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Abstract
Global variance reduction is a bottleneck in Monte Carlo shielding calculations. The global variance reduction problem 
requires that the statistical error of the entire space is uniform. This study proposed a grid-AIS method for the global variance 
reduction problem based on the AIS method, which was implemented in the Monte Carlo program MCShield. The proposed 
method was validated using the VENUS-III international benchmark problem and a self-shielding calculation example. 
The results from the VENUS-III benchmark problem showed that the grid-AIS method achieved a significant reduction in 
the variance of the statistical errors of the MESH grids, decreasing from 1.08 ×  10–2 to 3.84 ×  10–3, representing a 64.00% 
reduction. This demonstrates that the grid-AIS method is effective in addressing global issues. The results of the self-
shielding calculation demonstrate that the grid-AIS method produced accurate computational results. Moreover, the grid-AIS 
method exhibited a computational efficiency approximately one order of magnitude higher than that of the AIS method and 
approximately two orders of magnitude higher than that of the conventional Monte Carlo method.
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1 Introduction

Global variance reduction is a classification of shielded com-
putational problems. Global problems require not only the 
statistics of full-space fluxes or flux-related responses but 
also low statistical errors for all spaces. The global vari-
ance reduction problem is common in the design of new 
reactors, such as the Chinese Fusion Engineering Testing 

Reactor (CFETR) [1] and the solid fuel thorium molten salt 
reactor (TMSR-SF1) [2]. Currently, the geometric structures 
of the new reactors are relatively complex. When designing 
the shielding, the statistical error of all positions in the entire 
space must be small and relatively uniform to ensure that the 
design requirements for radiation protection are satisfied. 
If only the radiation parameters of the individual locations 
are calculated, the location of the radioactive leakage can 
be ignored. Therefore, there are global issues regarding the 
shielding design of new reactors. In the calculation space, 
the magnitude of the flux of the particles at different posi-
tions differs. Therefore, a corresponding variance reduction 
method for the global problem must be adopted to reduce 
the statistical error of the position with low flux. Finally, 
a more average statistical error distribution in the whole 
space is obtained, and simultaneously, it can save comput-
ing resources.

In the Monte Carlo calculation of a global problem, the 
MESH virtual grid is typically set to count the calculation 
results everywhere in the entire space. Therefore, the goal 
of Monte Carlo calculations of the global problem can be 
defined as: for a given relative statistical error H , calcula-
tion time T  must be low [3], and simulated particle numbers 
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must be few such that the relative statistical error of more 
grids R ≤ H , and the statistical error variance of all grids 
should be minimal.

In conventional Monte Carlo transport, there are more 
particles in the region near the source, and the statistical 
error is small. In other words, the number of particles in 
the region far from the source is less owing to collisions 
and other reasons, and the statistical error is large. Although 
simply increasing the number of simulation particles can 
reduce the overall variance, the statistical error distribution 
is not uniform, and it is a waste of resources for particles to 
continue to be transported near the source, which does not 
meet the requirements of the global problem. Therefore, a 
corresponding global variance reduction technique must be 
developed.

2  Principle and current situation of global 
variance reduction

In a study on global variance reduction, Cooper and Larsen 
et al. [4] noted that a uniform Monte Carlo simulation of 
particle density can provide a uniform relative statistical 
error distribution, thus satisfying the goal of global variance 
reduction. Only particles arriving in the statistical region 
in the Monte Carlo simulations can contribute to the 
statistics. The number of Monte Carlo simulation particles 
in the statistical region determines the magnitude of the 
relative statistical error. This idea can also be explained 
by the statistical error calculation Eq.  (1) for Monte 
Carlo simulations. Considering the statistical penetration 
probability p of the plate shield and assuming that the 
number of particles arriving in the region behind the plate 
is N1 , the unbiased estimate p̂ of p is

Relative statistical error is obtained by substituting the 
statistical error calculation formula:

The relative statistical error in this region is entirely 
determined by the number of particles N1 entering the 
region. If the Monte Carlo simulation particle density 
is the same in the full space, the relative statistical error 
is also the same. In an actual Monte Carlo simulation, a 
numerical analysis of the relative statistical error is more 
difficult because the statistics are more complex and may 
use geometric splitting with a roulette, weight window, and 
other variance reduction techniques.
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The various global variance reduction techniques that 
have emerged are also based on this conclusion, using 
different methods to achieve uniform Monte Carlo-
simulated particle density distributions, including the 
coupling variance reduction method based on the forward 
calculation represented by Cooper and Larsen [4] and the 
coupling variance reduction technique based on adjoint 
represented by FW-CADIS. The core idea of this method is 
to first perform one or two auxiliary calculations to generate 
a reasonable weight window parameter and realize a uniform 
Monte Carlo simulation of the particle density distribution.

