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Abstract
The Moon provides a unique environment for investigating nearby astrophysical events such as supernovae. Lunar samples 
retain valuable information from these events, via detectable long-lived “fingerprint” radionuclides such as 60Fe . In this 
work, we stepped up the development of an accelerator mass spectrometry (AMS) method for detecting 60Fe using the HI-13 
tandem accelerator at the China Institute of Atomic Energy (CIAE). Since interferences could not be sufficiently removed 
solely with the existing magnetic systems of the tandem accelerator and the following Q3D magnetic spectrograph, a Wien 
filter with a maximum voltage of ± 60 kV and a maximum magnetic field of 0.3 T was installed after the accelerator magnetic 
systems to lower the detection background for the low abundance nuclide 60Fe . A 1 μm thick Si

3
N

4
 foil was installed in front 

of the Q3D as an energy degrader. For particle detection, a multi-anode gas ionization chamber was mounted at the center 
of the focal plane of the spectrograph. Finally, an 60Fe sample with an abundance of 1.125 × 10−10 was used to test the new 
AMS system. These results indicate that 60Fe can be clearly distinguished from the isobar 60Ni . The sensitivity was assessed 
to be better than 4.3 × 10−14 based on blank sample measurements lasting 5.8 h, and the sensitivity could, in principle, be 
expected to be approximately 2.5 × 10−15 when the data were accumulated for 100 h, which is feasible for future lunar sample 
measurements because the main contaminants were sufficiently separated.
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1 Introduction

The Moon is an excellent location for the storage of interstel-
lar dust. There have been no geological or biological activi-
ties for more than a billion years [1–5], except for some mild 
gardening processes such as micrometeorite bombardment 
[6]. The dust deposited on the surface of the Moon contains 
long-lived radionuclides such as 60Fe ( t1∕2 = 2.61 ± 0.04My 
[7, 8]), which are mainly produced in massive stars and 
ejected by supernova explosions [9–11] while cosmic rays 
produce a small amount [12]. Therefore, 60Fe can provide 
evidence for tracing the passing of ejecta of nearby super-
nova events that have occurred within the last several mil-
lion years. However, the 60Fe∕Fe ratio of lunar samples is 
approximately 10−15 [12], which falls below the detection 
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limit of most nuclide analytical methods. Accelerator mass 
spectrometry is the only method capable of detecting 60Fe . 
This method was employed to determine the abundance of 
60Fe in deep-sea ferromanganese crusts [13, 14], marine 
sediments [15], Antarctic snow [16] and lunar soils brought 
back by the Apollo and Luna programs [12].

Chang’e-5 has completed China’s first sample-gathering 
lunar mission, acquiring scooped and drilled samples from 
the northeastern Oceanus Procellarum on the Moon at 
longitudes and latitudes of 51.916 ◦W and 43.058 ◦N . This 
latitude is considerably higher than that of earlier sample 
collection sites of Apollo and Luna, which ranged from 
−8.973 ◦N to 26.133 ◦N . Hence, the new samples from the 
Chang’e-5 mission may provide more information (such as 
lunar petrology and volcanism [17–20], lunar geochemistry 
[21–23], and lunar soil maturity [24]). Motivated by this 
goal, we stepped up the development of the AMS facility at 
the China Institute of Atomic Energy to detect 60Fe in lunar 
samples.

2  AMS setup

The HI-13 tandem accelerator at CIAE was accepted 
from the HVEC in 1986 and commenced full operations 
in early 1988 [25, 26]. AMS measurements based on this 
accelerator began in 1989 [27]. Nuclides such as 10Be, 32Si, 
36Cl, 41 Ca have been measured using this facility [28–31].

A schematic diagram of the AMS setup is illustrated 
in Fig. 1. The injection system was specifically designed 
for AMS measurements, featuring an NEC multi-cathode 
source of negative ions by Cs sputtering (MC-SNICS), 
which can accommodate up to forty cathodes. Negative ion 
beams are first filtered using a 90◦ electrostatic analyzer 
and a 112◦ injection magnet. Retractable Faraday cups are 
placed after each magnet to measure the beam current. 
Two offset Faraday cups are installed at the focal plane of 
the injection magnet. A gaussmeter is mounted inside the 
injection magnet to ensure reproducibility. 

