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Abstract
The High Altitude Detection of Astronomical Radiation (HADAR) experiment, which was constructed in Tibet, China, 
combines the wide-angle advantages of traditional EAS array detectors with the high-sensitivity advantages of focused 
Cherenkov detectors. Its objective is to observe transient sources such as gamma-ray bursts and the counterparts of gravita-
tional waves. This study aims to utilize the latest AI technology to enhance the sensitivity of HADAR experiments. Training 
datasets and models with distinctive creativity were constructed by incorporating the relevant physical theories for various 
applications. These models can determine the type, energy, and direction of the incident particles after careful design. We 
obtained a background identification accuracy of 98.6%, a relative energy reconstruction error of 10.0%, and an angular 
resolution of 0.22◦ in a test dataset at 10 TeV. These findings demonstrate the significant potential for enhancing the preci-
sion and dependability of detector data analysis in astrophysical research. By using deep learning techniques, the HADAR 
experiment’s observational sensitivity to the Crab Nebula has surpassed that of MAGIC and H.E.S.S. at energies below 
0.5 TeV and remains competitive with conventional narrow-field Cherenkov telescopes at higher energies. In addition, our 
experiment offers a new approach for dealing with strongly connected, scattered data.
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1  Introduction

The investigation of ultrahigh-energy gamma-ray astron-
omy [1] is pivotal for understanding a range of extreme 
astrophysical phenomena. These ultrahigh-energy gamma 
rays predominantly originate from highly active galactic 
nuclei, cataclysmic supernova explosions, neutron stars, 
and black holes. Importantly, these observations form an 
empirical cornerstone for addressing some of the most 
compelling scientific questions, including the detection 
of dark matter and the identification of cosmic-ray sources.

Space observatories such as the Fermi Gamma-ray 
Space Telescope [2, 3] require long observation times 
to gather statistically relevant data because high-energy 
gamma-ray flux decays quickly and has a power-law distri-
bution [4]. Consequently, large-area ground detectors are 
required for detecting high-energy gamma rays.

The Earth’s atmosphere has become a substantial inter-
action medium for high-energy photons in energy ranges 
exceeding gigaelectronvolts [5], effectively preventing 
their transmission. In this regime, high-energy �-rays 
interact with the Earth’s upper atmospheric layers [6], 
leading to the generation of electron-positron e−e+ pairs, 
which in turn instigate electromagnetic cascades. Within 
these cascades, relativistic electrons and positrons produce 
concentrated beams of Cherenkov radiation. These beams 
serve as the principal observational targets for specialized 
ground-based detection systems, enabling nuanced studies 
of the high-energy universe.

Over the last few decades, gamma-ray astronomy has 
become a frontier discipline for studying the universe’s 
highest-energy astrophysical phenomena [7, 8]. The Cher-
enkov Telescope Array (CTA) is an international initiative 
that seeks to better understand high-energy gamma rays in 
the universe by identifying atmospheric Cherenkov radia-
tion [9]. The 20–300 TeV energy range covered by CTA 
aims to close the observational gap currently present in 
this energy range. A group of five Cherenkov telescopes, 
called the High Energy Stereoscopic System (HESS), is 
now operational in Namibia and used to observe cosmic 
TeV energy rays. It offers crucial information for com-
prehending gamma-ray sources [10] such as pulsars and 
supernova remnants [11]. The Major Atmospheric Gamma 
Imaging Cherenkov (MAGIC) telescopes, two telescopes 
situated at La Palma in the Canary Islands, are another 
notable project. By detecting Cherenkov radiation from 
cosmic gamma-ray sources [12], the physical character-
istics and origins of cosmic rays can be investigated [13]. 
These telescopes, which have a small field of view, are pri-
marily employed to make accurate observations of known 
high-energy astrophysical objects, providing important 

knowledge and observational data for a comprehensive 
understanding of these extreme cosmological occurrences.

However, measurable signals from many extreme celes-
tial occurrences only last for brief periods because of their 
intrinsically transitory characteristics. Thus, there is an 
urgent demand for wide-field detectors that can instantly 
capture high-energy particle signals across a wide spatial 
range because large detector arrays require time to recali-
brate their directed reception. Wide-field Cherenkov imag-
ing telescopes are particularly useful in such situations.

The High Altitude Detection of Astronomical Radia-
tion (HADAR) experiment is one such technology [14, 15], 
comprising an array of imaging atmospheric Cherenkov 
refractive telescopes anchored by atmospheric Cherenkov 
principles. Positioned at an impressive altitude of 4300 m in 
Yangbajing, Tibet (30.0848◦ N, 90.5522◦ E), the experiment 
incorporates four water lenses, each spanning a diameter of 
5 m, strategically placed at the vertices of a square with a 
side length of 100 m [16]. These lenses, ensconced within 
a hemispherical glass shell 5 m in diameter, are housed in a 
steel-structured tank with a diameter of 8 m. This tank, ris-
ing to a height of 7 m, is filled with high-purity water, and 
cameras outfitted with photomultiplier tubes are attached 
to its base. Upon the interception of Cherenkov radiation, a 
quartet of detectors meticulously logs the charge deposition 
on the photomultiplier tubes within a predefined temporal 
frame. All the collected data are subsequently archived in 
an external storage apparatus.