Cooper and Larsen [4] guided the weight window 
parameter settings based on deterministic forward transport 
fluxes. For each mesh i , assuming that Ni represents the 
physical particle density of mesh i , Vi represents the mesh 
volume, Mi represents the number of Monte Carlo-simulated 
particles of mesh i , and wi represents the average particle 
weight of mesh i ; then, for each mesh i:

Suppose that the central weight of the window or the 
survival weight wi ∝ Ni , then:

where c is a constant. In other words, setting the average 
weight of the weight window to be proportional to the 
physical particle density can make the Monte Carlo 
simulation particle density approximately uniform. The 
flux is �i ∝ wivi , where vi represents the particle velocity. In 
practice, Cooper and Larsen [4] chose the forward flux �i to 
set the weight window parameters as follows:

In 2007, Wagner proposed the FW-CADIS method based 
on CADIS for the global variance reduction of CADIS [5]. 
The computational goal of the global variance reduction 
problem is to obtain the calculation results of the global 
uniform convergence. For the Monte Carlo transport 
calculations, this can also be understood as obtaining 
a globally uniform Monte Carlo particle distribution. 
According to the conjugate transport theory, a conjugate 
source item q+ can be defined such that the conjugate flux 
calculated by conjugate transport based on the source 
item can represent the importance of particles to achieve a 
globally uniform Monte Carlo particle distribution. In the 
FW-CADIS method, the conjugate source item q+ is defined 
as:
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The equation shows that the FW-CADIS method 
applies the reciprocal of the total corresponding quantity 
estimate to weigh the conjugate source item. Therefore, 
the farther away from the physical source item, the 
greater the enhancement of the conjugate source item, 
and the conjugate source item increases accordingly. 
Additionally, the conjugate calculation process of the 
FW-CADIS method is consistent with that of the CADIS 
method. The difference between the two methods is that 
FW-CADIS requires an additional forward deterministic 
transport calculation before the conjugate calculation 
to provide the required weighted source term for the 
conjugate calculation. Therefore, the calculation effect of 
the FW-CADIS method depends on the accuracy of the 
conjugate flux provided by the deterministic program.

Other scholars conducted in-depth research on the 
global variance reduction problem. Van Wijk [6] proposed 
a method for setting the weight window threshold 
according to the flux and statistical error. This method is 
entirely based on the I/O function of the MCNP Monte 
Carlo radiation transfer code family. Yuan [7] improved 
it by defining a novel “pseudo-source” based on the 
flux-based variance reduction method and proposed the 
PS-GVR method. To improve the efficiency of the source 
analysis, Qingquan [8] proposed a single-step Monte 
Carlo criticality method that eliminated the calculation 
of inactive cycles and achieved the highest computational 
efficiency through a mathematical optimization analysis. 
This method was used for the numerical analysis of 
transplutonium isotope production [9]. Meanwhile, 
the DeGVR method [10] was proposed to improve the 
efficiency of the shielding calculations. This method 
adopts the strategy of “density reduction + density 
extrapolation”, which can obtain global information 
quickly and is helpful for global variance reduction. 
Similar methods include PDMC [11], adaptive variance 
reduction [12], and SP3-coupled methods [13].

For a single probe, the FOM [14] is often used to 
measure computational efficiency. However, for global 
problems, because many detectors are used when obtaining 
MESH statistics, the formula for calculating the FOM 
factors is no longer applicable. This is a commonly used 
method to demonstrate the computational efficiency of 
counting the relative statistical error of each mesh or the 
probability distribution of the FOM factor and displaying 
it in the form of two-dimensional images. However, 
it is still significant to provide a quantitative number 
for characterizing computational efficiency. Therefore, 
researchers have attempted to improve the FOM factor 
formula to satisfy the requirements of global problems. 

(6)q+(r,E) =
�d(r,E)

∫ �(r,E)�d(r,E)dE
.

In this study, the following formula is used to measure the 
computational efficiency of the global variance reduction 
method:

where T  is the calculation time and R is the average relative 
statistical error of each mesh result. The calculation formula 
is as follows:

where Ri represents the relative statistical error of mesh i and 
Nm represents the MESH number.

3  Limitations of the AIS method

To solve the deep-penetration problem, Jiajin proposed 
the AIS method [15]. This method is based on importance 
sampling and statistical estimation; it introduces a virtual 
surface, divides the space into multilayer subspaces, 
generates virtual particles on the virtual surface to be 
transported to the next layer of the subspace, and performs 
automatic particle weight adjustment and quantity control. 
As shown in Fig. 1, the AIS method is as follows.

(1) K virtual surfaces are introduced, and the transport 
space is divided into K + 1 subspaces;

(2) Virtual particles are generated on the virtual surface 
at the source event and at each collision event, and the 
number of virtual particles on the virtual surface is 
equaled to the number of source particles.

(3) The particles are killed if they reach the current virtual 
surface during transport.

(4) The virtual particles on the current virtual surface 
continue to be transported as source particles to the 
next subspace.

The AIS method uses a statistical estimation to gener-
ate virtual particles that continue to be transported as the 
source term of the subspace in the next layer. In this man-
ner, more particles can be transported to a region far away 
from the source term, which solves the problem of large 
statistical errors in the region far away from the source 
term to a certain extent.

