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Abstract
Neutron radiography is a crucial nondestructive testing technology widely used in the aerospace, military, and nuclear indus-
tries. However, because of the physical limitations of neutron sources and collimators, the resulting neutron radiographic 
images inevitably exhibit multiple distortions, including noise, geometric unsharpness, and white spots. Furthermore, these 
distortions are particularly significant in compact neutron radiography systems with low neutron fluxes. Therefore, in this 
study, we devised a multi-distortion suppression network that employs a modified generative adversarial network to improve 
the quality of degraded neutron radiographic images. Real neutron radiographic image datasets with various types and levels 
of distortion were built for the first time as multi-distortion suppression datasets. Thereafter, the coordinate attention mecha-
nism was incorporated into the backbone network to augment the capability of the proposed network to learn the abstract 
relationship between ideally clear and degraded images. Extensive experiments were performed; the results show that the 
proposed method can effectively suppress multiple distortions in real neutron radiographic images and achieve state-of-the-
art perceptual visual quality, thus demonstrating its application potential in neutron radiography.

Keywords Neutron radiography · Multi-distortion suppression · Generative adversarial network · Coordinate attention 
mechanism

1 Introduction

Similar to X-ray imaging, neutron radiography (NR) obtains 
the internal structural information of an object by measur-
ing the intensity attenuation of a neutron beam as it passes 
through an object. Owing to the special elemental attenua-
tion characteristics of neutrons compared to X-rays and �
-rays, NR is an important complementary detection method 
in the aerospace, military, and nuclear industries [1–4]. To 
date, clear neutron radiographic images have been mainly 
obtained using reactors and large-scale accelerators with 
high neutron yields (e.g., > 1012 n/s). However, because 

of the high costs and paucity of reactors and large-scale 
accelerators, compact neutron radiography (CNR) technol-
ogy—offering more flexible application scenarios—has 
globally attracted considerable research attention. Neutron 
radiographic images obtained via CNR usually suffer from 
multiple severe distortions, including mixed noise (e.g., 
Gaussian noise and Poisson noise), geometric unsharpness, 
and white spots induced by the limited neutron flux, size 
of the collimator, and imaging detector, which hinder sub-
sequent machine vision tasks such as defect detection and 
identification [5–15].

Generally, the quality of neutron radiographic images 
(NRIs) can be improved from both hardware and software 
perspectives. However, owing to miniaturization constraints 
and technical bottlenecks, increasing the neutron yield of 
compact accelerators, as well as upgrading the collimator 
and imaging detectors, are difficult once a CNR system is 
established. On the contrary, advanced image processing 
techniques can significantly improve the visual quality of 
NRIs without modifying the hardware setup. Therefore, 
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designing a multi-distortion suppression method from the 
perspective of image processing is highly recommended to 
further promote the development and application of CNR.

Image distortion suppression aims to restore high-quality 
images with clear details from low-quality images degraded 
by noise and blur. In general, suppression methods can be 
classified into the following two categories: traditional sup-
pression algorithms based on prior knowledge and deep 
learning-based suppression algorithms. Several successful 
demonstrations of traditional suppression techniques have 
initially been reported [16]. In 2015, Qiao et al. proposed a 
noise and blur suppression method for NRIs by employing 
BM3D frames and a nonlinear variance stabilization algo-
rithm based on the Anscombe transform [17]. They decom-
posed multiple distortion suppression into two sub-prob-
lems: Gaussian noise removal and deblurring. Although this 
method has shown improved perceptual visual quality, the 
noise suppression step may indirectly increase image blur 
to some extent. Subsequently, Zhao et al. proposed a robust 
principal component analysis (RPCA) with a sparse repre-
sentation method to identify and remove special white-spot 
distortion that typically exists in radiographic images [11]. 
Furthermore, the well-known software ImageJ is widely 
used by professionals to suppress white spots through a con-
venient manual threshold adjustment [18]. However, tradi-
tional suppression techniques can only be used to address 
simple restoration tasks with limited distortion types (i.e., 
< 2 ). In addition, it has the latent risk that suppressing one 
distortion usually results in other unnecessary additional 
distortions. Deep learning (DL) technology has excellent 
nonlinear fitting ability; therefore, learning-based methods 
have significant potential in suppressing multiple distor-
tions (e.g., noisy images with mixed blur and white spots) 
with end-to-end processing. For example, DnCNN [19] 
utilizes convolutional neural networks (CNNs) to mitigate 
manifold distortions present in natural images. Subsequently, 
CBDNet [20] was proposed as a two-stage multi-distortion 
suppression network to enhance the robustness in tackling 
various distortions. RIDNet [21] was proposed to handle 
mixed Gaussian and Poisson noise scenarios with optimal 
efficiency and flexibility. In addition, generative adversarial 
networks (GANs) [22] can generate realistic images to aug-
ment image datasets and address the issue of limited training 
samples. Therefore, they have attracted considerable atten-
tion recently [23].