To effectively detect very high-energy (VHE) �-ray 
sources, analytical methodologies must execute several 
critical tasks. 

Background Suppression	� The identification of distinct 
shape features within detec-
tor images is pivotal. This 
allows the isolation of target �
-rays from the overwhelmingly 
abundant background of cosmic 
rays, which are predominantly 
composed of protons.

Energy Reconstruction	� The accurate estimation of the 
original energy of incident 
particles is achieved by corre-
lating variables such as depos-
ited charge and the relative 
spatial coordinates within the 
detectors.

Direction Reconstruction	� Leveraging the stereoscopic 
images acquired from the detec-
tors, the axis direction of the 
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resultant particle shower must 
be reconstructed. This facili-
tates the estimation of the orig-
inal direction from which the 
incident particles originated.

Deep learning techniques are becoming increasingly 
integral to the data analysis frameworks employed in Cher-
enkov telescope experiments. A variety of computational 
algorithms, particularly those based on convolutional neu-
ral networks (CNNs), have shown unparalleled success in 
addressing the multifaceted analytical challenges endemic 
to this scientific domain. Prominent initiatives, such as 
H.E.S.S.  [17] and CTA  [18] have harnessed the robust 
capabilities of CNNs to analyze their observational data-
sets, yielding significant advancements. These technologi-
cal strides corroborate the findings of the present study, 
reinforcing the compelling case for the widespread utility 
and robustness of deep learning methodologies within this 
specialized field of research.

This study is structured as follows: The use of deep learn-
ing is briefly introduced in Sect. 2, along with our data pro-
duction process. A more thorough overview is provided in 
Sects. 3-5, and the pertinent data are used as the basis for 
training the background suppression, energy reconstruction, 
and incident direction models. The modeling calculations 
of the flux and observational sensitivity to the Crab Nebula 
at various energies are presented in Sect. 6. Finally, Sect. 7 
presents a thorough summary of the materials used.

2 � Deep learning approaches for HADAR 
data

Deep learning is an important branch of artificial intelli-
gence (AI) that has emerged as a growing field in recent 
years. With the significant increase in computational power, 
especially with GPU chips, the real-time computation of 
large parallel data (e.g., high-dimensional matrices) has 
become possible. This has led to the convergence of deep 
learning in various data analysis industries, simplifying 
tasks that were previously difficult for humans to perform. 
As a type of AI, deep learning methods simulate the multi-
layer neural network structure of the human brain to solve 
problems. Similar to human learning, deep learning methods 
continuously update network parameters through a step-by-
step understanding of data. This process ultimately allows 
the network to extract as many useful features as possible 
from the inputs and obtain model predictions through neural 
network computations.

In this study, we adopted CNNs. As excellent models 
for image recognition, CNNs can spontaneously extract 
local relationships at different positions within the same 

dimension and across different dimensions based on the 
input signals, ultimately yielding optimal results. Funda-
mentally, a CNN is composed of multiple layers consisting 
of a series of convolutional pooling layers connected to fully 
connected layers. Owing to this layered structure, errors 
from one layer propagate to the next, potentially leading to 
an exponential growth in errors. To mitigate this problem, 
we used a specialized CNN known as a residual CNN. The 
advantage of this network is that each layer receives not only 
processed signals from the previous layer but also original 
signals from the previous layer. This significantly enhances 
the model’s ability to fit the data.

By leveraging the power of CNNs, specifically residual 
CNNs, we aim to address the three main challenges in 
detecting VHE gamma-ray sources: background suppres-
sion, energy reconstruction, and direction reconstruction. 
Our experimental results, which are detailed in the subse-
quent sections, demonstrate the effectiveness of deep learn-
ing methods in these high-stakes, complex analytical tasks.

Throughout the research process, all the datasets used for 
training the neural networks were generated using the widely 
adopted CORSIKA Monte Carlo program [19]. In the simu-
lations, the set altitude was 4300 m, which corresponded to 
an atmospheric depth of 606 g/cm2 . Geomagnetic coordi-
nates were set in Yangbajing, Tibet. The simulated primary 
cosmic-ray particles included both gamma rays (serving as a 
signal) and protons (serving as a background), with energies 
ranging from 20 to 10 TeV. The incident zenith angle was 
set to 20◦ and the azimuthal angle ranged from 0 ◦ to 360◦ . 
All events were uniformly scattered within a circle centered 
on the HADAR array with a radius of 400 m. Following 
shower simulation, appropriate software packages were used 
to simulate the response of each HADAR detector, which 
was placed at each of the four vertices of a square with a side 
length of 100 m. The size of the field of view determines the 
detector camera size. When storing a cluster shot example, 
we chose a 400 × 400 storage range to maintain the integrity. 
Each photomultiplier tube had a diameter of 5.1 cm [20]. 
After storing the example, its use is analyzed to reconstruct 
the scene.

