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Abstract
The coherent muon-to-electron transition (COMET) experiment is a leading experiment for the coherent conversion of 
�
−

N → e
−

N using a high-intensity pulsed muon beamline, produced using innovative slow-extraction techniques. There-
fore, it is critical to measure the muon beam characteristics. We set up a muon beam monitor (MBM), where scintillating 
fibers woven in a cross shape were coupled to silicon photomultipliers to measure the spatial profile and timing structure of 
the extracted muon beam for the COMET. The MBM detector was tested successfully with a proton beamline at the China 
Spallation Neutron Source and took data with good performance in the commissioning run. The development of the MBM, 
including its mechanical structure, electronic readout, and beam measurement results, are discussed

Keywords  Beam instrumentation · Profile monitor · Scintillating fiber · Silicon photomultipliers

1  Introduction

With the steady increase in beam power and intensity 
required for high-precision measurements in particle and 
nuclear physics, beam profile monitors play an important 

role in precisely characterizing beam properties [1–3], espe-
cially for real-time control of the beam. The requirements for 
such a beam profile monitor include fast response, high time 
resolution, and quasi-noninvasiveness to the beam.

Several types of beam profile monitors are currently 
available. The most widely used type of beam monitor is 
the beam position monitor (BPM) used to detect the posi-
tion of the transverse beam. BPMs can monitor the phase 
and transverse position of the beam in high-energy particle 
accelerators by measuring the difference in the total voltage 
between two opposite pick-ups [4] and come in a wide vari-
ety of types, including button BPMs [5], cavity BPMs [6], 
and stripline BPMs [7]. The other important category of 
beam monitor is the gas detection system, which is typi-
cally based on the gas sheet [8]. Owing to its good stability 
and noninvasiveness to the beam, the gas detector is widely 
used for online beam profile measurements, such as the 
measurement of 400-MeV negative hydrogen atoms in the 
J-PARC LINAC [9–11], muon beam measurement in NOvA 
experiments at Fermilab [12], and electron and proton beam 
measurements at the High-Luminosity LHC [13]. Another 
type of beam monitor is based on a multichannel plate 
(MCP) [14, 15] and optical readout, which has been applied 
in the muon g-2 experiment [16–18] and planned for opera-
tion at the China Spallation Neutron Source (CSNS) [19] 
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and HIRFL-CSR [20]. The working principle of the MCP 
detector is that the injected electrons hit the MCP and are 
amplified and then recorded by the anode collector board. 
This design allows measurement of the beam profile of high-
intensity beams and can tolerate beam intensities of up to 
10

6
μ∕s [17].

To achieve individual particle measurements, scintillat-
ing fiber detectors have become a good choice [21] owing 
to their high light yield and fast response. Typically, sili-
con photomultipliers (SiPMs) are coupled to the scintil-
lating fibers [22] for photon detection. This type of beam 
profile monitor was used in the R484/R582 experiments at 
RIKEN [23] and MEG-II experiments at PSI  [24]. Fur-
thermore, scintillating fiber detectors can measure the hit 
time with high accuracy (of up to O(1) ns) and the depos-
ited energy by counting the photon electrons. Owing to 
their high-precision characteristics, they can also be used 
for charged-particle identification in combination with mul-
tiple detection systems [25].

The Coherent Muon-to-Electron Transition (COMET) 
experiment at J-PARC is a next-generation world-leading 
charged lepton flavor violation experiment that searches for 
the charged lepton flavor violation process via the coherent 
neutrinoless muon-to-electron conversion ( �–e conversion) 
process  [26]. The COMET experiment aims to measure 
the process with a single-event sensitivity of 2.7 × 10

−17 , 
which is four orders of magnitude higher than the current 
experimental limit given by SINDRUM-II [27]. An 8-GeV 
bunched proton beam with a 1-MHz pulse structure is slowly 
extracted from the J-PARC main ring (MR) [28–30]. This 
beam hits a stopping target and generates the required muon 
beam for the COMET experiment. One of the key points 
in the experiment is the high-precision measurement of the 
COMET muon beam, which requires beam monitoring and 
measurement during beam commissioning [31].

A muon beam monitor (MBM) was designed to measure 
and display the COMET muon beams. The goal is to offer a 
simple and cost-effective detector with compact size and low 
power consumption that must be easy to operate in a high-
radiation environment. In this study, we review the structure 
and performance of the detector and present test results on 
high-intensity proton beams and detector performance dur-
ing COMET phase-� commissioning.