However, because of the different distortion types of NRIs 
compared with natural images, existing image datasets and 
learning-based distortion suppression methods for natural 
images are not directly applicable to NRIs. Therefore, in this 
study, we developed a novel DL-based multi-distortion sup-
pression network with self-built neutron radiographic image 
datasets to improve the visual quality of real NRIs. The pro-
posed network learns the abstract relationship between latent 

clear images and degraded images with multiple distortions 
through end-to-end training, which can realize multi-distor-
tion suppression in a single step without mutual interference. 
In addition, neutron radiographic image datasets with vari-
ous types and levels of distortion were built, thereby making 
the proposed network suitable for NRIs.

The main contributions of this study are summarized as 
follows: 

(1) A novel multi-distortion suppression network, which 
consists of four cascaded residual attention block 
(RAB) units and a GAN, was developed.

(2) Large-scale NRI datasets were constructed for the first 
time to render the proposed network suitable for NR. 
Mixed noise, geometric unsharpness, and white spots 
at different levels were randomly combined to enrich 
the datasets.

(3) Because of the lack of quality assessment methods for 
NRIs with multi-distortions, several evaluation dimen-
sions were adopted to evaluate the performance of the 
proposed method, including subjective and objective 
metrics.

(4) Extensive experiments demonstrated that the proposed 
method can effectively suppress various noises, blur, 
and white spots existing in real NRIs and achieve state-
of-the-art perceptual visual quality.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the proposed multi-distortion suppression 
method, including the analysis of NRI degradation models, 
NRI dataset construction, design of multi-distortion sup-
pression network, network training, and testing. Section 3 
presents a comprehensive comparison of the results of the 
experiments and analyses. Finally, we summarize the con-
clusions drawn from this study in Sect. 4.

2  Method

A block diagram of the proposed multi-distortion suppres-
sion method for NRIs is shown in Fig. 1. The following two 
stages are depicted: NRI dataset construction and design 
and validation of the proposed multi-distortion suppression 
network.

2.1  Model analysis of degraded NRIs

Owing to the physical limitations of CNR systems, low-
flux NRIs typically suffer from multiple severe distortions, 
including noise, geometric unsharpness, and white spots. 
As the DL-based method requires a large number of clear 
and degraded images to learn the abstract relationship, we 
designed three types of NRI degradation models to simulate 
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as many authentic distortion types as possible; these are 
expressed in the following equations.

where g denotes the real NRIs obtained from the imag-
ing system, f represents the latent clear images, H is the 
Gaussian blur kernel, D denotes the defocus blur kernel, ∗ 
is the convolution operation, p(⋅) denotes the Poisson noise 
interference function, and n denotes the additive Gaussian 
noise with a mean of zero and variance of �2 . The geometric 
instability of NRIs can be regarded as a Gaussian blur and 
defocus blur, as adopted in [24, 25].

On the basis of (1), we define the second model of NRIs 
with white spots as follows:

where w denotes additive white spots. In addition, the third 
model of NRIs with gamma distribution noise is given as

where G denotes the function of the multiplicative gamma 
noise interference. The three proposed degradation models 
consider a comprehensive range of potential distortion types 
existing in real NRIs.

2.2  NRI dataset construction

Although there are many public image databases for DL-
based image processing, most are designed for natural 
images. Owing to the scarcity of available neutron sources 

(1)g = p(D ∗ H ∗ f ) + n,

(2)g = p(D ∗ H ∗ f ) + n + w,

(3)g = (G)p(D ∗ H ∗ f ) + n + w,

and the high cost of NR, obtaining NRIs is considerably 
more difficult than obtaining natural images. To our best 
knowledge, open-access datasets for NRIs have not been 
reported. Consequently, natural image datasets have been 
used as substitutes for NRI processes [26, 27]. However, 
owing to different imaging principles and distortion types 
[28], existing natural image datasets cannot provide an ideal 
effect. Therefore, we built NRI datasets for the first time to 
enhance the performance of the proposed method for NR.