To implement the model incorporating the associated 
algorithms, we utilized a deep-learning framework based on 
PyTorch. Training and testing were performed on a machine 
equipped with two NVIDIA GeForce GTX 3090 GPUs and 
a high-performance computing cluster furnished with four 
NVIDIA V100 tensor-core GPUs, achieving nearly identical 
results on both platforms.

For diverse research tasks, specialized datasets were 
curated, a range of neural network architectures were 
adopted, and various loss functions were employed. The 
images from the HADAR detector can be used in these 
various combinations as input (the model accepts an image 
matrix as input, which varies slightly under different 
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preprocessing efforts), and the neural network computations 
produce the relevant parameters of interest. Detailed descrip-
tions of these components are thoroughly discussed in the 
following three sections, where we articulate the underlying 
rationale for these choices. Our codebase, called GPLearn,1 
is publicly available on GitHub. This package features 
modular functionalities, enabling users to tailor the module 
parameters to specific needs. With GPLearn, readers have 
the capability not only to reproduce the results presented in 
this paper using our supplied datasets but also to adapt the 
code for actual detector data analysis. We anticipate that 
these contributions will be broadly applicable to the field 
of astrophysics.

3 � Background suppression

The flux of cosmic rays typically exceeds that of high-energy 
gamma rays by several orders of magnitude, thereby pos-
ing a significant challenge for detection. Consequently, the 
Cherenkov radiation generated by these high-energy cosmic 
rays acts as the predominant source of background noise. 
Given that approximately 90% of cosmic rays are protons, 
this study primarily focuses on evaluating the influence of 
protons on photon detection. Proton signals with energies 
three times greater than those of photon signals are particu-
larly problematic, as they are especially difficult to distin-
guish. To address this challenge, we conducted simulations 
involving particles with various energies to effectively seg-
regate the target photon signals from the interfering proton 
background.

The prevailing methodology for discriminating between 
high-energy gamma-rays and background cosmic rays 

leverages the intrinsic differences between electromag-
netic and hadronic showers. When photons impinge upon 
the Earth’s atmosphere, they predominantly induce elec-
tromagnetic showers, which, in contrast to the hadronic 
showers triggered by protons, yield more uniform detector 
images. Specifically, in the data recorded by our detectors, 
the images were represented as pixel arrays (Fig. 1). For 
a fitted ellipse, conventional methods compute the image 
moments of the pixels. If a shower is composed of photons 
or protons, it can be determined by comparing the major and 
minor axes of the fitted ellipses. Because photon-generated 
electromagnetic showers have a more concentrated energy 
distribution, their pixel layouts follow a linear trajectory. 
In contrast, hadronic showers caused by protons exhibited 
more core hits, resulting in significantly spread and uneven 
pixel patterns. The main goal of existing background sup-
pression work is to accurately distinguish between the two 
categories of image structures. In particular, CNNs have 
produced exceptional results in image identification using 
deep learning approaches. Consequently, compared to con-
ventional curve-fitting techniques, they offer more accurate 
discrimination capabilities.

For the background suppression task, we adopted the 
ResNet-18 residual CNN model, as depicted in Fig. 2, to 
meet our specific objectives. Unlike the canonical ResNet-18 
model, our customized version employs smaller convolu-
tional kernels with designated strides for initial data convo-
lution. This choice was motivated by the fact that the region 
of interest in our detector images was generally confined to a 
narrow central zone. The use of smaller kernels was advan-
tageous for capturing the critical shape and edge features 
within this focal region, as substantiated by the improved 
performance in subsequent evaluations.

The output of our model is formulated as a two-dimen-
sional vector that quantifies the probability of a particle 
being categorized as either a signal (a photon) or back-
ground noise (a proton). This vector undergoes automatic 

Fig. 1   (Color online) Left: 
Imaging of �-ray Cherenkov 
light in a telescope (3 TeV); 
Right: Imaging of proton Cher-
enkov radiation in a telescope 
(9 TeV). Each image is captured 
by a 400×400 PMT, and all 
have been cropped and enlarged 
to 64×64, as shown in Fig. 3b

1  The software can be downloaded, or more information can be found 
at https://​github.​com/​caihao/​gpLea​rn

https://github.com/caihao/gpLearn
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normalization to ensure that its components sum to one, 
thereby enhancing interpretability. The normalized prob-
abilities sk are computed using the following equation:

Here, zk denotes the raw output value corresponding to the 
kth class, and K denotes the total number of classes. In our 
application, K = 2 represents the signal and noise catego-
ries. This normalization ensures that the output probabilities 
are mutually exclusive and exhaustive, summing up to one, 
which aids in yielding more interpretable outcomes.

To evaluate the divergence between the model’s predicted 
and actual probability distributions, we employed cross-
entropy as our loss function, which is expressed as follows:

where yg = 0 and yp = 1 indicate the labeling of protons and 
photons, respectively, and pgi and ppi reflect the probabili-
ties of being predicted as a photon and proton, respectively, 
for the ith instance model output. In deep learning, the most 
widely used function for binary classification tasks is the 
cross-entropy loss function. This helps the model train more 
quickly and is highly sensitive to changes in its predicted 
probabilities.