2 � Detector system

2.1 � Mechanical structure

The core of the MBM is a grid of multi-clad square 
1-mm-wide SCSF-3HF scintillating fibers produced by 
Kuraray [32, 33] coupled at one end to an S13360-1350PE 
SiPM from Hamamatsu [34], forming a square beam window 

arranged along the X and Y axes, where the orthogonal axis 
is perpendicular to the beamline direction. The effective 
photosensitive area of the selected SiPM is 1.3 mm ×1.3 
mm, which matches the cross-sectional area of the scintil-
lating fiber, and the spectral responses of the scintillating 
fiber and SiPM used are well matched, which can minimize 
the loss of photons at the transmission interface. The use 
of square fibers makes the detector response independent 
of the position of the muon trajectory inside the fiber and 
minimizes the dead space. The fibers were cut and polished 
with a heated tungsten steel cutter [35], and silicone grease 
was coated on the contact end to further improve photon 
transport efficiency via the fiber–SiPM interface. The fibers 
were divided into two perpendicular layers spaced 0.8 mm 
apart, which can cover a beam window of 30 cm × 30 cm. 
Each layer was made of 128 fibers with a length of 500 mm 
and 1.3-mm spacing to measure the beam profile in the two 
orthogonal directions (X and Y).

Scintillating fiber has a total reflection cladding structure 
and can achieve extremely high light collection efficiency 
and effectively improve the detection efficiency of the detec-
tor. When charged particles go through a scintillating fiber, 
energy loss occurs through ionization transfer in the scintil-
lating fiber. Ionization energy loss can be estimated using the 
Bethe–Bloch formula [36]. For organic scintillating materi-
als with densities close to 1 g/cm3 , the corresponding mini-
mum ionization energy loss dE∕dx is ∼200 keV/mm [37], 
which is acceptable for a high-intensity muon beam with 
an energy of O(10) MeV. Simultaneously, the mesh struc-
ture can further reduce the average energy loss of the muon 
beam such that such a detector structure can achieve quasi-
noninvasive effects. Using this quasi-noninvasive design and 
a pure geometric calculation, we observe that 60% of the 
muons passing through the beam window will be recorded, 
whereas 16% of the muons will trigger both layers and gen-
erate coincident signals. The signals will provide the hit map 
of the muons and allow characterization of the beam profile.

All the scintillating fibers and their corresponding mod-
ules were fixed on an aluminum (Al) plate, and the grid of 
the scintillating fibers was additionally shielded in a stain-
less-steel box as a light shield. The beam window on the 
stainless-steel box was cut off and covered with two layers 
of Al foil with a thickness of 50 μ m. In addition to the grid 
of fibers shielded in the stainless-steel box, we installed an 
electronic system on the Al plate, including two electronic 
modules and one time logic unit (TLU). The two electronic 
modules were fixed on the two sides of the detector with the 
SiPMs coupled to the ends of the fibers. The TLU module 
was fixed at the corner of the Al plate for easy communica-
tion with the electronics on both sides. All electronic boards 
were covered by a resin shell with a metal layer on the sur-
face, which can prevent dust and reduce occasional single-
particle flip damage caused by beam–particle scattering to 
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electronic components. The whole MBM scheme is illus-
trated in Fig. 1.

2.2 � Electronic readout

The electronic readout of the MBM includes two main parts: 
two electronic modules to read out the signals and upload 
data to the upper computer and one TLU to synchronize 
the clock time of the two electronic modules. Each elec-
tronic module contains three parts: a SiPM carrier, a fron-
tend electronics board (FEB), and a data acquisition (DAQ) 
board. The SiPM carrier contained 128 SiPMs arranged in 
a 16 × 8 array and was connected to the FEB with an edge 
connector. The SiPM transforms photons to photoelectrons 
and generates a current signal, which is then integrated using 
a charge-sensitive preamplifier. A pulse signal with a fixed 
time length and voltage of 3.3 V was produced and pro-
cessed in the FEB. A power supply module was installed on 
the SiPM carrier to ensure stable power to all 128 channels. 
The power supply module was equipped with a built-in tem-
perature compensation system that could adjust the voltage 
according to the external temperature, thereby improving the 
stability of the SiPM in different environments.