Suppose that the positive particle flow, J+ on a surface 
refers to the number of particles passing through the face 
from the positive surface. In Monte Carlo simulations, 
the concept of particle weights is introduced, and J+ is 
calculated by summing the weights of all the particles 
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passing through the surface from a positive surface. 
Because the number of virtual particles on each virtual 
surface is constant at N and the weights are all the average 
weight w , the total positive particle flow on the virtual 
surface is

The particle current ΔJ+ in the infinitesimal element on 
the virtual surface is:

Substituted into formula (8), then:

In summary, the number of virtual particles on an 
infinitesimal element is equal to the total number of 
virtual particles on the virtual surface multiplied by 
the ratio of the size of the forward particle flow on the 
infinitesimal element to the size of the total forward 
particle flow on the virtual surface. Therefore, the number 
of virtual particles was higher when the level of forward 
particle flow on the virtual surface was high; thus, the 
statistical error was smaller. Conversely, at low levels of 
forward particle flow, the number of virtual particles is 
lower; thus, the statistical error is larger. The level of 
the forward particle flow is determined by the problem, 
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independent of the detector location. If the detector is in 
a region where the horizontal forward particle flow is 
small, the statistical error of the detector response will 
be large, and the AIS method will not have a good effect 
on variance reduction. Therefore, it can be concluded that 
the AIS method has certain limitations when applied to 
global problems.

In this study, the grid-AIS method is proposed for the 
global problem, and the Monte Carlo simulation particle 
density distribution is made uniform by constructing a 
corresponding virtual particle number control algorithm.

4  Grid‑AIS method

4.1  Transport process

The key to achieving global variance reduction is that 
the Monte Carlo simulation particle density distribution 
should be uniform. A virtual surface divides an entire 
space into several subspaces. If the virtual particle density 
distribution on each virtual plane is uniform, then the 
Monte Carlo simulation particle density distribution in 
the entire space is approximately uniform. The grid-AIS 
method differs from the AIS method. The AIS method 
only keeps the number of virtual particles on each virtual 
surface the same, while the grid-AIS method keeps 
splitting according to the ratio � = w∕wi of the weight w 
of virtual particles to the average weight wi of each grid 
and keeps the number of particles in a grid constant, 

Fig. 1  AIS method transporta-
tion flowchart
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thus ensuring the uniform distribution of the number of 
particles on the virtual surface.

Based on the analysis, the grid-AIS method achieved 
a uniform virtual particle density distribution on the 
virtual surface using a meshing virtual particle number 
control algorithm. Small meshes of approximately equal 
areas were evenly divided on the virtual surface, and the 
number of virtual particles generated by each mesh was 
maintained. The transport process is as follows.

(1) In the initialization stage, K  virtual surfaces were 
introduced, and the transport space is divided into 
K + 1 subspaces. For each virtual surface K , the virtual 
surface is divided into Mk uniform meshes.

(2) During the source-term sampling and each collision 
event, the particle produces a virtual particle on the 
virtual surface. Mesh i to which the virtual particle 
belongs was determined based on the positions of the 
virtual particles. For virtual face K  , the number of 
virtual particles in mesh i is maintained as Nk,i.

(3) If a particle reaches the current virtual plane during 
transport, the source particle is eliminated.

(4) The virtual particle on the current virtual surface is 
returned as the source particle of the next subspace, 
and (2) continues to be transported.

For vir tual surface K  ,  mesh i  maintains the 
corresponding number of particles Nk,i . To ensure 
uniformity in the number of virtual particles,

where c is a constant independent of the mesh and virtual 
face and Sk,i is the mesh area. Thus, the number of particles 
maintained by each mesh i is proportional to its area. 
Summing over all the meshes on virtual surface K yields the 
total number of particles Nk on each virtual surface, which 
is also proportional to its area Sk , as follows:

This differs from the rule in which the number of 
virtual particles on each virtual surface is the same as 
that in the traditional AIS method. The traditional AIS 
method considers the total flux of the space between 
virtual surfaces and requires only the same number 
of particles between the virtual surfaces to ensure that 
the statistical error of each virtual surface is as similar 
as possible. Global variance reduction must ensure that 
the statistical error of each mesh flux is as consistent as 
possible; therefore, the number of virtual particles on the 
virtual face must be adjusted according to the size of the 
virtual face.

(12)Nk,i = cSk,i,

(13)Nk = cSk.

This distinction is evident in the calculation of 
item–source global problems. The virtual polygon is 
generally divided into a series of spheres centered on the 
point source with radii ranging from small to large. The 
number of virtual particles in each layer in the traditional 
AIS method was the same. Although the total number 
of particles remains the same when the particles are 
transported to outer space, the number of particles per 
unit volume is insufficient owing to the increase in the 
area of the virtual surface. The virtual surface area of the 
grid-AIS method gradually increased from the inside to the 
outside, and the number of virtual particles also increased. 
When particles are transported to outer space, the number 
of particles per unit volume is consistent with that of the 
inner layer, which increases the statistical error.

