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Abstract
The aging of operational reactors leads to increased mechanical vibrations in the reactor interior. The vibration of the in-
core sensors near their nominal locations is a new problem for neutronic field reconstruction. Current field-reconstruction 
methods fail to handle spatially moving sensors. In this study, we propose a Voronoi tessellation technique in combination 
with convolutional neural networks to handle this challenge. Observations from movable in-core sensors were projected onto 
the same global field structure using Voronoi tessellation, holding the magnitude and location information of the sensors. 
General convolutional neural networks were used to learn maps from observations to the global field. The proposed method 
reconstructed multi-physics fields (including fast flux, thermal flux, and power rate) using observations from a single field 
(such as thermal flux). Numerical tests based on the IAEA benchmark demonstrated the potential of the proposed method 
in practical engineering applications, particularly within an amplitude of 5 cm around the nominal locations, which led to 
average relative errors below 5% and 10% in the L

2
 and L

∞
 norms, respectively.

Keywords Voronoi tessellation · Field reconstruction · Nuclear reactors · Reactor physics · On-line monitoring

1 Introduction

Since its advent in the 1950 s, nuclear energy has been cru-
cial for meeting the world’s energy needs and is an impor-
tant component of clean energy. Nuclear energy is primar-
ily generated through nuclear reactors, which are generally 
designed to operate for 30–40 years and can last even 
longer with license renewals. Data from the Power Reactor 

Information System indicates that among the total of 437 
reactors, 289 reactors have been in operation for more than 
30 years [1]. Thus, more than 60% of the current nuclear 
reactors face aging issues, which implies an increase in 
operational problems or anomalies in reactors. The aging 
of operational reactors also leads to increased mechanical 
vibrations of reactor internals, such as core barrels, con-
trol rods, in-core instruments, and fuel assemblies, or other 
vibrations such as flow blockage and coolant inlet perturba-
tions [2–6].

Various reactor core monitoring techniques aim to 
address these challenges, and they are primarily based on 
observations of the neutron flux acquired by in-core and 
ex-core instrumentation combined with numerical simula-
tions. These techniques and systems include CORTEX [7], 
BEACON [8], and RAINBOW [9]. A detailed overview of 
reactor core monitoring techniques is available in [10]. Field 
reconstruction combines observed data in the core and simu-
lation data [11, 12] and aims to determine the neutronic field 
in the core. Subsequently, safety-related parameters are cal-
culated, such as enthalpy rise hot channel factor, peak heat 
flux hot channel factor, linear power density of fuel rods, and 
deviation from nucleate boiling ratio.
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Data assimilation is a key algorithm for field recon-
struction, which originated from earth sciences, including 
meteorology and oceanography [13]. The data assimilation 
framework allows the combination of observations and mod-
els in an optimal and consistent manner, including informa-
tion about their uncertainties [14–16]. It has been applied 
in several studies in nuclear engineering [9, 17–21] for field 
reconstruction in a unified formalism. Data assimilation with 
a reduced basis is another framework, which has been exten-
sively researched in recent years [22–32]. In summary, stud-
ies on data assimilation have aimed to improve the accuracy, 
efficiency, and robustness of physical field reconstructions. 
Further details are available in Ref. [33].

However, as the location of the sensors affects the accu-
racy and robustness of the reconstructed field, optimization 
of sensor placement is an important aspect of the study. In 
[22], the authors proposed a generalized empirical interpo-
lation method (GEIM) [34] to select quasi-optimal sensor 
locations in the framework of data assimilation and reduced 
basis, which was validated on three types of operational 
reactors at Électricité de France (EDF). In [35], simulated 
annealing was applied to optimize the placement of fixed 
in-core detectors using variance-based and information 
entropy-based methods to define the objective function. 
Recently, clustering methods, such as the K-means algo-
rithm, have been used to optimize in-core detector locations 
for flux mapping in Advanced Heavy Water Reactor [36, 37]. 
In a recent study for building nuclear digital twins based 
on the Transient Reactor Test facility at the Idaho National 
Laboratory, a greedy algorithm was used to optimize sensor 
locations on a grid, adhering to user-defined constraints [38]. 
All these methods attempted to optimize the placement of 
the in-core detectors in a heuristic manner and were limited 
to a fixed sensor arrangement similar to that used during 
the training process. However, research on algorithms for 
handling detector vibrations is scanty.