The FEB board comprises two application-specific inte-
grated circuit (ASIC) chips [38] and a field-programmable 
gate array (FPGA). The ASIC chip has 64 channels, each of 
which includes a charge-sensitive preamplifier, a CR–RC 
shaping circuit, a screener, and other modules. The ASIC 
chip, which is connected to the TLU in real time through 
HDMI, amplifies the signals and transmits them to the 
FPGA. The TLU sends a clock and sampling start signal to 
the FEB, combining the signal with the timestamp generated 
by the timer inside the FEB to achieve time synchronization 
of SiPMs. The FPGA will pack the data and send them to the 
DAQ board, which transfers the data to the switch, and the 
data are stored in the computer (or MIDAS Bank) for further 
processing. We also developed graph interface software that 
can receive data from the MBM and draw histograms for 

trigger rates in X and Y directions to monitor the MBM run-
ning status in real time.

Owing to the limit of the ASIC chip, the electronics sys-
tem can only record the time information triggered by the 
signal while the charge information remains blank. Fortu-
nately, counting and recording the signals that pass through 
the threshold are sufficient to measure the beam profile and 
time structure. However, because SiPM characteristics, such 
as the dark count rate and quantum efficiency, can quite 
different, the response of the 256 channels of the MBM 
would also be diverse, which would degrade detector per-
formance. In this case, we carefully designed the electronic 
readout configuration such that it was possible to modify the 
threshold of each channel and adjust all channels in uniform 
responses to the signals. For each channel, the dark count 
rate was maintained at a low level of ∼ 1 Hz by calibrating 
the threshold value. Therefore, we expect a high signal-to-
noise ratio in the beam-monitoring run.

2.3 � Validation of detector response

After assembling the MBM, it is necessary to validate the 
working status of the detector before installing it on the 
beamline. Therefore, we continuously recorded cosmic-ray 
data for ∼3 h. With this test, we are able to validate two 
questions: 1. We checked whether the detector can run prop-
erly in the whole period; 2. by comparing the collected data 
with our rough estimates, we checked whether the detector 
can record the charged particles (cosmic muons) with high 
efficiency.

For the first purpose, we monitored the working status of 
the detector in the long run to identify stable detector data 
without any breaks, as shown by the trigger rate for this 
period in Fig. 2a.

Second, we analyzed the recorded data and compared 
them with our expectations. The cosmic-ray muon flux at 
sea level is ∼ 1 min−1 cm−2 [39]; therefore, we must expect 
∼ 3 Hz in the MBM. In the actual configuration, the dark 
count rate was reduced to 1 Hz for each channel by setting an 
appropriate threshold. Therefore, the trigger rate of all chan-
nels in the MBM remains high and at the level of O(100) Hz, 
which is approximately two orders of magnitude higher than 
the naive expectation from cosmic-ray events. Fortunately, 
in this case, we can switch to coincident measurement and 
collect cosmic-ray muon events by restricting the X and Y 
layers triggered within 20 ns, which is 3 � of the fiber decay 
time. Based on a coincidence time window of 20 ns, the 
accidental coincidence count rate caused by dark noise in 
two orthogonal scintillating fibers is 6.6 × 10

−4 Hz, which 
is much lower than the muon count rate of 2.8 Hz based on 
Monte Carlo simulation results. Therefore, the dark noise 
frequency is acceptable.

Fig. 1   (Color online) Global setup of the MBM structure. The top 
left shows the brief grid of scintillating fibers, which in fact covers a 
beam window of 30 cm × 30 cm
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Finally, satisfactory results are obtained, as shown in 
Fig. 2. In Fig. 2a, we observe that the coincidence-triggered 
rate is ∼ 3 Hz, which is consistent with our expected results. 
In addition, the rate of triggered events was stable in the plot, 
which indicates the stability of the detector in a relatively 
long run. In addition, the detector response was almost uni-
form, indicating good performance for all channels in the 
MBM (see Fig. 2b). During detector operation, the power 
was maintained at ∼ 60 W, although it fluctuated slightly dur-
ing different runs. Based on the above observations, we con-
clude that the MBM can operate stably for a long time and 
has the required functionalities to achieve physics objectives.