The physical context was considered during the data 
preparation. Considering that electromagnetic and hadron 
clusters primarily create differences in the degree of image 
standardization, we combined the actual background of the 
current work. Consequently, the absolute positions between 
different detectors become less important. Therefore, we 
retained only a small portion of the images (Fig. 3a) centered 
on the actual signal area (Fig. 3b) and stitched the remain-
ing image together (Fig. 3c), so that the resulting 128×128 
matrix was taken as an input to the model. Finally, the model 

(1)sk =
ezk

∑K

j=1
ezj

.

(2)CE(y, p) = −
1

N

N
∑

i=1

[yg ln(pgi) + yp ln(ppi)],

processed the data accurately and precisely, providing a sat-
isfactory answer to this physical problem based only on the 
intensity and relative positions.

To demonstrate the effectiveness and performance of the 
model, we introduced a threshold factor, denoted by �0 , and 
set its value to 0.5 as a criterion for interpreting the clas-
sification of incoming particles. In this context, � refers to 
the second component of the two-dimensional output vector 
of the model. In an ideal scenario, the photon signal output 
should be aligned at �� = 0 , whereas the proton signal out-
put should converge at �proton = 1 . However, in practice, any 
intersection between the distribution curves of �� and �proton 
signifies the error rate of the model in the classification, as 
illustrated in Fig. 4.

We retained the events identified as photons and excluded 
those identified as protons. Simultaneously, we recorded 
the correct identification rates for both photon and proton 
events. The quality factor Q is defined as follows:

Here, ��s represents the survival rate of photons after dis-
crimination, and �ps represents the survival rate of protons 
after discrimination. The higher the correct identification 
rate of the model, the higher the quality factor, indicating 
better background suppression.

Figure 5 presents the accuracy of the model for particle 
identification across various energy thresholds. The yellow 
curve, which corresponds to protons, consistently dem-
onstrates high identification rates across the entire energy 
spectrum. Conversely, the blue curve, representing photons, 
exhibits a more variable identification rate with a marked 
improvement at elevated energy levels. Previous research 
indicated that the threshold energy for the production of 
Cherenkov radiation is approximately 50 GeV. Near this 
energy threshold, conventional electromagnetic showers are 
prone to generating anomalous results. As the energy level 

(3)Q =
�
�
s

√

�
p
s

.

Fig. 2   (Color online) The modified ResNet-18 model used in the 
background suppression work, which we have renamed ParticleNet. 
Through four residual blocks, ParticleNet increases the input data’s 

initial dimensions to 512. Subsequently, the model processes it after a 
global pooling layer
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increased, these showers exhibited an increasing regularity, 
leading to a consequent enhancement in the model’s iden-
tification accuracy.

The results from the test set indicated that the identifica-
tion rates for both photons and protons exhibited a marked 
increase as the particle energy increased. At lower energy 
levels, particles generate smaller atmospheric showers, 
resulting in a limited number of pixels being captured by 
ground-based detectors. This scarcity of data hampers the 
ability of the model to render accurate identification. Con-
versely, as the particle energy increases, the quality of the 
images captured by the detectors improves significantly. This 

augmentation in data quality, coupled with an adequate num-
ber of parameters, led to a significant increase in the identi-
fication accuracy of the model.

The yellow curve in Fig. 6 illustrates the performance 
gains achieved through the utilization of deep learning 
techniques, in stark contrast to the blue curve, which rep-
resents the efficacy of traditional methods. In the domain 
of low-energy particles, the quality of identification mark-
edly increased with increasing energy levels, leading to 
a swift incline in the quality factor curve. Conversely, at 
higher energy thresholds, the model has ample raw param-
eters available for making accurate judgments, resulting in a 

Fig. 3   (Color online) Data preprocessing work involving the cropping 
and stitching of pixel photos. Every point in the picture is a PMT, and 
the signal value determined by the associated PMT is represented 
by the pixel value of each point. a Image captured by 400 × 400 
PMTs. Photon image captured by a single water lens. Most of the 
PMTs (in purple) are not triggered, and only a few PMTs within the 
white frame captured signals. We cropped and enlarged this image 

in Fig. 3b); b Image captured by 64× 64 PMTs. Cropped pixel image 
centered on the location, which corresponds to the part enclosed by 
the white frame in Fig. 3a. c Image captured by 128×128 PMTs. Each 
of the four detector images underwent cropping, enlargement, and 
stitching. The stitched image’s upper left corner contains a white box 
that contains the pictures depicted in Fig. 3a and b

Fig. 4   Distribution of � values for photons and protons in simulated 
signals. The distribution of photons is concentrated at approximately 
� = 0 , while the distribution of protons is centered at approximately 
� = 1

Fig. 5   (Color online) The identification accuracy for photons/protons 
at different energy points in the test dataset. (The training process and 
results are from GPLearn, and variations may occur with different 
datasets.)
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plateauing of the result curve. Notably, the model’s identifi-
cation rate has already approached a robust 98% at this stage.