When meshing, this paper requires that the mesh area of 
each virtual polygon is approximately the same, so if Sk,i ≈ S 
is constant, then the number of virtual particles per mesh, 
Nk,i , is also roughly constant. At this point, the number of 
meshes Mk on virtual surface K has the following relation:

where Sk is the area of each virtual surface and S is the area 
of each mesh. In other words, the number of meshes on a 
virtual surface is approximately proportional to its area.

4.2  Meshing and virtual particle adjustment

In the grid-AIS method, virtual particles must be generated 
on the virtual plane during source item sampling and each 
collision event, and mesh i is determined according to the 

(14)Mk ≈
Sk

S
,

Fig. 2  (Color online) Schematic diagram of cylindrical virtual surface 
meshing
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position of the virtual particles. First, the mesh division must 
specify the mesh size parameter d , which determines the 
granularity of the mesh division; the general value of d is 
the same as the mesh size of the MESH statistics.

The commonly used planes, cylindrical surfaces, and 
spherical surfaces must be strictly meshed by area. Figure 2 
shows the meshing of the cylindrical virtual surfaces.

(1) The mesh division of the virtual plane surface was 
relatively simple. Suppose that its length in the x
-direction is Lx and that in the y-direction is Ly ; then, 
the x-direction is divided into round(Lx∕d) meshes 
of equal length, and the y-direction is divided into 
round(Ly∕d) meshes of equal length, where round(x) is 
x rounded to an integer to ensure that the area of each 
mesh is identical.

(2) The division of the cylindrical surface was similar to 
that of the plane. Divide evenly in the two directions of 
the azimuth � and the height Z of the cylinder.

(3) For the spherical case, if the mesh is divided uniformly 
in two directions according to the polar angle � and 
azimuthal angle � , it will cause the mesh area to be 
inconsistent. If the mesh is divided uniformly according 
to cos� and azimuthal angle � , although it can ensure a 
consistent mesh area, it will cause too much difference 
in the mesh shape, and a long strip mesh will be 
generated at the � = 0 position. Thus, within the same 
mesh, the two ends of the long stripes are far apart, 
the flux-level difference may be large, and the virtual 
particles are not uniformly distributed, causing an 
uneven statistical error distribution that does not meet 
the requirement of global variance reduction.

In summary, this paper adopts the way that the polar 
angle � is uniformly divided, while the azimuthal angle � is 
nonuniformly divided. Assume that the radius of the sphere is 
r , the difference between the maximum and minimum of the 
spherical polar angle is Δ� , and the difference between the 
maximum and minimum of the azimuthal angle is Δ� . Then, 
the number of meshes in the � direction is:

(15)n� = round

(

rΔ�

d

)

.

For the polar angle mesh i , the ni,� azimuthal angles � are 
further subdivided to ensure that the area of each small mesh 
is approximately the same. Considering that the spherical area 
of the polar angle mesh i is

Then,

where �i and �i+1 are the starting and ending polar angles of 
the polar angle mesh i , respectively.

Thus, the area of each mesh was approximately the same 
and the shape of the mesh was closer to a square, which 
further reduced the flux difference within the mesh.

When mesh i to which the virtual particle belongs is 
determined according to the position coordinates of the 
virtual particle on the virtual surface, considering that the 
virtual surface may have undergone translation, rotation 
and other operations, the global coordinates of the virtual 
particle must be converted into local coordinates with the 
virtual surface as the reference system, and then, the virtual 
surface mesh number must be determined. Consequently, the 
determination method within local coordinates is relatively 
simple. If the aforementioned mesh division method is used, 
only a simple interpolation is required, which is not repeated 
here.

After determining the mesh i to which the virtual particles 
belong, roulette and splitting are performed according to 
the ratio � = w∕wi of the weight w of the virtual particles 
to the average weight w1 of each mesh, maintaining the 
corresponding number of particles Nk,i.

For other cases of nonplanar, cylindrical, and spherical 
surfaces, the modeling of virtual surfaces may include inter-
section, concatenation, and complementary cases, which 
are more complex and make it difficult to divide the mesh 
strictly into equal areas. In this study, an approximate divi-
sion method was adopted, and statistical MESH was used 
to divide the virtual surface. The MESH number where the 
virtual particle is located is used as the virtual face mesh 
number, and the number of virtual particles per virtual 
face mesh is maintained in proportion to the volume of the 
MESH. Here, the volume of the MESH is considered to be 

(16)Si = r2(cos �i − cos �i+1)Δ�.

(17)ni,� = round

[

r2(cos �i − cos �i+1)Δ�

d2

]

,

Table 1  Comparison of AIS and grid-AIS methods

Method Virtual particle generation Virtual particle number control Variance reduction parameter

AIS method Generate virtual particles on the virtual 
surface along the direction of particle 
motion during source sampling and 
each collision event

Maintain an equal number of particles 
on each virtual surface

Only need to set virtual surface position 
parameters

Grid-AIS method Maintain an equal number of virtual 
particles per mesh on each virtual 
surface

Need to set virtual surface position 
parameters and grid size parameters
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approximately proportional to the area of the virtual surface 
contained in it.