Fig. 1  (Color online) Diagram of the HI-13 tandem accelerator AMS 
system at the CIAE, featuring a photograph of the installed Wien fil-
ter, along with a quadrupole doublet placed in front of it. Only major 

parts are drawn and most of the beam-guiding devices are not dis-
played. There is a retractable target holder at the center of the target 
chamber, which was installed with the Si

3
N

4
 degrader
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The HI-13 tandem accelerator can reach an approximate 
12.5MV terminal voltage and is capable of foil and gas strip-
ping. Following the accelerator, an analyzing magnet and a 
switching magnet are present. The analyzing magnet has a 
mass energy product of 200 amu⋅MeV ( mE∕Z2 ). The ter-
minal component of the AMS beamline is a Q3D magnetic 
spectrograph that sequentially comprises a target chamber, 
a quadrupole, three dipoles, and a focal plane. A Si3N4 foil 
was installed in the target chamber as an energy degrader for 
additional isobar separation. The magnetic spectrograph has 
exhibited an energy resolution of 2 × 10−4 and a dispersion 
along the focal plane, determined by the least squares fit, 
of 11.37 (cm∕1%ΔP∕P) [32]. A multi-anode gas ionization 
chamber (four anodes in this work) with an entrance win-
dow of 65mm × 40mm was mounted at the center of the 
focal plane for particle detection. The ΔE-Q3D detection 
method is developed with this system for isobar identifica-
tion. Detailed descriptions of the ΔE-Q3D method have been 
reported [33, 34].

Despite the high sensitivity of the described AMS system, 
the contaminants in the beam of rare ions of interest cannot 
be completely removed by the high-resolution magnetic 
systems of the tandem accelerator. This limitation can 
lead to detector saturation in certain cases, such as in 60Fe 
measurements. To address this issue, a Wien filter was 
installed after the switching magnet to reduce the interfering 
beams entering the final detector along with the rare ions 
of interest. The Wien filter is discussed in detail in the 
subsequent section.

2.1  Beam purification with Wien filter

A Wien filter utilizes orthogonal electric and magnetic fields 
to selectively influence the ions within a beam. Only ions 
with a specific velocity pass unaffectedly, whereas ions with 
different velocities are deflected by the electromagnetic force 
and subsequently blocked. A Wien filter manufactured by 
Danfysik was installed to purify the beam before it entered 
the Q3D magnetic spectrograph. The maximum voltage of 
the Wien filter is ±60 kV , and the maximum magnetic field 
is 0.3 T . The Wien filter parameters are listed in Table 1. 
A quadrupole doublet was positioned in front of the Wien 
filter to focus the beam at the entrance of the Q3D magnetic 
spectrograph. A slit was added 2m from the Wien filter exit 
to block the deflected and defocused interfering beams. A 
collimator with a diameter of 5mm can also be used for this 
purpose.

A test experiment with an 58 Fe beam was performed to 
evaluate the performance of the Wien filter. During this 
experiment, the analyzing and switching magnets were opti-
mized for the transmission of 58Fe. A multi-anode gas ioni-
zation chamber was mounted on the focal plane of the Q3D 
for detection. The energy-loss spectra for the first anode E1 

versus the total energy Etotal are illustrated in Fig. 2. When 
the Wien filter was not activated, there was a significant 
presence of interfering beams, as illustrated in Fig. 2a. Most 
contaminants were suppressed by the Wien filter when the 
parameters were optimized for 58 Fe as illustrated in Fig. 2b. 
Small numbers of ions with the same m∕q and E∕q as the 
ions of interest also enter the detector. However, they were 
sufficiently separated in the energy spectra. In this experi-
ment, the magnetic field of the Q3D was optimized for the 
tail of the 58 Fe because of the high counting rate of the 58 Fe 
beam.

