q. Shan et al., Development and application of 3D pool-type sodium cooled fast reactor system analysis program. Prog. Nucl. Energy 144, 104027 (2022). https://doi.org/ 10.1016/j.pnucene.2021.104027
- 32. Y.Q. Zheng, X.N. Du, Z.T. Xu et al., SARAX: a new code for fast reactor analysis part I: methods. Nucl. Eng. Des. **340**, 421–430 (2018). https://doi.org/10.1016/j.nucengdes.2018.10.008

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.