3 � Beam tests

3.1 � Proton beam test at the CSNS

To understand the detector response to a high-intensity 
beam, we conducted a quick beam test using the Associated 

Proton beam Experiment Platform (APEP) at the CSNS on 
January 9, 2023 [40]. The detector was installed on the plat-
form on a movable bracket that could move it on the X–Y 
plane with accurate positioning. Prior to the beam tests, a 
laser collimator was used to align the beam window to match 
the center of the beam.

In the APEP setup, the extracted proton beam has a rep-
etition rate of 25 Hz with a 400-μ s beam pulse length for 
each bunch. A suite of degraders was placed downstream 
of the proton beam window, which allowed us to adjust the 
proton energy in the range of 10–80 MeV. A collimation 
system was installed on the beamline to adjust the beam spot 
size and intensity. Using this system, we can tune the uni-
form proton beam spot sizes at both the vacuum and air test 
points from 10 mm × 10 mm to 50 mm × 50 mm. However, 
the scattering effect of atmospheric molecules on the beam 
spot in a nonvacuum experimental environment results in 
an actual beam spot size that is significantly larger than the 
original size inside the vacuum beamline. For example, the 
setup of the collimation system of 10 mm × 10 mm would 
result in a beam spot size of ∼70 mm × 70 mm at the air test 
point [40].

We have two purposes for the beam test. The first objec-
tive is to validate the ability of the MBM detector to record 
the time structure of the beam. Considering the 25-Hz 
repetition rate of the beam, we selected data within 280 
ms, including eight pulses. The time structure is shown in 
Fig. 3a, and we observe a clear time structure with a regular 
peak every 40 ms, which is consistent with the 25-Hz beam 
repetition rate. The other purpose is to validate the ability of 
the detector to measure the profile of the beam. Therefore, 
we must draw a two-dimensional plot by selecting the X–Y 
coincidence events.

However, during the beam test, we found that radiation 
seriously affected some scintillating fibers operating in the 
80-MeV proton beam for a long time, in which almost all 
channels got triggered continuously at an ultrahigh rate, 
especially for the previously scanned points. In this case, 
the true proton events became seriously polluted with the 
radiation background. Therefore, stricter cuts had to be made 
to obtain a clean triggered signal:

•	 The event should be triggered within 10 ns on the X and 
Y layers.

•	 The trigger time of the event should be in the range of the 
beam’s spill time.

Using these cuts, we obtained the results shown in Fig. 3b. 
In the plot, we can observe a clear beam spot at the top 
center, which is the exact location of the beam arrangement. 
The size of the beam spot was ∼70 mm × 70 mm, which 
is consistent with the simulation results provided by the 
CSNS [40]. Based on these tests, we can confirm that the 

Fig. 2   (Color online) Tests with cosmic-ray muons in the local labo-
ratory. a Hit rate of cosmic-ray muons recorded by the MBM detec-
tor. b Hit map caused by cosmic-ray muons
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MBM detector has a good response to the beam particles and 
can record the timing structure and profile characteristics of 
the beam quite well.

3.2 � COMET phase‑̨  commissioning

To measure the characteristics of proton beams and � and 
� production with less ambiguity, which is essential for 
COMET experiments, the collaborating group proposed a 
low-intensity beam run called phase-� commissioning. An 
essential goal of this run was to monitor and measure the 
properties of muon beams.

The phase-� detector system comprised four subdetectors: 
the MBM, the straw tube tracker, the range counter (RC), 
and the proton beam monitor. As the first detector at the 
backend of the muon beam, the MBM was used to monitor 
the timing structure and position information of the muon 
beam and to provide a reference for the downstream detector 
and beamline quality. The straw tube tracker was installed 
after the MBM and its task was to measure the position and 
direction of the injected particles [41]. Because the straw 
rube tracker is part of the detection system in COMET phase 
I, phase-� commissioning was used to validate its perfor-
mance in the beam environment, especially for its electronics 
system.

At the end of this system is the RC detector, which con-
sists of a series of several plastic scintillators coupled with 
photomultiplier tubes, aiming to measure the deposited 
energy and the hit time of the muon events. In addition, 
the electronic system of the RC detector allows it to record 
approximately a 10 � s photomultiplier tube waveform; thus, 
it can measure the decay time of muons decayed in orbit 
events. The proton beam monitor was installed on a pro-
ton beamline and provided real-time proton-beam monitor-
ing. Furthermore, a dedicated beam-masking system was 
installed upstream of the transport solenoid entrance to study 
the optics and beam dynamics of the transport solenoid.