Well-captured NRIs obtained from the reactor and large-
scale accelerators were chosen as ideal clear images (i.e., 
original images). Then, degradation models (1), (2), and (3) 
were randomly applied to the original images to obtain dis-
torted images with different levels and types. Both the origi-
nal and simulated distorted images were used to construct 
the NRI training datasets. The detailed simulation operations 
are as follows:

Distortion 1: Gaussian noise
Gaussian noise is the most widespread noise in all 

image types. We generated a set of 20 random numbers 
that conformed to a uniform distribution in the range (0−
0.03) as the variances of the Gaussian noise. By using the 
function “imnoise(I, ’gaussian’,m, var_gauss )” in MAT-
LAB, the distortion images with different-level Gaussian 
noise can be obtained. Here, I denotes the original image, 
’gaussian’ denotes the noise type, m denotes the mean value, 
and var_gauss denotes the variance, respectively. Not all 
degraded NRIs can be improved to a good visual quality; 
thus, the parameter selection is empirical according to the 
image screening condition.

Distortion 2: Poisson noise

Dataset Construction

Real and clear
NRIs

Degradation
models

Gaussian blur

Gaussian noise

Poisson noise

White spots

Dataset A
Dataset B

Neutron radiographic images with multiple-distortion suppression
Self-bulit datasets

A, B and C Data pre-processing RAB-based GAN framework Trained
Generator

Degraded NRIs
with multiple distortions Reconstructed NRIs Multi-distortion

suppression network

Gamma noise

Dataset C

Defocus blur

Fig. 1  The block diagram of the proposed method
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As the neutron fluence rate fluctuates significantly in 
time and space, NRIs inevitably suffer from distortion of 
the Poisson distribution noise, which is also called shot 
noise. It can be simulated using the MATLAB function 
“imnoise(I, ’poisson’)”. When the intensity of the Poisson 
noise becomes sufficiently large, it degenerates into Gauss-
ian noise.

Distortion 3: Gamma noise
Gamma noise is not the main distortion type in NRIs. 

However, to make the simulated images more consistent 
with the real NRIs, we further use the MATLAB func-
tion “gamrnd(⋅ )” to enrich the datasets. Although gamma 
noise is not necessary for the majority of NRIs, a dataset 
with gamma noise has been shown to be highly effective 
in certain special NRIs.

Distortion 4: Unsharpness(i.e., blur)
Ideally, the neutron source and beam in NR systems 

should be point-like and parallel. However, owing to the 
size of the neutron sources, the collimator ratio (i.e., L/D, 
where L is the length of the beam collimator, and D is the 
diameter of the neutron source), and the distance between 
the object and the scintillation screen, NRIs are usually 
shown with geometric unsharpness. As the generation of 
defocus blur in an imaging system is similar to the geo-
metric unsharpness of NRIs [29], we used defocus blur to 
approximate the geometric unsharpness. To simulate this 
process, we randomly select the defocus blur kernel with 
the size from 1 to 15 for 30 times by using the MATLAB 
functions “fspecial(⋅ )” and “imfilter(⋅)”.

Additionally, when a single neutron is absorbed by the 
scintillation screen, the spot dispersion generated at the 
scintillation screen causes inherent unsharpness, which 
can be characterized as a two-dimensional Gaussian func-
tion. Therefore, Gaussian blur was employed to approxi-
mate the inherent unsharpness. To simulate this process, 
we randomly select the Gaussian blur kernel with the size 
from 1 to 15 for 30 times by using the MATLAB func-
tions “fspecial(⋅ )” and “imfilter(⋅)”. The standard deviation 
of the two-dimensional Gaussian kernel function can be 
adjusted with reference to the kernel size (e.g., 1/3 or 1/6).