2.1.1  Isobar suppression

The abundance of 60Fe in lunar samples is extremely low, 
with 60Fe∕Fe estimated at the level of 10−15 . Separating 60Fe 
from 60Ni using most electromagnetic devices is challenging 
due to the isobar 60Ni having nearly the same mass. 60Fe 
and 60Ni have to be separated at high energies by the dE∕dx 
method; however, excessive 60Ni mixed in the 60Fe beam 
would saturate the data acquisition system. Hence, 60Ni must 
be reduced during each step of the AMS measurement.

First, to reduce the influence of the 60Ni , the samples used 
for 60Fe measurements were chemically treated to reduce Ni 
using a solvent extraction method and an anion-exchange 
step. Second, copper powder with a relatively high purity of 
99.999% was mixed with the 60Fe samples (in the form of Fe2
O3 powder) in an approximately 1:1 weight ratio to increase 
the beam current at the ion source of the accelerator. Third, 
the ion extracted for 60Fe measurements was 60FeO− , which 
produced a stronger beam current and higher 60Fe∕60Ni ratio 
than 60Fe− [35]. The holders of the samples in the ion source 
are composed of high-purity copper.

Although the aforementioned methods significantly 
reduced the nickel content, the remaining 60Ni could not 
be separated by electromagnetic devices and remained 
beyond the capacity of the data acquisition system. Thus, 
aided by an energy degrader foil, the ΔE-Q3D [33, 34] 
method was employed to separate 60Ni from 60Fe before 

Table 1  Parameters of the Wien filter

Parameter Value

Max. magnetic field (T) 0.3

Effective magnetic length (mm) 1032

Polo gap (mm) 140

Max. electrical field ( kV cm−1) 24

Effective electrical length (mm) 1080

Max. electrodes voltage (kV) 60

Electrode gap (mm) 50

Electrode width (mm) 80
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entering the final detector, because the energies of 60Fe and 
60Ni will be different after passing the foil. In this method, 
a highly homogeneous Si3N4 foil with a thickness of 1 μm 
was installed in the target chamber as an energy degrader. 
When 60Fe and 60Ni with energies of 130MeV pass through 
the degrader, the energy difference is approximately 
1MeV , and the energy straggling is approximately 200 keV 
at FWHM. This difference is sufficient for the Q3D to 
separate 60Ni from 60Fe . Although several scattered 60Ni 
ions entered the detector, the remaining intensities were 
low; 60Fe and 60Ni can be distinguished using a multi-
anode gas ionization chamber.

2.1.2  Experimental procedure

The HI-13 tandem accelerator operated at a terminal 
voltage of 11MV for the 60Fe AMS measurements. 
Considering the stripping efficiency and beam energy, 
carbon foils with a thickness of 3 μg/cm2 and charge 
state of 11+ were selected. At this terminal voltage, the 
stripping efficiency is around 7% , and the beam energy is 
approximately 130MeV.

As the 60Fe ion flux cannot be measured using Faraday 
cups, it is necessary to simulate 60Fe beam transport with 
another nearby nuclide. 59 Co was selected as a pilot beam 
instead of 60Ni to avoid heavy contamination in subsequent 
measurements. The beam-guiding devices were optimized 

Fig. 2  (Color online) Two-
dimensional spectra of E

1
 versus 

E
total

 . E
1
 is the energy loss of the 

first anode, and E
total

 is the total 
energy of the ions in the detec-
tor. a Spectrum measured with-
out the Wien filter. b Spectrum 
measured with the Wien filter of 
±50 kV voltage and correspond-
ing magnetic field. The areas 
for 58 Fe and 58 Ni are marked by 
red circles
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to maximize the overall transmission efficiency. The 
transmission efficiency is calculated as follows:

where IInjSys and IQ3D are the beam currents measured with 
Faraday cups before the accelerator and ΔE-Q3D system, 
respectively; q is the charge of the ions. The efficiency was 
approximately 2% in this experiment.