4 � Energy reconstruction

The outcome may not be satisfactory if the model’s output 
is solely labeled as particle energy without any changes to 
the model’s inputs or structure. The reconstructed particle 
energy is related to the incidence zenith angle, distance 
from the cluster core, and quantity of charge deposited in 
the detector after accounting for the pertinent physical back-
ground. Traditional approaches employ simulated data to 
determine the energy distribution function at each location 
and actual observational data to fit the following function 
[21]:

Because the absolute positional information of the relative 
detector array is required to calculate the distance and direc-
tion information of the signal to the actual incident center, 
and because this information was removed during the data-
set construction process for background suppression, data 
retaining only the relative positional information is insuf-
ficient for reconstructing the final energy.

As a result, we added the relative position of the pixel 
centroid and the absolute position of the detector array as 
new inputs to the model based on the data preprocessing 
employed in the background suppression. That is, we added 
a 4 × 4 matrix to the 128×128 matrix used for background 
suppression to represent the absolute and relative coordi-
nates of the image centroid for each detector. The model 

(4)Eerc = f (q,R, �).

was created as depicted in Fig. 7, considering that the energy 
resolution does not require particle classification work. Four 
detector photos were processed independently and combined 
after a series of fully connected layers, and the final result 
was represented by a one-dimensional vector. This model, 
which does not include convolutional layers, not only retains 
a high level of reconstruction accuracy but also significantly 
accelerates the calculations.

Expanding upon the data preprocessing techniques 
deployed in our background suppression task, we incorpo-
rated additional variables: the relative positions of the pixel 
centroids and the absolute coordinates of the detector array. 
This is in recognition of the fact that energy is fundamentally 
correlated with the amount of charge deposited. Accord-
ingly, our model architecture, illustrated in Fig. 7, processes 
images from four individual detectors in parallel. These pro-
cessed outputs are subsequently fused through a sequence 
of fully connected layers, culminating in a one-dimensional 
output vector.

In the test dataset, we employed both the model-predicted 
energy and the actual particle energy to compute the asso-
ciated energy resolution, denoted as ΔE∕E . As illustrated 
in Fig. 8, our findings reveal a trend of improving energy 
resolution with increasing particle energy.

To provide an intuitive assessment of the efficacy of our 
model, we analyzed 2,500 samples from the test dataset, 
each representing a different energy level. We generated a 
distribution curve to illustrate the energy prediction perfor-
mance of the model. The predicted energy values are plot-
ted on the x-axis, and the y-axis represents the probability 
associated with each specific energy prediction. To facilitate 
easier interpretation, we normalized the data for each dis-
crete energy level, ensuring that the integral of each curve 
across all energy points was equal to unity.

Figure 9 illustrates the distribution curves for the energy 
prediction at 500 GeV intervals. The areas of overlap 
between these curves signify regions where the model’s 
estimations may deviate from the actual conditions, consti-
tuting a principal constraint on the accuracy of the energy 
resolution. More importantly, our model achieved a relative 
error of only 13.0% at an energy level of 1 TeV. Remark-
ably, at higher energy levels, such as 10 TeV, the relative 
error narrowed further to 10.0%. This value approaches the 
theoretical limits of the energy resolution achievable with 
Cherenkov telescopes, underscoring the significance of our 
research.

5 � Direction reconstruction

After the atmospheric Cherenkov radiation reaches the 
ground-level detectors, it is refracted through specialized 
water lenses before being captured on the image plane. 

Fig. 6   (Color online) Comparison of identification performance 
between deep learning and traditional methods for particle discrimi-
nation. (The deep learning results are provided by GPLearn; the tradi-
tional methods are calculated using the maximum ellipse fitting tech-
nique, which may vary slightly from current mainstream algorithms.)



	 A.-Y. Cheng et al.84  Page 8 of 13

Calculating the path of refracted light is complex. Our 
initial efforts were focused on estimating the projected 
position of the shower core on this image plane. By cal-
culating the fitting ellipse of the four detector images and 
identifying the location where clustering occurs based on 

the weighted intersection of the long axes of each ellipse, 
conventional methods (such as the Hillas reconstruction 
[22]) can determine where clustering occurs and, ulti-
mately, the direction of the incidence of �-rays [23, 24].