The vibration of the in-core sensors near their nominal 
locations is a new problem that may arise from the aging of 
operational reactors. A typical limitation is attributed to the 
inability of all the aforementioned methods to handle spa-
tially moving sensors. Recently, the work of [39] facilitated 
the practical use of neural networks for global field estima-
tion, considering that sensors could move and become online 
or offline over time. The Voronoi tessellation [40] was used 
to obtain a structured-grid representation from sensor loca-
tions; subsequently, convolutional neural networks (CNNs) 
were used to build a map from movable sensors to the physi-
cal field. Inspired by this work, we adapted the framework to 
perform field reconstruction in nuclear reactors, such that the 
vibration of sensors was considered during the reconstruc-
tion of neutronic fields.

The remainder of this paper is organized as follows. In 
Sect. 2, we provide a detailed description of the methodology 

for field reconstruction with movable sensors by using Voro-
noi tessellation along with convolutional neural networks 
(V-CNN). In Sect. 3, we present the physical model and the 
detailed process for neutronic field reconstructing. Section 4 
illustrates the numerical results, in which various error met-
rics have been presented to evaluate the performance of the 
method. Finally, we provide a brief conclusion and discuss 
future work in Sect. 5.

2  Methodology for field reconstruction 
with movable sensors

We aim to reconstruct a two-dimensional (2D) neutronic 
field � ∈ ℝ

nx×ny in the reactor core domain Ω ∈ ℝ
2 from 

sparse and limited in-core sensor observations y ∈ ℝ
nobs at 

location ryi , i = 1, ..., nobs . Here, nobs indicates the number 
of in-core sensor observations, while nx and ny denote the 
number of grid points in the horizontal (x) and vertical (y) 
directions in a high-resolution field, respectively. Handling 
movable sensors at their nominal locations in the field are a 
challenging task. Field reconstruction should be performed 
using only a single machine learning model to avoid retrain-
ing when the sensors move from their nominal locations. 
This was achieved through two key processes, as described 
below: 

 (i) A partition method using Voronoi tessellation which 
tolerated the local perturbations of sensor locations;

 (ii) A machine learning framework that mapped the 
observations to the global physical field in the same 
structure.

We note that, considering that the sensors in the core of a 
reactor were fixed, such as self-powered neutron detectors 
(SPND), we only considered cases of sensor vibration near 
their fixed positions, rather than significant movement in the 
entire domain over time. The latter corresponds to the cases 
referred to in [39].

In Fig. 1, we present V-CNNs for neutronic field recon-
struction and provide a detailed description of each compo-
nent in the following sections.

2.1  Voronoi tessellation for spatial domain 
partitions

For reconstruction using movable sensors, Voronoi tessel-
lation is an essential step that maps the observations to the 
entire spatial domain. For a given space Ω , which is gener-
ally in 2D, a set of points {ri, i = 1, ..., nobs} ∈ Ω . The tes-
sellation approach optimally partitions the given space Ω 
into nobs regions G = {g1, g2, ..., gnobs} using the boundaries 



Reactor field reconstruction from sparse and movable sensors using Voronoi… Page 3 of 13 43

determined by the measure d among the given points. Using 
the measure d, Voronoi tessellation can be expressed as

In this study, the Euclidean measure was used, and the Voro-
noi boundaries between the points were their bisectors. Fig-
ure 2 shows an example of 81 points and the related Voronoi 

(1)gi = {r ∈ Ω | d(r, ri) < d(r, rj), j ≠ i}.

partitions in the Euclidean measure. The Voronoi tessella-
tion conveniently projects sparse sensor observations to the 
global physical field. Thus, learning the map from sparse 
observations to the global field via CNNs is possible. More 
importantly, this partitioning process can tolerate local per-
turbations in the sensor locations. For more details on the 
mathematical theory of the Voronoi tessellation, we refer 
readers to [40–43].