Table 1 shows the comparison between the AIS and grid-
AIS methods.

Currently, the grid-AIS method is implemented in 
the MCShield program. MCShield is a neutron/photon/
electron-coupled transport Monte Carlo program for 
radiation shielding calculations independently developed 
by the Radiation Protection and Environmental Protection 
Laboratory of Tsinghua University. The MCShield program 
can simulate neutron, photon, and electron-coupled transport 
with massively parallel computation functions and can 
efficiently and accurately solve the deep-penetration problem 
and the complex shielding problem of the Monte Carlo 
variance reduction technique. At the same time, the software 
also contains a variety of powerful pre- processing and post-
processing modules, such as CAD geometry conversion, 
parametric geometry modeling, visualization parameter 
setting, particle trajectory display, and three-dimensional 
dose display. The program was validated against dozens of 
international benchmarks [21].

In summary, compared with other methods, the grid-AIS 
method proposed in this paper for global problems has the 
following main innovations. (1) For the global variance 
reduction problem, the weight window method is currently 
widely used. The weight window method usually divides 

the grid in the entire space and sets the weight window 
parameters of each grid. Furthermore, the effect of variance 
subtraction computation was highly correlated with the 
quality of the weight window parameters. In contrast to the 
weight window method, the grid-AIS method must only 
set a few variance reduction parameters, such as the virtual 
surface position and grid size, which is convenient for users. 
(2) In the CADIS method, a deterministic method must be 
used for the adjoint calculation in a single calculation to 
calculate the parameters of the weight window. Therefore, 
the entire calculation process requires two sets of geometric 
models, Monte Carlo programs, and determinism, which 
makes the shielding calculation very difficult. The grid-
AIS method does not require adjoint calculations and only 
requires one Monte Carlo forward calculation to obtain the 
result, which is convenient for users.

4.3  Unbiased description

The general transport architecture of the grid-AIS method 
was the same as that of the AIS method, whereas the 
unbiased nature of the AIS method was demonstrated 
and is not repeated here. The number of virtual particles 
in the virtual surface mesh was controlled using roulette 
and splitting, and the process was unbiased. The amount of 
particle transport between virtual surfaces varies with the 

Fig. 3  (Color online) a Top view and b side view of the VENUS-III experimental reactor benchmark
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virtual surface area, which is different from the AIS method. 
However, this process is achieved by gambling splitting, the 
weights are adjusted accordingly, and the overall process is 
unbiased. Overall, the grid-AIS method was unbiased.

5  VENUS‑III international benchmark 
problem

5.1  Description of benchmark

The VENUS-III [22] experimental reactor is a low-flux 
thermal neutron reactor that was built in 1964 to study 
reactor core designs and the irradiation damage of nuclear 
materials. This provides benchmark experiments for 
numerical simulation programs. The 1/4 core model of 
the VENUS-III reactor is shown in Fig. 3, and it consists 
of 639 fuel rods and 11 control rods, with dimensions of 
73.65 cm length, 37.80 cm width, and 37.80 cm height. In 
the figure, the light-gray area represents the control rods, 
whereas the other parts are fuel rods. The gray parts rep-
resent fuel rods enriched to 4% burnable poison, the white 
parts represent fuel rods enriched to 3% burnable poison, 
and the dark gray parts represent fuel rods enriched to 3% 
burnable poison.

The VENUS-III reactor plane diagram is shown in 
Fig. 3. It is divided into nine horizontal regions from the 
center to the left as follows: (1) The central water chan-
nel outside the core; (2) the inner layer baffle outside 
the core (stainless steel thickness of 2.858 cm); (3) the 
core fuel area (4% fuel rods and 3.3% fuel rods); (4) the 
outer layer baffle outside the core (stainless steel thick-
ness of 2.858 cm); (5) the water reflector outside the core 
(minimum water thickness of 2.169 cm); (6) the outer 

core basket (stainless steel thickness of 4.99 cm); (7) the 
cooling water layer outside the basket (water thickness of 
5.80 cm); (8) the thermal shield (stainless steel thickness 
of 6.72 cm); and (9) the reactor pressure vessel (stainless 
steel). From the center, it was divided into eight regions, 
from bottom to top, as follows: (1) The lower water region 
inside the pressure vessel, (2) the lower core support 
structure, (3) the outer bottom support frame of the core, 
(4) the lower internal reflector of the core, (5) the core 
fuel area, (6) the upper internal reflector of the core, (7) 
the outer upper support frame of the core, and (8) the 
upper water region inside the pressure vessel.