3.2.1 � Experimental setup

The detector was installed in the COMET Experimental 
Hall in mid-February 2023. A dedicated 8-GeV bunched 
proton beam was set up at the J-PARC MR; this beam hits 
the graphite target and produces a secondary muon beam. 
This energy proton beam can minimize antiproton pollu-
tion and generate sufficient muons to meet physical require-
ments [26]. The beam spill cycle time was set to 9.2 s, in 
which the acceleration time and the flat-top time were ∼0.6 
and ∼8.6 s, respectively. The beam power in phase-� com-
missioning was 0.26 kW. The original plan was to use a 3-T 
magnetic field to guide the muon beam inside the transmis-
sion solenoid. However, in reality, the magnetic field used 

was only 1.5 T, resulting in a wider spread of the muon 
beams.

The MBM was installed right after the exit of the trans-
port solenoid with its center aligned with the center of the 
transport solenoid exit. In addition, during installation, we 
introduced a trigger signal called “local time’’ provided by 
the RC through an SubMiniature version A (SMA) inter-
face, which was used to reset the time corresponding to the 
MBM to zero when the event gets triggered. We took data 
from March 3 to 5 and March 9 to 15 using the secondary 
muon beam.

3.2.2 � Experimental results

For phase-� commissioning, the goal of MBM included two 
aspects: 1. characterizing the time structure of the muon 
beam and comparing it with the bunched proton time struc-
ture from the J-PARC MR; 2. measuring the muon beam 
spatial profile to gain a deeper understanding of the beam 
production and transportation. Moreover, assessing the 
operational stability of the MBM in harsh environments is 
essential in the long run.

The timing structure of the muon beam in the COMET 
is one of the key questions to address. As previously 
mentioned, the COMET experiment requires a dedicated 
8-GeV bunched proton beam that generates the second-
ary muon beam. In the design of the COMET experiment, 
the J-PARC MR synchrotron accelerates the protons cycle 
by cycle. There were nine beam buckets in the MR, with 
each bucket separated by 586 ns. The beam buckets were 
not filled completely to obtain the pulsed beam required for 
the experiment. The MR cycle consists of three bunches 
(type a) spaced by 1.17 μ s and one bunch spaced by 1.76 μ s 
(type b), which are used to effectively reduce the physical 
background caused by other beam particles. Owing to the 
low beam intensity in the phase-� commissioning, there are, 
on average, only 0.02 events recorded by the MBM in one 
bunch; thus, many events must be superimposed to obtain a 
plot with a visible structure. However, because of the limited 
timing resolution from the MR, we were unable to confirm 
the precise serial number of bunches for the triggered hit. 
Therefore, the time structure is a superposition of four pos-
sibilities (aaab, aaba, abaa, and baaa). Consequently, we 
expect a time structure with one large peak and six small 
peaks generated by the misalignment of the beam structure 
after superposition. The large peak should be spaced at 1.1 
μ s compared to the small peaks, whereas the small peaks 
should be separated by 586 ns in the enlarged time window, 
which is consistent with the MR beam structure. Accumu-
lating data from ∼800 runs enabled us to draw the timing 
structure of the muon beam, as shown in Fig. 4, which meets 
our expectations.
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Another important concern is the muon-beam profile 
of the COMET. We obtained a two-dimensional profile of 
the muon beam, as shown in Fig 5. In the actual beam trial 
operation stage, the measured beam profile is not completely 
circular as a result of interference from many factors. One of 
the reasons for this is that the magnetic field in the transport 
solenoid was set to 1.5 T, which is half of that originally 
designed in the COMET phase I design. In addition, the 
detectors in the phase-� commissioning were installed out 
of the exit of the transport solenoid without any magnetic 
field and scattering in the air had an effect. Moreover, the 
beam contains several kinds of charged particles, including 
e − , μ− , and �− , each of which has a different beam direction. 
Based on the above analysis, the beam was assumed to be 
widely spread. This results in different beam spots in the 
beam profile.