2.2  Input and output of the machine learning 
model

To reconstruct the physical field using machine learning, 
we prepared the input data for the model using the follow-
ing process: 

 (i) Determine the sensor locations ryi , i = 1, ..., nobs in 
the reactor core. ryi may vibrate from its nominal 
location rnominal

yi
.ryi = rnominal

yi
+ �ryi , where �ryi pre-

sents the amplitude of the vibration. In the following, 
for reasons of convenience, we denote �ryi as �.

 (ii) Calculate the Voronoi tessellation si ∈ ℝ
nx×ny using 

ryi , i = 1, ..., nobs . The Voronoi tessellation first 
partitions the reactor domain Ω into nobs regions 
G = {g1, ..., gnobs} with Ω = ∪

nobs
i=1

gi , such that each 
region gi contains one sensor located at ryi . si is 
defined as follows: 

(2)si(r) =

{
1 if r ∈ gi
0 otherwise

.

Fig. 1  (Color online) V-CNNs for neutronic field reconstruction from 
discrete sensor locations in a 2D reactor core. The input Voronoi field 
is constructed from 81 sensors from each center of fuel assembly. The 
Voronoi field is then fed into a CNN with the Voronoi mask field �m , 

and the output of the CNN is the reconstructed field �r . In the mask 
field, a grid with a sensor i (black circle) has a value of �m,i , which 
reflects the detected value of the underlying field at site

Fig. 2  (Color online) Example of 81 points and the related Voronoi 
tessellation using Euclidean measure
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 (iii) Prepare the Voronoi mask field �m ∈ ℝ
nx×ny using 

Voronoi tessellation si, i = 1, ..., nobs . The element 
�m(r) satisfies 

The Voronoi mask field �m and related target neutronic field 
�n are provided to a machine learning model F� such that 
F� ∶ �m ⟼ �n , where � indicates that the model is trained 
for a given � . The final output of the model is then denoted 
by �r = F�(�m) , where the subscript ‘ r ’ denotes the recon-
structed neutronic field. As the specified input vector contains 
the observed values and position information of the sensors, 
the proposed model can handle arbitrary sensor locations and 
an arbitrary number of sensors.

The perturbations of sensor locations and its impact on 
the effectiveness of the network were also investigated in this 
study. The typical amplitude � of the vibration of sensors in 
a reactor core is less than 1 cm [6], and we investigated the 
cases of � = 1 cm, 3 cm, and 5 cm. The effects of the number 
and locations of sensors in these scenarios are described in the 
numerical results section.

To construct the training {�(train)
m ,�

(train)
n } and test 

{�
(test)
m ,�

(test)
n } sets for the learning process, a physical model 

of the underlying problem

was solved numerically. Here, 𝜇 ∈ D ⊂ ℝ
p denotes the 

p-dimensional parameter of the model, while D denotes the 
feasible parameter domain. The training and test sets were 
accumulated by solving Eq. (4) over a discrete set D(discrete) 
which is representative of D.

2.3  Learning the map using convolutional neural 
networks

After preparing the input data for the model, a CNN model 
can be used to learn the map from observations to the field, in 
the same manner as handling images [44–46]. In this study, 
the channel of the CNN was set to one, and for each layer, the 
extraction of t key features of the input data through filtering 
operations was expressed as

Here, C = floor(H∕2) , q(l−1) and q(l) are the input and output 
data at layer l, respectively; hpcm represents a filter of size 
H × H and bm is the bias. lmax , H, and m denote the num-
ber of layers, filter size, and number of filters, respectively. 
The output of each filter operation is fed to the activation 
function �(⋅) as the output of the neurons. In this study, we 
selected a rectified linear unit (ReLU) �(z) = max(0, z) as the 

(3)�m(r) = yri , if r ∈ gi.

(4)M(�(�),�) = 0,

(5)q
(l)

ijm
= �

(
H−1∑

p=0

H−1∑

c=0

q
(l−1)

i+p−C,j+c−C,m
hpcm + bm

)
.

activation function [47]. We used the ADAM optimizer with 
an early stopping criterion for training and threefold cross-
validation [48–50]. Furthermore, the L2 norm was used to 
measure the errors in the learning process. The detailed 
parameters of the CNN used in this study are summarized 
in Table 1.