5.2  Calculation results

The source term in the core region consists of fission 
neutrons with a Watt spectrum and isotropic distribution. 
The source term is distributed within the cylindrical fuel 
rods, and the sampling probabilities for different positions 
within each fuel rod vary. In this case, the neutron flux in the 
computational region was calculated using MESH tallies. 
The MESH grid size is 20.00  × 20.00 × 20.00 mm, with 
46, 46, and 85 MESH grids in the X, Y, and Z directions, 
respectively. In this study, three methods were compared: 
AIS, grid-AIS, and traditional Monte Carlo methods. Nine 
cylindrical virtual surfaces were set up for the grid-AIS 
and AIS methods. The center of the virtual surface of the 
cylinder moved down from the center of the core (0, 0, 0) to 
(0, 0, − 400 mm), and the radius of the virtual surface of the 
cylinder increased from 500 to 900 mm. Virtual particles 
were generated on the top, bottom, and lateral surfaces of 
the cylinder. In the grid-AIS method, grid size parameter 
d = 40, 80, and160 mm . Table  2  shows the  calculation 
results of the VENUS-III international benchmark.

Table 2  Calculation results of 
the VENUS-III international 
benchmark

Method NPS CPU Time 
(min)

Mean absolute error MESH average 
statistical error 
(%)

Conventional Monte 
Carlo

1.00 ×  108 460 6.29 ×  10−8 24.00
1.00 ×  107 42 2.50 ×  10−7 36.89

AIS 1.00 ×  107 330 1.41 ×  10−7 7.58
Grid-AIS 1.00 ×  107 352 1.42 ×  10−7 6.80

Table 3  Statistical results of 
the VENUS-III international 
benchmark

Method Variance of MESH 
statistical error (%)

Proportion of grids with 
statistical error > 30%

Proportion of grids with 
statistical error < 10%

Conventional Monte 
Carlo

4.36 30.67% 27.43%
5.98 62.55% 20.65%

AIS 1.08 4.02% 83.14%
Grid-AIS 0.38 1.60% 87.58%
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Table 3 and Fig. 4 show that both the grid-AIS and AIS 
methods showed significant improvements in computational 
results, compared to the traditional Monte Carlo algorithm. 
The average statistical error of the MESH grid decreased 
from 0.24 to 0.07, demonstrating the effectiveness of the 
AIS method. Compared to the AIS method, the grid-AIS 
method showed the following improvements in the compu-
tational results: the percentage of MESH grids with a statis-
tical error greater than 0.80 decreased from 0.31 to 0.02%; 
the percentage of MESH grids with a statistical error greater 
than 0.50 decreased from 1.56 to 0.33%; the percentage of 
MESH grids with a statistical error less than 0.30 increased 
from 95.98 to 98.40%; and the percentage of MESH grids 
with a statistical error less than 0.10 increased from 83.14 
to 87.58%. Furthermore, the variance in the statistical errors 
for the MESH grids in the grid-AIS method decreased from 
1.08 to 0.38%, representing a 64.00% reduction. This indi-
cates that the grid-AIS method reduced the global variance 
problem. In addition, by comparing the calculation results 
for different grid size parameters, we found that the calcula-
tion results for d = 80 and 160mm were better than those 
for d = 40 mm . Generally, the grid size parameter should 
match the size of the MESH grid and the number of simu-
lated particles. A grid-size parameter that is either too large 
or too small affects the effectiveness of the grid-AIS method

In this section, the effectiveness of the grid-AIS method 
is validated using the VENUS-III international benchmark 
problem. However, in this benchmark problem, the radius 
of the computational region was relatively small compared 
to the core radius, resulting in minimal differences in the 
surface areas of the different cylindrical virtual surfaces. 
In addition, because of the relatively uniform distribution 
of geometry and materials in the VENUS-III international 
benchmark questions, the calculation results of the AIS 
method were already good, with little room for improvement. 
Therefore, based on an actual reactor structure, this study 
proposes a self-designed reactor-shielding example in 
which pipes and other structures are added to increase the 
geometric anisotropy, and the grid-AIS method is further 
verified.

6  Self‑design reactor‑shielding example

6.1  Example description

In this section, the grid-AIS method is validated using a self-
designed reactor-shielding algorithm. The geometric model 
is shown in Fig. 5. The core is a cylinder with a radius of 
0.50 m and height of 1 m, and its lower surface is flush with 
the bottom of the water layer. Outside the core is a water 
layer with a radius of 1.50 m and height of 4.00 m. Outside 
of the water layer is a concrete layer with a thickness of 

0.50 m, and outside the vacuum boundary. Radial and axial 
air pipes with a radius of 0.10 m pass through the water layer 
and concrete. The source was uniformly distributed in the 
core area, the energy distribution was a Watt fission spec-
trum, and the direction was isotropic. The calculation exam-
ple has a thick shielding body, pipes, and other structures 
with strong anisotropy, which is a typical shielding calcula-
tion problem with difficult convergence of global counting, 
and can be used to test the computational capability of the 
Monte Carlo method under a more anisotropic geometry.

The subbody fluxes in full space were counted using 
MESH with a mesh size of 4.40 cm × 4.40 cm  × 4.40 cm 
and a total of 568,800 meshes. Calculations were performed 
separately using the original MCShield, AIS, and grid-
AIS methods. The AIS virtual surfaces were 18 spherical 
surfaces with the center of the core as the center of the 
sphere, from the inside to the outside, and the radii of the 
spherical surfaces were spaced 20.00 cm apart. Owing to 
the limitation of the overall geometric boundary, the spheres 
are not closed spheres, and the starting and ending polar 
angles are determined by the spheres and vacuum geometric 
boundary.