Distortion 5: White spots

During the NR imaging process, the neutron–nucleus 
interactions generate high-energy particles (e.g., X-rays and 
�-rays), which generate white spots upon collision with the 
imaging detector. Furthermore, the photosensitive element 
accumulates charge clouds imbued with radiation energy, 
gradually diffusing and affecting multiple pixels, yielding 
white spots. Among the various distortions that exist in 
NRIs, white spots are the most conspicuous and detrimen-
tal to image quality. In previous studies, white spots were 
simulated using only a few fixed shapes, which were not 
sufficiently realistic [11]. Therefore, we leveraged the capa-
bility of the GAN model to emulate real-world data so as to 
simulate white spots with enhanced authenticity and diver-
sity [30]. Because the GAN model requires real samples 
to learn its essence, we collected white-spot samples from 
real NRIs with multiple distortions to ensure the feature 
consistency of the simulated white spots. After extensive 
training with 14,000 iterations, the generated white spots 
were highly similar to the real white spots and showed a 
remarkable level of fidelity and authenticity as compared 
with those in the previous studies. The comparison results 
are shown in Fig. 2.

On the basis of the aforedescribed distortion simulations, 
we built three multi-distortion datasets of NRIs by using data 
augmentation techniques. For dataset A, real and clear NRIs 
were first selected as the original input images, which were 
then processed using defocus blur, Gaussian blur, Gaussian 
noise, and Poisson noise according to (1). Then, dataset B 
was constructed according to (2) with additional white spots 
compared with dataset A. Finally, we constructed dataset C 
with additional gamma noise compared with dataset B for 
some special NRIs. These datasets are illustrated in Fig. 3.

2.3  Multi‑distortion suppression network

The overall architecture of the multi-distortion suppression 
network based on the GAN framework is shown in Fig. 4; it 
mainly consists of two crucial components, namely the gen-
erator and discriminator. The primary objective of the pro-
posed network is to reconstruct latent clear NRIs from input-
degraded NRIs with multi-distortions. The GAN model is 
employed to learn the true distribution of the input samples 

a (b) c (d) e (f) g (h)

Fig. 2  Various white-spot images. a, b real white spots with low resolution; c, d simulated white spots with low resolution in previous works; e, 
f real white spots with high resolution; and g, h simulated white spots with high resolution upon using the proposed method)
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Pdata(x) by using the generator G. Meanwhile, the discrimi-
nator is used D to determine the authenticity of the generated 

samples. Through iterative training, G can generate samples 
with a high degree of fidelity.

where z denotes the data conforming to an arbitrary distribu-
tion of F and x denotes the output of generator G. After the 
iterations, the generator output PG(x) progressively approxi-
mates the true distribution of Pdata(x) . The visual representa-
tion of the generator and discriminator is given as

The mathematical description of the GAN model employed 
in this study is given as

where x denotes the real and clear NRIs with high resolu-
tion and z denotes the generated samples with degradation 
processing.

2.3.1  Generator architecture

The generator mainly includes the components for feature 
extraction, residual unit, and upsampling reconstruction. 
Specifically, feature extraction of degraded input images 
is performed using a 7 × 7 convolutional operation. Subse-
quently, two consecutive downsampling operations—convo-
lution and pooling—are applied to reduce the dimensionality 

(4)z ∈ F → G → x = G(z) ∼ PG(x) ≈ Pdata(x)

(5)z → G → xreal ∪ xfake ⇒ D ⇒ (Real∕Fake).

(6)
min
G

min
D

V(D,G) =

Ex∼poriginal(x)
logD(x) + Ez∼pz(degraded)

[log(1 − D(G(z)))],

Origin A

BC

Fig. 3  Illustration of the self-built datasets of NRIs

Fig. 4  (Color online) Proposed multi-distortion suppression network
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of the feature maps. These feature maps are then fed into 
four cascaded RAB units to further learn the essential char-
acteristics. To reconstruct latent clear images, two trans-
posed convolutions are incorporated into the network for 
upsampling. Skip connections play a vital role in connecting 
feature maps of the same size obtained from both the upsam-
pling and downsampling stages, allowing for the network to 
accommodate inputs with varying dimensions. Finally, the 
output image was obtained using a 7 × 7 convolutional layer.