The Voronoi mask field �m ∈ ℝ
nx×ny was used to model 

F  ; that is, q(0) = �m , and the output of the model was a 
high-resolution neutronic field q(lmax) . The learning process 
is formulated as follows.

where w denotes the model parameters, specifically the fil-
ters of the CNN in this study. After completing the training 
process, the field was reconstructed by feeding the observa-
tions y to the model F  , i.e., �(y) = F(�m(y),w).

3  Application to neutronic field 
reconstructions

3.1  Physical model

In this section, the reconstruction method for nuclear reac-
tor cores is tested. We considered a typical benchmark in 
nuclear reactor physics, namely the 3D IAEA benchmark 
problem [51] prepared by the Computational Benchmark 
Problems Committee of the Mathematics and Computation 
Division of the American Nuclear Society. This benchmark 
was selected because it is adapted from realistic reactors, 
and its geometry and composition are much more complex 
than those of single-region or two-region problems. After 
completing this test, the method was directly tested based 
on real reactor calculations.

To test the algorithm, we used the 2D IAEA case, which 
represents the midplane z = 190 cm of the 3D IAEA bench-
mark see [51, page 437] for a detailed description. The 2D 
geometry of the reactor is shown in Fig. 3, where only one-
quarter is shown because the rest can be inferred from the 
symmetry along the x and y axes. This quarter is denoted by Ω 
and comprises four subregions with different physical proper-
ties: the first three subregions form the core domain Ω1,2,3 , 
while the fourth subregion is the reflector domain Ω4 . Certain 
Newman boundary conditions are satisfied on the x and y axes 

(6)w = argmin
w

‖q − F(�m,w)‖2,

Table 1  Parameter settings of the CNN

Layers Hidden Filter size Number 
of filters

Learning rate Resolution

lmax layers H m of ADAM nx × ny

9 7 8 48 0.0001 171 × 171
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considering symmetry, and the zero-boundary condition is sat-
isfied on the external border, see Fig. 3.

The neutron fields consist of fast and thermal fluxes, that 
is, � =

(
�1,�2

)
 are modeled using a two-group neutron dif-

fusion equation with suitable boundary conditions. The fluxes 
are the solutions to the following eigenvalue problem (see [52, 
53]): Specifically, the flux � satisfies the following eigenvalue 
problem: Find (�,�) ∈ ℂ × L∞(Ω) × L∞(Ω) , such that

with the zero-boundary condition �i = 0, i = 1, 2 on the 
external border �Ω and the Newman boundary conditions 
�(�i)∕�(n) = 0, i = 1, 2 on axes. The generated nuclear 
reactor rate P = �Σf,1�1 reflects the power distribution over 
the core. The following parameters were used in the above 
equation:

(7)

{
− ∇

(
D1∇�1

)
+

(
Σa,1 + Σ1→2 + D1B

2
z1

)
�1 =

1

�
�Σf,2�2

− ∇

(
D2∇�2

)
+ (Σa,2 + D2B

2
z2
)�2 = Σ1→2�1

,

• Di : diffusion coefficient of group i with i ∈ {1, 2};
• Σa,i : macroscopic absorption cross section of group i;
• Σ1→2 : macroscopic scattering cross section from group 1 

to 2;
• Σf,i : macroscopic fission cross section of group i;
• � : average number of neutrons emitted per fission.

The axial buckling B2
zi
= 0.8 × 10−4 for all the regions and 

energy groups (Table 2). The nominal values of the coef-
ficients in diffusion model (7) are listed in Sect. 3.1.

Under certain mild conditions of the parameters, the max-
imum eigenvalue �max is real and strictly positive (see [54, 
Chapter XXI]). The associated eigenfunction � , which is 
also real and positive at each point x ∈ Ω , and is the flux of 
interest. In neutronics, the inverse of �max is conventionally 
used and is called the multiplication factor

For each parameter setting, keff is determined by the solution 
to the eigenvalue problem (7). The maximum eigenvalue 
�max is computed using the well-known power method (see 
[52]). In this study, Freefem++ [55] was used to solve the 
2D IAEA benchmark problem. The spatial approximation 
used ℙ1 finite elements with a grid size of h = 1 cm; thus, the 
resolution of the field was nx × ny = 171 × 171.