Fig. 7   The GoogLeNet model used in the energy reconstruction work. The model is further processed by combining the four detectors after 
independently processing the charge pictures and relative location data from four distinct detectors with fully linked layers

Fig. 8   Energy reconstruction’s relative error distribution. The rela-
tive error rapidly decreases with the particle energy until it reaches 
a value of 10.0% at 10 TeV. By comparison, the relative error for the 
conventional technique is approximately 20% at 1 TeV

Fig. 9   (Color online) Energy prediction results using deep learning 
methods. Different color curves barely overlap one another, show-
ing that the model can almost entirely differentiate gamma rays at the 
appropriate energy levels
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Unlike the energy reconstruction task, both the intensity and 
absolute position of each pixel are intricately linked, serving 
as indirect indicators of the incident direction of the gamma 
rays. However, generating two-dimensional matrices with 
large input sizes is improbable, and it is implausible to create 
pixel matrices based solely on actual positions, according to 
the description of the detector array in Sect. 2. We continued 
to use the cropping method in response to this. Unlike back-
ground suppression, each cropped pixel point is considered 
a three-dimensional dataset, which is actually a 4 ×64×64× 3 
matrix. The first dimension of this matrix indicates the detec-
tor’s serial number; the second and third dimensions indicate 
the relative position of the corresponding signal on the detector 
(with respect to a single detector); and the fourth dimension 
indicates the signal intensity detected by the photomultiplier 
tube at this position, along with the point’s absolute position 
(with respect to the ground). Our tests demonstrate that the 
performance of the model is significantly enhanced when the 
absolute positioning information of the pixels is retained.

To accommodate the specialized input dataset, we 
employed a CNN model featuring three-dimensional convo-
lutional layers, as shown in Fig. 10. The raw data underwent 
a sequence of six upsampling convolutional layers, each fol-
lowed by a pooling layer. The processed data were then fed 
into a linear regression layer, culminating in a two-dimensional 
vector output. After normalization, this vector served as an 
azimuthal direction vector in Earth’s plane. Subsequently, the 
model computed the corresponding incident angle based on 
this vector.

The error angle distance Ω was calculated from the azi-
muthal angle using a spherical coordinate transformation.

(5)
cosΩ = sin � sin� ⋅ sin � sin�� + sin � cos� ⋅ sin � cos�� + cos2 �

Here, � represents the true incident azimuthal angle, and �′ 
represents the azimuthal angle reconstructed by the model.

All our simulations were based on an incident zenith 
angle of � = 20◦ . The results plotted in Fig. 11 reveal that the 
deep learning method we employed yields an approximately 
60% improvement in accuracy over traditional methods, as 
cited in [25]. Notably, the reconstruction error decreases 
substantially with increasing energy levels. This enhanced 
accuracy is attributable to the higher number of photons col-
lected by the telescope at higher energy levels, which allows 
for a more precise reconstruction of the event direction. In 
the energy range exceeding 1 TeV, our model reduced the 

Fig. 10   Model used for direction reconstruction: AngleNet Model. 
Through six convolutions, AngleNet increases the input’s original 
dimension to 512 and then processes it through a fully connected 
layer after a global pooling layer. AngleNet makes use of residual 

blocks that are appropriate for three dimensions, just like ParticleNet 
does. This helps to some extent with the under-fitting issue with the 
model and considerably improves its ability to forecast the future

Fig. 11   (Color online) Angular distance difference between the 
reconstructed and true incident directions at different energies, in 
degrees. Deep learning techniques have more potential for obtaining 
angle reconstruction results than conventional elliptical fitting tech-
niques since they rebuild this physical process by looking at relation-
ships among nearly all of the original data. (Deep learning results are 
provided by GPLearn; traditional method data is sourced from the lit-
erature [25])
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angular error to less than 0.2◦ , providing a robust foundation 
for subsequent research.

6 � Simulated measurements of the Crab 
Nebula

6.1 � Sensitivity measurements

The Crab Nebula serves as a prototypical supernova rem-
nant, emitting a wide range of wavelengths, including the 
radio, X-ray, and gamma-ray bands. The study of this celes-
tial object is pivotal for gaining insight into the physical 
mechanisms underlying supernova explosions, the gen-
eration and acceleration of cosmic rays, and for address-
ing important scientific queries, such as the nature of dark 
matter. Among the numerous physical attributes associated 
with the Crab Nebula that require precise measurement, 
sensitivity is a crucial parameter. The level of sensitivity 
directly impacts the quality–both in terms of accuracy and 
precision–of our estimates concerning various physical phe-
nomena related to the Crab Nebula.

In the preceding sections, we delved into the deployment 
of deep learning methodologies for sophisticated analysis of 
detector data, achieving a marked improvement in accuracy. 
In this section, our focus shifts to the specific application 
of deep learning to enhance the sensitivity measurements 
related to the Crab Nebula. We illustrate how these advanced 
computational techniques outperform traditional methods 
and offer a more precise and reliable assessment of this cru-
cial parameter. Additionally, we juxtapose our findings with 
those obtained from other Cherenkov imaging telescope 
experiments to contextualize the efficacy and innovation of 
our approach.

To calculate the sensitivity, we conducted a simula-
tion that accounted for both gamma rays and scattered 
protons across an energy spectrum ranging from 100 
GeV to 10 TeV. The simulated sampling area was set to 
Ssample = 800m × 800m , and a fixed zenith angle of 20◦ 
was used. The azimuthal angle in the simulation was var-
ied between 0 ◦ and 180◦ . Additionally, we integrated the 
geographical factors specific to the Yangbajing site and the 
celestial trajectory of the Crab Nebula. Based on these con-
siderations, we estimated the annual observation time dedi-
cated to the Crab Nebula to be approximately 320 h, which 
translates to Tcrab,obs = 1.152 × 106 s.