The first component of the RAB unit is the context block 
(CB), which addresses the issue of reduced image resolu-
tion resulting from excessive pooling operations. The CB 
employs four dilated convolutions with dilation rates of 1, 
2, 3, and 4 to expand the receptive field by injecting holes 
into the convolution map. This enables the network to cap-
ture a broader context without further reducing the image 
resolution. Following the CB, two residual connections are 
integrated into the RAB unit. The final component of the 
RAB unit is the coordinate attention block (CAB), which 
leverages two one-dimensional global pooling operations 
performed along the vertical and horizontal directions to 
aggregate the input features into two separate feature maps. 
Long-range spatial dependencies along each direction can be 
captured by encoding specific directional information in the 
input feature maps. Consequently, attention maps are gener-
ated using the saved position information. The two attention 
maps are then multiplied by the input feature maps to guide 
the network in focusing on the regions of interest. The CAB 
can distinguish spatial directions (i.e., coordinates) and gen-
erate coordinate-based attention maps, thereby effectively 
integrating spatial cues into the attention mechanism. The 
output of the RAB can be expressed as

where xc and yc respectively denote the input and output 
of CAB corresponding to the c-th channel, (i, j) denotes 
the coordinate position; xh

c
 and gw

c
 denote the horizontal and 

vertical attention weights with encoded positional informa-
tion, respectively.

2.3.2  Discriminator architecture

The discriminator architecture consists of eight convolu-
tional modules. In addition, a leaky ReLU activation func-
tion is employed to address the problem of the vanishing 
gradient. As the network depth increases, the number of 
learned features progressively expands, whereas the spatial 
dimensions of the features gradually decrease. Finally, the 
fake and real probabilities of the reconstructed NRIs are 
obtained using two fully connected layers and a sigmoid 
activation function.

(7)yc(i, j) = xc(i, j) × xh
c
(i) × gw

c
(j),

2.4  Model training

The NRIs of the built datasets are randomly cropped into 
a series of 128×128 subimages as training samples. We 
define � and � as the degraded images and corresponding 
ground truth, respectively. The training pair in each itera-
tion is defined as (�i, �i)Ni=1 , where the batch size N is set 
to 16. The loss function significantly influences the effec-
tiveness of model training. Currently, the most commonly 
used loss functions in neural networks are L1 and L2 loss 
functions. L2 loss exhibited a higher degree of confidence 
in handling Gaussian noise, whereas L1 loss demonstrated 
superior robustness against outliers [31]. The L1 and L2 
losses can be mathematically expressed as

Considering the presence of multiple distortions in the NRIs, 
the Huber loss function is employed for generator training. 
The main difference between the Huber and L1 loss func-
tions lies in the nonuniqueness of the derivative of L1 loss at 
the origin, which may hinder convergence. The Huber loss 
function entails the utilization of the modified L1 and L2 
losses on when the discrepancy in the predicted value F(�i) 
and ground truth �i is large or small (i.e., absolute difference 
less than 1), respectively. Thus, the Huber loss function com-
bines the advantages of both L1 and L2 loss functions. For 
a small discrepancy, the gradient remains relatively small, 
resulting in a smoother loss function compared to the stand-
ard L1 loss. Moreover, for a larger discrepancy, the gradient 
is sufficiently small to avoid gradient explosions existing 
in the regular L2 loss. The mathematical expression for the 
Huber loss is given as

For discriminator training, the binary cross-entropy 
(BCE) loss function is utilized; this can be mathematically 
expressed as

where � is the input to the discriminator and �̂  is the pre-
dicted value. During the training process, Adam [32] opti-
mizer is employed with an initial learning rate of 0.01. 
In addition, 100 iterations (i.e., epochs) are performed to 
update the network parameters and optimize the network 
performance.

(8)L1 = ∥F(�i) − �i∥,

(9)L2 = ∥F(�i) − �i∥
2.

(10)Huber =

{
0.5(F(𝛼i) − 𝛽i)

2, |F(𝛼i) − 𝛽i| < 1

|F(𝛼i) − 𝛽i| − 0.5, otherwise

(11)BCE = −
(
� log

(
�̂
)
+ (1 − �) log

(
1 − �̂

))
,
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3  Experimental results and analysis

This section details the extensive comparative experiments 
performed on real NRIs with multiple distortions. Because 
most of the prevalent learning-based image distortion sup-
pression algorithms are designed for some common distor-
tions in natural images (e.g., additive white Gaussian noise 
and JPEG compression distortion), their application effect 
on NRIs with special distortion types is limited. Therefore, 
we selected RIDNet [21], a top-performing model for real-
world noisy photograph denoising tasks, along with the 
well-performing CBDNet [20], to serve as comparative 
benchmarks for the proposed method. The experimental 
parameters were set to their default values as specified in 
the literature. All experiments were performed on a worksta-
tion equipped with an AMD 3700X CPU and an NVIDIA 
RTX 2080Ti GPU.