3.2  Field reconstruction

To simulate the variation in the neutronic fields with respect 
to the parameter variations, we considered the parameters in 
Sect. 2 as uncertain parameters. Specifically, we assumed 
the following:

where D is the parameter domain. We randomly gener-
ated 10000 samplings of � in D and solved Eq. (7) to 
obtain a collection of 10000 samples of neutronic fields 
M = {�1(�),�2(�), P(�) | � ∈ D} . Among them, 8000, 
1000, and 1000 samples were used for training, validation, 

(8)keff ∶=

1

�max

.

(9)
� = (�1,�2, ...,�n) ∈ D = [�i,nominal ⋅ 0.8,�i,nominal ⋅ 1.2]

n

Fig. 3  (Color online) Geometry of the 2D IAEA nuclear core, upper 
octant: region assignments, lower octant: fuel assembly identification 
(from [51])

Table 2  Parameters of the 2D 
IAEA benchmark problem

* The axial buckling B2

zi
= 0.8 × 10

−4 for all the regions and energy groups

Region D1 D2 Σ1→2 Σa,1 Σa,2 �Σf,1 �Σf,2 Material
(cm) (cm) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

Ω1 1.50 0.40 0.02 0.01 0.080 0.00 0.135 Fuel 1
Ω2 1.50 0.40 0.02 0.01 0.085 0.00 0.135 Fuel 2
Ω3 1.50 0.40 0.02 0.01 0.130 0.00 0.135 Fuel 2 + Rod
Ω4 2.00 0.30 0.04 0.00 0.010 0.00 0.000 Reflector
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and testing, respectively. We trained three CNN models 
with the same input data, that is, the thermal flux �2 which 
is measurable with in-core detectors, and the output fields, 
which are the fast flux �1 , thermal flux �2 , and reaction rate 
P (see Fig. 4 for a schematic).

To synthesize the observations, we assumed that an in-
core sensor was located at the center of each assembly to 
acquire the thermal flux. We further assumed that these 
sensors could move in a local square with a width � cm, 
centered at the center of each assembly. We performed 
numerical tests for the cases � = 1, 3, and 5 cm to investi-
gate the effect of different levels of vibration of the sen-
sors. Thus, observations were generated randomly from 
windows of width � centered at their nominal locations 
(see Fig. 5). Then, the model F  was trained based on set 
M , and schematics of the training process are shown in 
Figs. 1 and 4.

3.3  Error metrics

Before presenting the numerical results, we define several 
metrics to evaluate the quality of the field reconstructions. 
The normalized root-mean-square residual of the difference 
between the reconstruction �r and test field �t is

In nuclear engineering, the error in the reconstructed field 
in L

∞
 is another import metric that reflects the worst case 

scenario for each reconstruction.

The total average root-mean-square residual and standard 
deviation over the given test set M are defined as

where � denotes the L2 or L
∞

 norm.
Furthermore, the average assembly field (fluxes and power 

rate) and related errors were investigated. The average assem-
bly power is defined as

where � denotes �1,�2 or P , vk denotes the volume of the k-
th subassembly, and k denotes the fuel assemblies, as shown 
in the lower octant of Fig. 3. The average error e2(�ass) , max-
imum relative error e

∞
(�ass) , related average E(e� (�ass)) , 

and standard deviation STD(e� (�ass)) of the errors over the 
given test set M can also be similarly defined.

(10)e2(�) ∶=
‖�r − �t‖2

‖�t‖2
.

(11)e
∞
(�) ∶=

‖�r − �t‖L
∞

‖�t‖L
∞

.

(12)
E(e� (�)) ∶= average�∈M(e� (�))

STD(e� (�)) ∶= standard deviation�∈M(e� (�))
,

(13)�ass,k =
1

vk ∫vk

�dv,

Fig. 4  (Color online) Schematic for the reconstruction of neutronic 
fields

Fig. 5  Different amplitudes of vibrations of a sensor near the nominal location in an assembly
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Therefore, we introduce the structural similarity 
(SSIM) [56] index to measure the field reconstruction. In 
contrast to the general L2 error, the SSIM index measures 
similarity by comparing two images based on luminance, 
contrast, and structural similarity information.