Initially, all the accelerator magnet parameters were opti-
mized for the transmission of 59CoO− to 59Co11+ . To cali-
brate the Wien filter, the 59 Co beam was first measured using 
a Faraday cup in the target chamber without the Wien filter. 
Subsequently, the Wien filter parameters were optimized for 
59 Co to reproduce the beam current. In 60Fe measurements, 
the parameters of the Wien filter were optimized based on 59
Co. The slit after the Wien filter and collimator in the target 
chamber was used to block deflected contamination ions. To 
optimize the 60Fe beam, the parameters of the major mag-
nets, including the injection magnet, the analyzing magnet, 
switching magnet, and the Wien filter, were adjusted based 
on calculations. These parameters were fine-tuned based on 
the counting rate of the 60Fe.

After the Si3N4 degrader, 60Fe and 60Ni were separated 
using Q3D. As the counting rate of 60Fe was extremely low, 
initially, the magnets of the Q3D were optimized on 60Ni to 
calibrate the parameters. The Q3D magnet parameters were 
then scaled to detect 60Fe from the set previously tuned using 
60Ni . The optimized experimental parameters are listed in 
Table 2.

3  Results

In these measurements, an 60Fe blank sample was initially 
measured. Subsequently, a sample with an 60Fe abundance of 
1.125 × 10−10 was used for testing. The results are presented 
in Fig. 3. E1 and E3 are the energy losses at the first and the 
third anode, respectively. 60Fe is clearly distinguished from 
60Ni , as illustrated in Fig. 3b. In the spectra, a substantial 
amount of 60Ni and a few other contaminants are present; 
however, they are far away from the region of 60Fe and 
do not affect the identification. The sensitivity of AMS 
measurements, r , was calculated as

(1)� =
IQ3D

q ⋅ IInjSys
,

(2)r =
Nblank∕Q

�

N60Fe∕Q
⋅ rsample,

where Nblank and N60Fe are the event counts in the area for 
the 60Fe of the blank sample and 60Fe sample measurements, 
respectively. Q′ and Q are the numbers of 58Fe16O− 
collected at the injection system for the blank sample 
and the 60Fe sample measurements, respectively; rsample is 
the abundance of the 60Fe sample. In the measurements 
of the 60Fe blank sample, data were accumulated for 
5.8 h and the average current of 58Fe16O− was 40 enA. 
No 60Fe events were detected in this area. 152 60Fe ion 
counts accumulated over 6 h, and the average current of 
58Fe16O− was 2.2 enA. Consequently, the sensitivity of 60Fe 
measurements in the test experiment was estimated to be 
better than 4.3 × 10−14 . The sensitivity could, in principle, 
be expected to be approximately 2.5 × 10−15 when the data 
are accumulated for 100 h. This, with the use of a pristine set 
of ion source components in the ionizer region, is feasible 
for accumulation over multiple cathodes for future lunar 
sample measurements because the main contaminants are 
sufficiently separated, as illustrated in Fig. 3b.

4  Conclusion and outlook

The AMS facility at the HI-13 tandem accelerator has 
been developed for several decades and includes an NEC 
multi-cathode source of negative ions by Cs sputtering, 
the ΔE-Q3D isotope separation system, and a multi-anode 
gas ionization chamber. The sensitivity of AMS mainly 
depends on its ability to suppress contamination. Given that 
the previous system alone could not achieve the required 
sensitivity for detecting 60Fe , a Wien filter was installed 
after the accelerator magnetic systems to purify the beam 
and improve its sensitivity. The new setup was tested for 
60Fe measurements using a sample with 60Fe∕Fe at the level 
of 1.125 × 10−10 . The results demonstrated the following: 
Nearly all the contaminants in the beam of 60Fe were 
effectively separated. The sensitivity of 60Fe measurements 
with 5.8 h blank sample measurements at the AMS facility 
was evaluated to be better than 4.3 × 10−14 . For the lunar 
sample measurements, the duration would be approximately 
a few hundred hours. Thus, the sensitivity could in principle 
be expected to reach the level of 10−15 . Furthermore, the 
ion source and transmission efficiencies of the tandem 
accelerator did not achieve the best performance during the 
test experiment. Therefore, the sensitivity could be enhanced 
through further improvements in the future.
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E
3
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Table 2  Optimized accelerator 
parameters for 60Fe 
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Degrader Si3N4 ( 1 μm) Detector medium gas Isobutane ( 35mbar)
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