For gamma rays, we can calculate the effective number 
of events coming from the Crab Nebula received by the 
HADAR experiment in one year at energy i by using the 
following equation:

Here, F
crab

= ∫ ∞

i
2.83 × 10

−11ph cm−2
s
−1
TeV

−1
⋅ (E∕TeV)−2.62dE 

represents the integrated flux of the Crab Nebula for energies 
greater than i. N� ,sim[i] is the number of effective simulated 
photon events in energy range i, N� ,sim,all[i] is the total num-
ber of simulated photon events, and �� represents the ratio 
of events located within an angular resolution set at 68%.

For scattered protons, the effective number of observed 
events for one year can be calculated as

Here, FCR represents the integrated flux of protons in the 
cosmic rays. NCR,sim[i] is the number of effective simulated 
proton events in the energy range i, NCR,sim,all[i] is the total 
number of simulated proton events, and Ωi represents the 
solid angle within the photon angular resolution range.

After the implementation of background suppression 
techniques and the exclusion of proton-like events, we can 
derive the integrated significance across the designated 
energy spectrum using Eq. [26]:

Utilizing the framework of Gaussian statistics, sensitivity is 
defined as the minimal flux from the Crab Nebula required 
for the detector to register a signal at a 5-sigma significance 
level. Consequently, the specific sensitivity of the Crab 
Nebula for the HADAR experiment was calculated using 
the following formula:

To offer a comprehensive perspective, we graphically delin-
eated the calculated sensitivity metrics both prior to and 
following the incorporation of the deep learning algorithms. 
These were juxtaposed with the corresponding data from 
other pertinent experiments [27–29], as depicted in Fig. 12.

Following the integration of advanced deep learning 
algorithms, the HADAR experiment exhibited a substantial 
enhancement in sensitivity within the low-energy domain. 
Although it has yet to attain the level of sensitivity exhib-
ited by CTA, the revamped HADAR experiment now stands 
as a formidable contender to established initiatives such as 
MAGIC and H.E.S.S. Importantly, HADAR boasts a unique 
attribute: an expansive field of view not typically afforded by 
conventional reflective Cherenkov telescopes. This distinct 
advantage facilitates real-time capture of transient celestial 

(6)N1yr
�

[i] = Tcrab,obs ⋅ Ssample ⋅ Fcrab ⋅

N� ,sim[i]

N� ,sim,all[i]
⋅ ��

(7)N
1yr

CR
[i] = Tcrab,obs ⋅ Ssample ⋅ FCR ⋅

NCR,sim[i]

NCR,sim,all[i]
⋅Ωi.

(8)S[i] =
N

1yr
� [i]

√

N
1yr

CR
[i]

⋅ Q

(9)Fsensitivity[i] = Fcrab ⋅
5

S[i]
⋅ i
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sources within its observational purview, rendering the out-
comes particularly compelling.

6.2 � Observation of the Pulsar in the Crab Nebula

The primary objective of this section is to perform a rig-
orous analysis of the observational data pertaining to the 
Crab Nebula pulsar in the VHE regime, as acquired through 
the MAGIC telescope [30]. The significance of the obser-
vations from the HADAR experiment was calculated to lay 
the groundwork for future inquiries into pulsar emissions at 
high-energy wavelengths.

We determined the spectral properties of the primary 
pulsar (P1) and interpulsar (P2) of the Crab Nebula using 
data obtained from the MAGIC telescope [31], as shown 
graphically in Fig. 13. The formula for the integral flux of 
each energy band is as follows:

Following the implementation of the background filter-
ing procedures, only events characterized by gamma-like 
profiles were retained for subsequent analyzes of the pulse 
signals of the primary pulsar of the Crab Nebula (P1) and 

(10)FP1 = 1.1 × 10−11 ⋅

(

E∕TeV

0.15

)−3.2

cm−2s−1

(11)FP2 = 2 × 10−11 ⋅

(

E∕TeV

0.15

)−2.9

cm−2s−1

interpulsar (P2). To quantify the observational significance 
S of the HADAR experiment, we employed the following 
equation:

Here, Non signifies the photon count emanating from the 
pulsar, and Noff represents the background photon count. 
Remarkably, at the 100 GeV energy threshold, the dominant 
background source in the observations of the Crab Nebula 
pulsar transitions from protons to gamma rays emanating 
from the Crab Nebula itself. Consequently, Noff encapsu-
lates both proton and nonpulsar gamma-ray backgrounds. 
The observation time ratio � is defined as � = ton∕toff , where 
ton , ton , and toff denote the durations of the HADAR detector 
observations for the source and background, respectively.

Tables 1 and 2 list the observational data sets acquired 
from the MAGIC and HADAR experiments, respec-
tively. These tables encapsulate the derived significances 

(12)S =
Non − �Noff

√

�(Non + Noff)
.