3.1  Suppression results for real NRIs with severe 
noise

Image denoising is the most fundamental and important 
task in image processing. Several noise suppression algo-
rithms have been proposed. We selected ImageJ [12], the 
most widely used software in NR, and mainstream learning-
based RIDNet [21] to verify the superiority of the proposed 
method. As evident from Fig. 5, the proposed method exhib-
its the best visual quality for noise suppression.

Given the lack of ideal reference NRIs, classical full-
reference image quality assessment (IQA) methods (e.g., 
peak signal-to-noise ratio (PSNR) [33]) and gradient mag-
nitude similarity deviation (GMSD) [34]) cannot be used 
to evaluate the quality of the aforedescribed suppression 
results. Therefore, a no-reference image quality metric, 
RBNIQM, designed for NRIs [35] was employed to provide 
an objective quantitative evaluation. RBNIQM can predict 
the quality of NRIs with multi-distortions, including Gauss-
ian noise, Poisson noise, and blur. The prediction scores of 
the RBNIQM method fall within the range of 0 ∼ 1, and a 
lower prediction score indicates a higher image quality. An 
objective evaluation of the suppression results in Fig. 5 via 
RBNIQM is presented in Table 1.

As evident from Table 1, the objective evaluation was 
consistent with the perceptual visual quality depicted in 
Fig. 5.

3.2  Suppression results for real NRIs with severe 
blur

Thus far, deblurring of NRIs remains a major challenge. 
Figure 6a shows two real NRIs: a small motor and a floppy 

disk drive, from top to bottom [36]. The small motor and 
floppy disk drive images were obtained using a small L/D 
value of 115 and a near imaging distance equal to its own 
width, thereby leading to significant blur distortion rather 
than noise. The traditional steering-kernel-based Richard-
son–Lucy algorithm (SK-RL) [37], BM3D frames, and non-
linear variance stabilization (BM3D frames)[17], as well as 
learning-based RIDNet [21] and CBDNet [20] were con-
sidered for comparison with the proposed method on these 
two images, as shown in Fig. 6b–f. Notably, the suppression 
results in Fig. 6f were obtained by the proposed method with 
dataset A. The visual results of Fig. 6a–f also indicate that 
the proposed method shows the best distortion suppression 
performance in terms of blur compared with the other four 
methods.

Next, we used the RBNIQM method to quantitatively 
evaluate the suppression results in Fig. 6. Further, Table 2 
indicates that the objective quality evaluation exhibited 
good consistency with visual perception. In addition, 
learning-based CBDNet and RIDNet show superiority in 

(a)Origin (b)Image J

(c)RIDNet (d)Proposed

Fig. 5  Suppression results for different methods on real NRIs with 
severe noises
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multi-distortion suppression compared to traditional image 
processing methods such as SK-RL and BM3D frames. 
This is mainly because learning-based models exhibit 
good capability for abstract high-level feature (e.g., deep 
network) extraction rather than the low-level feature (e.g., 
time-domain or frequency-domain features) extraction of 
traditional methods. The preceding discussion substantiates 
the efficacy of the proposed methodology in addressing dis-
tortions, particularly in the case of blur.

3.3  Suppression results for real NRIs with severe 
white spots

Figure 7a shows two other real NRIs, a large motor and a 
bottle, from top to bottom. Unlike the NRIs shown in Fig. 6 
with severe blur, these two images were mainly degraded 
with white spots. From the perspective of human perception, 
white-spot distortion has a greater significance level than 
various types of noise. Therefore, white-spot suppression is 
crucial for NRIs.