Phase-� commissioning started from March 3 to 13 with 
a 1.5-T magnetic field. During this period, the muon beam 
operated stably, and detailed measurements of the time and 
beam profile structures were conducted. The results are 
reflected by the stable beam spot, as shown in Fig. 6. To 
obtain more comprehensive beam profile features, we drew 
the barycenter of the beam profile and the counting rate of 
the detector, which also indicates the long-term stability of 
the detector during the entire phase-� commissioning.

After the successful run in the muon mode, we turned off 
the magnetic field for several hours and then inverted the 
direction of the magnetic field and measured the antimuon 
component in the beam (called the “Mu+ Run,’’) to study 
the beam component and the effect of the magnetic field. 
In addition, we moved the location of the beam-masking 
system several times during the Mu+ Run period to vali-
date the beam optics and dynamics in the curved transport 
solenoid. Figure 6 shows the location of the beam center and 
the stable trigger rate most of the time. It should be noted 
that the beam jumps several times after Run 3257, which is 
caused by the swapping of the magnetic field polarization 
and the movement of the beam-masking system. In general, 
the COMET muon beam runs stably, and the MBM reflects 
the running status of the beam quite well.

To cross-check whether the detector can correctly identify 
the beam position, we also conducted a coincidence meas-
urement with the RC by selecting the first hits in every event. 
Consequently, we obtained the hit maps shown in Fig. 7. We 
can observe a clear hot zone in the plots, which indicates the 
position of the RC.

We moved the position of the RC to several different 
locations, allowing us to validate the MBM’s response to 
the beam location. We recorded the relative location of the 
RC during this period and drew the MBM–RC coincidence 
beam profile using the corresponding data. In Fig. 7, the 
beam spot is located at the bottom right (Fig. 7a) and top 
left (Fig. 7b), which corresponds to RC movement from the 

bottom right to the top left. Based on these results, we veri-
fied the accuracy of the MBM response to the beams.

4 � Summary and outlook

The first complete MBM with 1-mm-wide scintillating fibers 
and X–Y readout using the SiPM was designed and used for 
COMET phase-� commissioning. Some key specifications 
are summarized in Table 1.

We validated the monitoring system with cosmic-ray 
muons in a local laboratory and checked the MBM func-
tionalities through several rounds of beam tests, including 
the timing structure and beam profile of the muon and proton 
beams. The performance of the MBM is good. The current 

Table 1   Key specifications of the MBM

Parameter Value

Time resolution (ns) 1.6
Spatial resolution (mm) 1
Detection area (cm2) 30 × 30
Maximum counting rate (kHz) 50
Power consumption (W) ∼60

Fig. 3   (Color online) Beam test results with a high-intensity 80-MeV 
proton beam at CSNS. a Timing structure of the proton beam at 
CSNS. b Beam spot during CSNS beam tests
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experience in the development of the MBM for COMET 
experiments may facilitate other similar beam instrumenta-
tion at various accelerator centers.

From the COMET phase-� commissioning experience, 
we consider a further upgrade of the MBM to satisfy the 
requirements for operation in the phase I period. Com-
pared to the current phase-� , the beam intensity in phase 
I will be increased by approximately three orders of mag-
nitude. Upgrading the electronic readout of the detector 
is needed to avoid pile-up events, including an upgrade 
of electronics to record both charge and time informa-
tion and a more powerful DAQ system for much higher 

trigger rates. Moreover, as the backend detector needs to 
be installed inside the detector solenoid in the phase I 
experiment and the detector solenoid provides a 1-T mag-
netic field environment [42], the electronic parts to collect 
SiPM signals need to be placed outside the detector sole-
noid to avoid damage caused by the high-magnetic-field 
environment. However, the location of the electronic com-
ponents also requires consideration of the strong radia-
tion effect caused by neutrons in the harsh environments 
outside the solenoid. Therefore, it will be a tough task 
to strengthen the radiation hardness of the electronics to 
avoid single-event upset. Although pinpointing the exclu-
sion limit or claiming the discovery of new physics can be 
challenging, efforts to achieve breakthroughs should be 
taken as a means to drive cutting-edge technologies with 
fundamental science.

Fig. 4   Monitoring the timing structure of the muon beam during 
phase-� commissioning. a Overview of the timing structure. b Details 
of the peak fittings in a short time window

Fig. 5   (Color online) Two-dimensional muon beam profile during 
COMET phase-� commissioning

Fig. 6   Long-term stability of the muon beam. a Change of center 
location during the beam time. b Change in hit rates during the beam 
time
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