Fig. 12   (Color online) Comparison of sensitivity between the 
HADAR experiment and other experiments. The HADAR experi-
ment’s sensitivity curve for the Crab Nebula with a fivefold signifi-
cance over a year (320 h of useful observation time) is shown in the 
figure. The Crab Nebula sensitivity curves from experiments like the 
Fermi Satellite (one year of effective observation time); MAGIC and 
H.E.S.S. (50  h of effective observation time); and ARGO-YBJ and 
HAWC (one year of effective observation time) are also shown in the 
figure for comparison

Fig. 13   The energy spectra for the Crab Nebula’s main pulsar P1 
(represented by black circles) and the interpulsar P2 (represented by 
blue circles) in the 70 GeV–1.5 TeV energy range have been meas-
ured by MAGIC. The energy spectrum of the Crab Nebula itself 
(depicted by hollow squares) is also shown for comparison. (Data 
sourced from [31])

Table 1   Five years of observational (320  h of effective observation 
time) data from the MAGIC experiment shows corresponding signifi-
cances for different energy ranges for P1 and P2. (Data sourced from 
[31])

Energy range 
(GeV)

P1 P2

N
ex

Significance N
ex

Significance

100–400 1252 ± 442 2.8� 2537 ± 454 5.6�

> 400 188 ± 88 2.2� 544 ± 92 6.0�

> 680 130 ± 66 2.0� 293 ± 69 4.3�

> 950 119 ± 54 2.2� 190 ± 56 3.5�
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corresponding to distinct energy bands for both the main 
pulsar (P1) and interpulsar (P2) of the Crab Nebula, as cor-
roborated by references [32] and [33].

Capitalizing on the robust data processing capabilities 
afforded by deep learning methodologies, the HADAR 
experiment demonstrated a notably superior level of sig-
nificance within the low-energy domain compared with the 
MAGIC experiment. Nevertheless, as the energy spectrum 
increases, certain constraints, including equipment specifi-
cations and geographical considerations, result in a discern-
ible performance disparity compared with MAGIC. Moving 
forward, we aim to augment the sensitivity of our apparatus 
through a multi-faceted approach, encompassing the expan-
sion of the detector’s effective observational area as well 
as the refinement of computational models to enhance the 
angular resolution.

7 � Outlook

With the emergence of large-scale AI language models, AI 
has been progressively incorporated into many industrial 
applications. In physics, data analytics are a burgeoning 
arena for the expansion of AI technologies. By leveraging 
its computational advantages, AI has the potential to uncover 
latent relationships within complex datasets, accelerate data-
fitting procedures, and simulate realistic models of experi-
mental measurements.

In high-energy physics, the synergy between AI and big 
data allows for the precise reconstruction of energy, momen-
tum, and mass metrics for particles, which is a critical step 
elucidating the underlying properties and behaviors of suba-
tomic particles. Additionally, exact spatial reconstructions 
are indispensable for tracking the decay products of heavy 
particles and capturing rare events that could signal novel 
particles or interaction mechanisms. In the field of astron-
omy, AI technologies facilitate the real-time processing 
of astronomical signals, enabling more efficient studies of 

distant cosmic events and contributing to our understanding 
of the origin and composition of the universe.

In this study, we effectively addressed complicated physi-
cal issues by integrating real-world physical contexts using 
appropriate data preparation and models. Additionally, the 
excellent results from deep learning also serve to confirm the 
accuracy of the corresponding physical theories. The train-
ing process, which was built in accordance with real-world 
physical theories, both theoretically supported and verified 
the deep learning results.

During the actual research process, we demonstrated the 
following: 

1.	 The relative position and shape information of Cheren-
kov radiation can be used to discriminate particle types; 
at the same time, information contained in data that is 
not sensitive to absolute position will not be lost after 
slicing and cropping.

2.	 The energy information from the Cherenkov radiation 
reaction is not sensitive to the relative position informa-
tion of pixels; moreover, energy can be approximately 
represented by a linear function of charge amount, inci-
dence angle, and relative center distance.

3.	 The directional information of Cherenkov radiation is 
sensitive to the absolute position of pixels; therefore, 
retaining the absolute position information of pixels is 
crucial for correctly inferring the initial direction of par-
ticles when processing image data.

Deep learning techniques have simplified and improved 
labor-intensive physical reconstruction procedures. How-
ever, because physical data features are typically sensitive 
to a limited scale range, adopting small-scale convolutional 
kernels aids neural networks in acutely recognizing features. 
A network can gather global feature information more effi-
ciently by expanding its dimensions. The cropping of data 
was made possible for geographically distinct trials by add-
ing the necessary positional dimensions, which also suggests 
a new approach for data analysis in large detector arrays.
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vation results of P1 and P2 pulsars in the HADAR experiment over a 
year (320 h of effective observation time)

Energy range (GeV) P1 P2

N
ex

Significance N
ex

Significance

100–400 3698 4.65� 6943 7.31�

> 400 500 0.708� 1432 2.046�

> 680 175 0.390� 584 1.306�

> 950 87 0.261� 321 0.963�
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