ImageJ [18] is the most widely used software for white-
spot removal by professionals in the NR field. In addition, 
the SK-RL [37], BM3D frames, nonlinear variance stabiliza-
tion (BM3D frames) [17], improved robust principal com-
ponent analysis (IRPCA) [11], RIDNet [21], CBDNet [20] 
and the proposed method were employed to demonstrate the 
multi-distortion suppression effects in Fig. 7b–h. The sup-
pression results of Fig. 7h from top to bottom were obtained 
by the proposed method with datasets C and B. A subjective 
comparison of the results in Fig. 7 indicates that the BM3D 
frames outperformed the traditional SK-RL and classical 
ImageJ in terms of white-spot removal. ImageJ demonstrated 
effectiveness in white-spot removal. The main advantages 
lie in user-friendly operation and easy access to the Inter-
net. As regards BM3D frames, the filter inevitably induces 
additional blur, which is not beneficial for subsequent 
defect identification and measurement tasks. Compared 
with IRPCA, RIDNet, and CBDNet, the proposed method 
always shows the best visual perception in both white-spot 
removal and noise and blur suppressions. The efficacy of 
the proposed method in handling the first image in Fig. 7 
is attributed to the incorporation of the degradation model 
(expressed in (3)). The first image in Fig. 7 contains not only 
prominent white spots but also diverse noise (e.g., Gauss-
ian noise, Poisson noise, and gamma noise). As regards the 
second image in Fig. 7, the effectiveness of the proposed 

method can be attributed to the adoption of the GAN model 
with the coordinate attention mechanism, which can effec-
tively boost the capability of the proposed network for fea-
ture extraction in the area of interest. This also helped the 
proposed method outperform other learning-based methods 
(i.e., RIDNet and CBDNet) when using the same datasets.

Because existing IQA methods do not consider white 
spots, evaluation of the suppression results regarding white 
spots is a significant challenge. Therefore, both subjective 
and objective metrics were employed to evaluate the perfor-
mance of the proposed method and its counterparts. Four no-
reference quality assessment methods, namely BIQAA [38], 
BLIINDS [39], NIQE [40], and RBNIQM, were chosen as 
the objective metrics and compared with a subjective metric 
(i.e., mean opinion score (MOS)). The normalized scores 
predicted by the four no-reference quality assessment meth-
ods are shown in Fig. 8. Except for RBNIQM, all the other 
methods showed better image quality with higher scores.

The black line in Fig. 8 denotes the MOS trend obtained 
by averaging the subjective scores from the following two 
groups of evaluators: professional researchers with experi-
ence in NR and other researchers without relevant experi-
ence. Specifically, the NRIs processed using different meth-
ods were first randomly shuffled, and the evaluators (25 in 
each of the professional and nonprofessional groups) were 
thereafter instructed to rank the images in ascending order 
of quality and assign scores incrementally from one. Finally, 
the average scores from different groups were computed 
according to the weights of 0.7 and 0.3, respectively, for the 
professional and nonprofessional groups as the subjective 
quality scores for each method (Table 3).

The trend lines in Fig. 8 show that the score curves devi-
ate severely from the subjective scores, indicating their 
inability to accurately assess the quality of NRIs with white 
spots. Although the RBNIQM method shows a relatively 
steady trend compared to the subjective quality assessment, 
the minimal variations indicate its drawback of low sensi-
tivity to white spots. After an extensive comparison with 
state-of-the-art distortion suppression methods, we consid-
ered three representative methods—ImageJ, IRPCA, and the 
proposed method—to illustrate the local details of white-
spot suppression (Fig. 9).

Evidently, the ImageJ method fails to eliminate white 
spots. It can only remove the brightest pixels of the white 
spots and exhibits inferior performance in preserving fine 
details. The IRPCA method achieves satisfactory results in 
removing white spots but has a limited capability in preserv-
ing image details. The proposed method effectively removes 
white spots and noise with good detail preservation.

To further validate the exceptional efficacy of the pro-
posed method in suppressing white spots in NRIs, the same 
background regions (i.e., the red box in the machine image) 
of the NRI with different distortion suppression methods 

Table 1  Objective evaluation of suppression results in Fig.  5 via 
RBNIQM

Figure 5 ImageJ RIDNet Proposed

Score 0.3259 0.2651 0.1936
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are shown from the perspective of a three-dimensional (3D) 
grayscale distribution in Fig. 10. On the basis of the pixel 
distribution of the red box region in Fig. 10b–h, we can 
conclude that both the IRPCA method and proposed method 
exhibit remarkable white-spot suppression effects. As the 
selected region is a background with no useful object infor-
mation, a smoother 3D grayscale distribution is preferred.