4  Numerical results

We have described the methodology for field reconstruction 
with movable sensors using a CNN in Sect. 2 and presented 
a detailed process for neutronic field reconstruction based on 
a typical benchmark nuclear engineering domain in Sect. 3. 
In this section, we describe the numerical performance of 
the proposed method.

4.1  Performance for the benchmark problem

In Fig. 6, we present the error distributions of the recon-
structed fields for different vibration amplitudes, namely 
� = 1, 3, and 5 cm, for the 2D IAEA benchmark problem. 
The reconstruction of �1 using observations from �2 per-
forms better than those of �2 and P . Furthermore, the recon-
struction error increases with the amplitude of the vibration, 
that is, when � varies from 1 cm to 5 cm. The largest error 
appears around the interface of the fuel and reflector because 
of discontinuities in the materials, particularly for the fields 
of the thermal flux �2 and the power rate P.

The average assembly values of the reconstructed fluxes 
and power rate are shown in Fig. 7, and the same conclu-
sions can be drawn. Because of the averaging process, the 
assembly exhibits considerably smaller relative errors than 
the pin-wise case.

Three main conclusions can be drawn from analysis of 
the numerical results. 

 (i) The proposed V-CNN can reconstruct the multi-field 
using observations only from thermal flux;

 (ii) The reconstruction errors for the assembly are sig-
nificantly lower than 5%, which is acceptable for 
engineering applications, i.e., less than 10%, which 
is an acceptable criterion in reactor physics (more 
information is available in [57]);

 (iii) Even with a movement of amplitude � = 5 cm for the 
sensors, the proposed V-CNN reconstructs the field 
with an error less than 10%.

4.2  Average performance over a test set

To investigate the generalizability of the field reconstruc-
tion method, we analyzed the error performance for 1000 
test samples. The error metrics were the average relative L2 
error E(e2(�)) , average relative L

∞
 error E(e

∞
(�)) , average 

relative assembly L2 error E(e2(�ass)) , average relative 
assembly L

∞
 error E(e

∞
(�ass)) , average SSIM, E(SSIM(�)) , 

and the standard deviation of the aforementioned errors.
Table 3 illustrates the numerical results of the errors for 

the reconstruction of �1 over the 1000 test samples. All 
error metrics exhibit good agreement between the recon-
structed and original fields. The maximum errors, that is, 
the L

∞
 errors in both the pin-wise and assembly wise cases, 

are below 2%. The good performance is attributed to the 
smoothness of the fast flux owing to its relatively longer 
diffusion length than the thermal flux. Thus, the fast flux 
is less affected by the heterogeneity of the materials in this 
benchmark (Fig. 6a for example).

Tables 4 and 5 illustrate the numerical results of the errors 
for the reconstruction of �2 and P over the 1000 test samples. 
The average L

∞
 errors in the pin-wise of the thermal flux and 

power rate were below 10% when the vibration amplitude 
was less than 3 cm. When the amplitude of the vibration 
increases, the average L

∞
 error exceeds 10%, which unsuit-

able for practical engineering applications. However, the L
∞

 
errors are much smaller for the assembly. The worst case 
occurs for � = 5 cm when reconstructing �2 , which leads 
to an error of E(e

∞
(�ass)) = 0.0288 and standard deviation 

STD(e
∞
(�ass)) = 0.0109 . These results further confirm its 

acceptability for engineering applications. Although the rel-
ative L

∞
 errors are 10%, most of the points appear around the 

interface between the fuel and reflector. A relatively large 
error in this domain is not crucial for safety analysis. Thus, 
the SSIM indices in all the three tables exceeded 0.99, which 
further demonstrates the excellent performance for all the 
field reconstructions.