The computing platform used in this study is a multinode 
computing cluster with two 18-core processors per node: 
Intel Xeon E5-2699 V3 @2.3 GHz CPU with 64 GB of 
memory.

The calculation results are listed in Tables 4 and 5. To 
facilitate comparison of the statistical errors, the number 
of simulated particles was controlled for each method. 
The simulation times of the methods are relatively close; 
therefore, the magnitude of the statistical error represents the 
computational efficiency. Using 100 processes for parallel 
computation, the CPU time listed in Table 1 is the sum 
of the running times of each process. The computational 
efficiency was measured using the FOM factor applied to a 
global problem.

It can be seen from the parameter results that the 
average relative statistical error of the conventional Monte 
Carlo method was as high as 62.20%, and the results were 
unreliable. The grid-AIS method has an average statistical 
error of 3.30%, which is less than 5.00% and is acceptable 
for shielding calculations. In addition, the FOM factor of the 
grid-AIS method was approximately 12 times higher than 
that of the AIS method and 290 times higher than that of the 
conventional Monte Carlo method.

6.2  Example results

Sectional views of the statistical MESH flux are shown 
in Figs. 6, 7, and 8. The top of each figure represents the 
X–Z plane, which is the plane through the vertical air 
duct. The figure below shows the YZ-plane perpendicular 
to the horizontal air duct. The left and right images of the 
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two-dimensional images in Figs. 6, 7, and 8 have the same 
meaning, and the flux is displayed in logarithmic coordi-
nates. The colors represent the fluxes. Red indicates the 
highest, blue indicates the lowest, and the span between each 
contour is one order of magnitude.

The maximum flux attenuation was approximately  10−19. 
The flux decreased exponentially with the distance from the 
core in the range near the core. In the upper area, far away 
from the core, the flux was higher in the air duct and near 
the air duct because of the influence of the two air ducts, and 
the flux was lower in other areas. The conventional Monte 
Carlo method has many empty meshes at positions far away 
from the source and only has values near the air pipe, which 
indicates that the conventional Monte Carlo method cannot 
transport particles to positions far away from the core. By 
contrast, the AIS and grid-AIS methods essentially have no 
empty meshes.

The relative statistical errors of the MESH fluxes are 
shown in the cross-sectional plots in Figs. 9, 10, and 11, 
and the relative statistical errors are displayed in linear coor-
dinates. For display purposes, the width of each color was 
2.50%, from 0.00 to 20.00%, and colors above 20.00% were 
red, for a total of nine colors. As shown in the illustration, 
the conventional Monte Carlo method yields poor results in 
the upper part of the space away from the core, where the 
statistical error is lower than 20.00% only near the vertical 
air duct and higher than 20.00% everywhere else. The AIS 
method has a smaller statistical error near the air ducts in 
the upper part of the space away from the core, and a larger 
statistical error at a location away from the ducts. Combined 
with the flux cut diagram, the statistical error changes in 
size with the same pattern of change in the flux size. The 
statistical error was smaller when the flux level was high on 
the virtual surface, and vice versa. This is consistent with 
the results of a previous analysis conducted using the AIS 
method. As shown in Fig. 11, the statistical errors of the 
Grid-AIS method were smaller and more uniformly distrib-
uted than those of the AIS method, and the statistical errors 
were also smaller at locations far from the air ducts. This 
indicates the strategy of the grid-AIS method to ensure that 
the virtual particles are uniformly distributed on the virtual 
surface.

To verify the correctness of the grid-AIS method, the 
relative deviation results of the grid-AIS method and results 
of the conventional Monte Carlo and AIS methods are plot-
ted separately, as shown in Figs. 12 and 13; the colors used 
in the plots have the same meaning as in the statistical error 

plots. The figure shows that the relative deviation of the grid-
AIS method results from the conventional Monte Carlo and 
AIS method results near the core and inside the vertical air 
ducts is low, below 2.50%, which further verifies the cor-
rectness of the Grid-AIS method. By contrast, regions with 
higher relative deviations also have higher statistical errors 
and are therefore not meaningful for comparison.

The cumulative probability distribution functions with 
frequency histograms of the statistical errors for each MESH 
for the three methods are shown in Fig. 14. The horizontal 
coordinates represent the relative statistical error, which 
ranged from 0.00 to 100.00%. The vertical coordinate is 
the cumulative probability distribution function of the rela-
tive error, representing the proportion of MESH below a 
certain relative statistical error relative to the total mesh. 
As shown in Fig. 14a, the statistical error of the grid-AIS 
method increases most steeply, and the meshes with statisti-
cal errors below 10.00% account for approximately 94.00%. 
The AIS method, on the other hand, has approximately 
77.00% of the meshes with statistical errors below 10.00%. 
The conventional Monte method was even lower, accounting 
for approximately 20.00%. In addition, the statistical errors 
of the conventional Monte Carlo and AIS methods show a 
step increase of approximately 100.00% because these two 
methods have partially empty meshes.