Without loss of generality, the real NRI obtained by the 
CNR system is shown in Fig. 11 to further demonstrate 
the effectiveness of the proposed method. This image was 
obtained in 1972 using an A-711 D-T neutron tube with a 
small L/D value of 7.5. The low neutron flux of the neutron 
tube required a long exposure time of 90 min. However, 
the image quality was inferior to that of NRIs obtained by 
the reactor. Next, ImageJ, SK-RL, and the proposed method 
were employed to demonstrate the multi-distortion sup-
pression performance. As evident from the comparison, 
the ImageJ and SK-RL methods exhibit fewer effects than 
the original image. In contrast, the proposed method can 
improve image quality in terms of noise, blur, and even color 
restoration to a certain extent. Notably, the proposed method 

has good generalization ability in improving the visual qual-
ity of various NRIs including thermal neutron radiographic 
images and fast neutron radiographic images. Although the 
energy spectra of the neutrons used for NR differ, the result-
ing images have similar image characteristics (e.g., radio-
graphic images) and degraded models (e.g., Gaussian noise, 
Poisson noise, blur, and white spots).

3.4  Guidance on the selection of datasets

As DL-based methods heavily rely on dataset design for 
specific targets, we herein provide recommendations on the 
selection of appropriate datasets for different NRIs. Dataset 
A was mainly designed for blur and noise and is suitable for 
handling noisy NRIs with severe blur. Building on dataset 
A, dataset B considers the white-spot distortion type. As a 
result, dataset B can be considered as the most widely appli-
cable used dataset for suppressing multi-distortion in real 
NRIs. Additionally, there may also exist NRIs with severe 
distortions. We recommend the use of dataset C to obtain 
remarkable results. However, the training time and recov-
ery performance for most NRIs were not as favorable as 
those in the case of dataset B. Notably, the proposed method 
emphasizes multi-distortion suppression rather than a single 
distortion type in NRIs. Multi-distortion suppression can 
be realized in NRIs in a single training step by selecting the 
appropriate dataset.

(f)Proposed(a)Origin (b)SK-RL (c)BM3D Frames (d)CBDNet (e)RIDNet

(a)Origin (b)SK-RL (c)BM3D Frames (d)CBDNet (e)RIDNet (f)Proposed

Fig. 6  Suppression results of different methods on the real NRIs with severe blur

Table 2  Objective evaluation of suppression results in Fig.  6b–f via 
RBNIQM

Figure 6 (b) (c) (d) (e) (f)

Small motor 0.1297 0.1235 0.0930 0.0899 0.0791
Floppy disk drive 0.1394 0.1479 0.1298 0.0924 0.0815
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4  Conclusion

In this study, we devised a novel multi-distortion suppres-
sion method based on a modified generative adversarial net-
work (GAN) to improve the visual quality of degraded NRIs. 

To address the lack of NRI datasets, we built a series of 
real NRI datasets with various types and levels of distortion 
for training the proposed network. In addition, a coordinate 
attention mechanism was incorporated in the backbone net-
work (i.e., GAN) to promote the capability of the proposed 

(a)Origin (b)SK-RL (c)Image J (d)BM3D Frames

(e)CBDNet (f)RIDNet (g)IRPCA (h)Proposed

(a)Origin (b)SK-RL (c)Image J (d)BM3D Frames

(e)CBDNet (f)RIDNet (g)IRPCA (h)Proposed

Fig. 7  Suppression results of different methods on the real NRIs with severe white spots
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network to learn the abstract relationship between ideally 
clear and degraded images. Extensive comparative experi-
ments showed that the proposed method can effectively sup-
press multiple distortions existing in real NRIs and achieve 
state-of-the-art perceptual visual quality, thus demonstrating 
its application potential in neutron radiography.

Fig. 8  Line graphs of predicted scores in Fig. 7 with different no-ref-
erence quality evaluation methods

Table 3  Subjective quality 
scores of Fig. 7b–h

Groups (b) (c) (d) (e) (f) (g) (h)

Professional 2.13 2.85 3.95 4.35 4.10 5.86 6.37
Nonprofessional 2.06 2.54 3.46 4.28 4.96 5.75 5.98
Integrated 2.109 2.757 3.705 4.329 4.530 5.805 6.175

(a)Origin (b)Image J

(c)IRPCA (d)Proposed

Fig. 9  Illustrations of local details of NRI with different suppression 
methods
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