4.3  Robustness analysis

The robustness of the reconstruction with respect to the 
number of observations nobs and amount of training data 
nsnapshot was examined. In Fig.  8, we show the depend-
ence of the relative reconstruction errors in L2 norm and 
L
∞

 norm on nsnapshot = 128, 1280, 4096, 8192, 15743 and 
on nobs = 25, 45, 81 to recover the thermal flux �2 over the 
test set. The number of observations nobs = 25, 45 , and 81 
correspond to sparsities of 0.0855%, 0.154%, and 0.277%, 
respectively, against the number of grid points in the field. 
The two figures demonstrate the robustness of the proposed 
method with respect to the sparsity of the sensors and train-
ing data. Few observations and training data lead to low-
level reconstruction errors. Furthermore, the addition of 
training data improves the reconstruction accuracy more 
significantly than the addition of sensors. This result dem-
onstrates that the proposed field-reconstruction framework 
is robust against sensor failures and confirms its potential for 
practical applications.
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Fig. 6  (Color online) Reconstructed fields for different vibration amplitudes, � = 1, 3, 5 cm for the 2D IAEA benchmark problem
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Fig. 7  (Color online) Reconstructed fields in assembly wise for different vibration amplitudes, and � = 1, 3, and 5 cm for the 2D IAEA bench-
mark problem
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To investigate the robustness of the recovery with respect 
to the observation noise, a noise �� that was randomly sam-
pled in the range (−�, �) was added to each clean observation 
y, thereby generating a noisy observation yo = y(1 + ��) for 
each sensor. The dependence of the relative reconstruction 

errors in the L2 and L
∞

 norms of different noise levels, that 
is, � = 0.01, 0.02, 0.03, 0.04, 0.05 for recovering the thermal 
flux �2 are shown in Table 6. The test was performed using 
81 sensors with a vibration amplitude � = 5 cm. The errors 
were first averaged over 100 repeated random observation 
samplings for each field reconstruction, and then aver-
aged over the test set. On average, the reconstruction error 
changes significantly for noisy observations. The reconstruc-
tion error exhibits a slow linear growth trend with respect to 
the noise level. Although the L2 error is below 10%, which 
is satisfactory for nuclear engineering applications, the L

∞
 

error remains at approximately 30%, which is unsatisfactory. 
This provides a direction for further research on reducing 
the L

∞
 error.

5  Conclusion

In this study, a V-CNN was proposed for neutronic field 
reconstruction to resolve the vibrations of in-core sensors, 
which may arise from the aging of operational reactors. 
Observations from movable in-core sensors were projected 
onto the same global field structure using Voronoi tessella-
tion, holding the magnitude and location information of the 
sensors. General convolutional neural networks were used 
to learn maps from observations to the global field. Fur-
thermore, the proposed method reconstructed multi-physics 
fields, including the fast flux, thermal flux, and power rate 
distributions, using observations from a single field, such as 
the thermal flux.

Numerical tests based on the IAEA benchmark demon-
strated the efficiency of the proposed method. Three main 
conclusions can be drawn from the analysis of the numerical 
results. 

 (i) V-CNN can reconstruct the multi-field using observa-
tions only from thermal flux;

 (ii) All the reconstruction errors in average are below 5%, 
which is satisfactory for engineering applications;

 (iii) Even with a vibration amplitude of � = 5 cm for sen-
sors, V-CNN exhibits satisfactory performance.

In this study, the original CNN framework was used for 
image processing and was adapted for field reconstruction 
with rectangular mesh division. Field reconstruction with 
an irregular mesh requires additional mesh mapping to map 
the irregular mesh to a rectangular mesh. The adaptability 
of the proposed method to various reactor configurations is 
a continuation of this study.