Figure 14b presents the frequency histograms of the 
relative statistical errors for each MESH. Relative statistical 
errors were divided into 1.00% intervals, and the number of 
MESHs within each relative statistical error segment was 
counted as a percentage of the total number of MESH. To 
make the graph more concise, the vertical boundaries of 
each statistical error segment in the histogram are hidden. 
As shown in Fig. 14b, the statistical errors of the grid-AIS 
method were relatively concentrated, and the proportion of 
higher statistical errors was much lower than those of the 
conventional Monte Carlo and AIS methods. The spatial 
distribution of the Monte Carlo simulation particle density 
in the grid-AIS method is more uniform; therefore, the 
statistical error is more uniform in the whole space and is 
reflected in the frequency histogram, and the statistical error 
distribution shows a trend of being more concentrated.

In addition, it can be found from the data that the statisti-
cal error distribution of the conventional Monte Carlo and 
AIS methods has a more consistent trend in the areas with 
larger relative statistical errors. Although the AIS method 
reduces the overall statistical error by introducing a virtual 
surface, it does not change the Monte Carlo simulation par-
ticle density distribution on the virtual surface; therefore, 
the error change trend is close to that of the conventional 
Monte Carlo method. A relative statistical error of 100.00% 
represents no statistical value, that is, an empty mesh. In the 
figure, the vertical coordinate at a 100.00% relative statisti-
cal error represents the ratio of the number of empty meshes 

Fig. 4  (Color online) Statistical error result of a the AIS method 
(Y = –900  mm), b grid-AIS method (Y = –900  mm, d = 80  mm), c 
AIS Method (Z = 0 mm), d grid-AIS method (Z = 0 mm, d = 80 mm), 
e grid-AIS method (Z = 0  mm, d = 40  mm), and f grid-AIS method 
(Z = 0 mm, d = 160 mm) results of the VENUS-III benchmark

◂
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to the total number of meshes. This ratio was approximately 
50.00% for the conventional Monte Carlo method, approxi-
mately 2.00% for the AIS, and 0.00% for the grid-AIS, rep-
resenting no empty mesh.

7  Conclusion

Based on the basic AIS method, a grid-AIS method 
applicable to global variance reduction is proposed in 
this paper and implemented in the Monte Carlo program 
MCShield.

In this study, the grid-AIS method was validated using 
the VENUS-III international benchmark problem and a 
self-shielding reactor calculation. The results demonstrated 

Fig. 5  (Color online) Three views of the geometry of the self-design 
reactor-shielding example

Table 4  Simulation parameters 
for the self-design reactor-
shielding example

Method NPS CPU time (min) Mean absolute error Mean relative 
statistical error 
(%)

FOM  (min−1)

Conventional 
Monte Carlo

1.00 ×  1010 6.54 ×  104 8.17 ×  10−10 62.20 3.95 ×  10−5

AIS 6.00 ×  108 7.37 ×  104 1.15 ×  10−9 11.90 9.56 ×  10−4

Grid-AIS 1.00 ×  108 7.81 ×  104 2.78 ×  10−9 3.30 1.15 ×  10−2

Table 5  Calculation results of 
the self-design reactor-shielding 
example

Method Variance of MESH 
statistical error (%)

Proportion of grids with 
statistical error > 30%

Proportion of grids 
with statistical 
error < 10%

Conventional Monte 
Carlo

7.13 33.99% 45.09%

AIS 3.80 14.81% 69.28%
Grid-AIS 1.67 5.12% 86.95%

Fig. 6  (Color online) Conventional Monte Carlo flux cross-section: a front view and b side view
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Fig. 7  (Color online) AIS flux cross-section: a front view and b side view

Fig. 8  (Color online) Grid-AIS flux cross-section: a front view and b side view

Fig. 9  (Color online) Conventional Monte Carlo statistical error cross-section: a front view and b side view
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Fig. 10  (Color online) AIS statistical error cross-section: a front view and b side view

Fig. 11  (Color online) Grid-AIS statistical error cross-section: a front view and b side view

Fig. 12  (Color online) Sectional diagram of flux relative deviation between conventional Monte Carlo and grid-AIS: a front view and b side 
view
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that the grid-AIS method produced accurate computational 
results for addressing the global variance reduction problem, 
thereby confirming the correctness of the grid-based AIS 
method. In both validation cases, there was a reduction of 
approximately 60.00% in the variance of the statistical errors 
of the computed results. The grid-AIS method also exhibited 
a computational efficiency approximately one order of mag-
nitude higher than that of the AIS method and approximately 
two orders of magnitude higher than that of the conventional 
Monte Carlo method. These results validate the effectiveness 
of the grid-AIS method.

In summary, the grid-AIS method can better solve the 
global problem in shielding calculations and is an extension 
and supplement to the AIS method.
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