This study provides a novel approach for field recon-
struction using vibration sensors. Future work could high-
light the uncertainty quantification of V-CNN considering 
observation noise systematically and proceed to practical 

Table 3  Errors in the different metrics for the reconstruction of �
1
 

using thermal flux observations from movable sensors

Width 1 3 5

E(e2(�)) 0.0097 0.0103 0.0119
STD(e2(�)) 0.0017 0.0020 0.0031
E(e

∞
(�)) 0.0276 0.0293 0.0303

STD(e
∞
(�)) 0.0078 0.0090 0.0091

E(e2(�ass)) 0.0084 0.0094 0.0105
STD(e2(�ass)) 0.0020 0.0022 0.0032
STD(e

∞
(�ass)) 0.0155 0.0159 0.0171

STD(e
∞
(�ass)) 0.0046 0.0054 0.0064

E(SSIM(�)) 0.9986 0.9982 0.9979
STD(SSIM(�)) 0.0003 0.0004 0.0004

Table 4  Errors in the different metrics for the reconstruction of �
2
 

using thermal flux observations from movable sensors

Width 1 3 5

E(e2(�)) 0.0167 0.0190 0.0213
STD(e2(�)) 0.0025 0.0032 0.0041
E(e

∞
(�)) 0.0751 0.1001 0.1219

STD(e
∞
(�)) 0.0197 0.0293 0.0391

E(e2(�ass)) 0.0120 0.0134 0.0141
STD(e2(�ass)) 0.0025 0.0027 0.0028
E(e

∞
(�ass)) 0.0216 0.0256 0.0288

STD(e
∞
(�ass)) 0.0085 0.0093 0.0109

E(SSIM(�)) 0.9969 0.9964 0.9957
STD(SSIM(�)) 0.0006 0.0008 0.0010

Table 5  Errors in the different metrics for the reconstruction of P 
using thermal flux observations from movable sensors

Width 1 3 5

E(e2(�)) 0.0137 0.0164 0.0253
STD(e2(�)) 0.0031 0.0046 0.0060
E(e

∞
(�)) 0.1429 0.2069 0.2640

STD(e
∞
(�)) 0.0811 0.1079 0.1119

E(e2(�ass)) 0.0097 0.0108 0.0192
STD(e2(�ass)) 0.0027 0.0037 0.0058
E(e

∞
(�ass)) 0.0182 0.0191 0.0257

STD(e
∞
(�ass)) 0.0069 0.0081 0.0082

E(SSIM(�)) 0.9951 0.9947 0.9920
STD(SSIM(�)) 0.0012 0.0018 0.0023
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engineering applications based on real nuclear reactors such 
as the HPR1000 reactor developed in China [58]. In this 
aspect, data uncertainty could be evaluated using a probabil-
istic neural network [59] or Bayesian neural network [60]in 
combination with V-CNN, while the epistemic uncertainty 
of the model could be examined using the Gaussian sto-
chastic weight averaging technique [61] or other techniques.

To investigate the adaptability of the proposed method to 
an HPR1000 reactor, a pin-wise field calculation is neces-
sary to consider the fuel and sensor vibrations, which is now 
being performed by our group. However, in practical engi-
neering cases, the vibrations of reactor components, such as 
fuel and in-core sensors, lead to complex phenomena in the 
core. Many studies [2–6] have analyzed the induced varia-
tion of neutronic fields (also called neutron noise), consid-
ering the induced variation in the cross section parameters 
of the neutron diffusion equations. Inspired by the neutron 
noise analysis process, a synthetic modeling approach is 
necessary for considering the effects of component vibra-
tions. This approach is useful for clarifying the interplay 

or distinguish between field reconstructions using in-core 
sensor vibrations and general reactor noise analyses.

In addition, the combination of V-CNN and fault diagno-
sis [62] is a possible future research topic. With the devel-
opment of machine learning in the field of nuclear physics 
[63, 64], the adoption of V-CNNs in nuclear physics, where 
CNNs are used [65–67], is also worth investigating.
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Fig. 8  Dependence of the relative reconstruction errors in the L2 and L
∞

 norms on the number of training snapshots 
nsnapshot = 128, 1280, 4096, 8192, 15743 and the number of observations nobs = 25, 45, 81 for recovering the thermal flux �2

Table 6  Dependence of the relative reconstruction errors in the L
2
 

and L
∞

 norms of the noise level � for recovering the thermal flux �
2

Noise level E(e2(�)) E(e
∞
(�))

0.0 0.0213 0.1219
0.01 0.0493 0.2956
0.02 0.0510 0.2975
0.03 0.0536 0.3013
0.04 0.0572 0.3078
0.05 0.0616 0.3158
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