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Abstract
Beams typically do not travel through the magnet centers because of errors in storage rings. The beam deviating from the 
quadrupole centers is affected by additional dipole fields due to magnetic field feed-down. Beam-based alignment (BBA) 
is often performed to determine a golden orbit where the beam circulates around the quadrupole center axes. For storage 
rings with many quadrupoles, the conventional BBA procedure is time-consuming, particularly in the commissioning phase, 
because of the necessary iterative process. In addition, the conventional BBA method can be affected by strong coupling and 
the nonlinearity of the storage ring optics. In this study, a novel method based on a neural network was proposed to determine 
the golden orbit in a much shorter time with reasonable accuracy. This golden orbit can be used directly for operation or 
adopted as a starting point for conventional BBA. The method was demonstrated in the HLS-II storage ring for the first time 
through simulations and online experiments. The results of the experiments showed that the golden orbit obtained using this 
new method was consistent with that obtained using the conventional BBA. The development of this new method and the 
corresponding experiments are reported in this paper.
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1  Introduction

Ideally, the beam in a storage ring should circulate on the 
orbit passing through the axes of all magnet centers, which 
is called the golden orbit. The beam orbit may deviate from 
the ideal path due to errors such as misalignment, magnet 
imperfection, and power regulation errors. When the beam 
traverses magnets with orbital offsets, undesired magnetic 
fields are observed, called feed-downs [1]. The feed-down 
of a quadrupole with an orbital offset causes an additional 
dipole field. To minimize this effect, a beam-based 
alignment can be adopted to determine the golden orbit for 
machine operation. It is widely used in the commissioning 
phase of storage rings [2, 3]. For storage rings with long 

circumferences, such as most diffraction-limited storage 
rings (DLSRs), the number of quadrupoles is large, and the 
conventional BBA method is time-consuming [4]. Recently, 
a fast BBA method was developed at ALBA light source 
using the AC excitation of orbit correctors and fast beam 
position data acquisition [5–7]. At HLS-II, with no need 
to upgrade the hardware, a machine learning (ML)-based 
method was developed to determine the golden orbit for 
storage rings [8].

Neural networks (NNs) have been widely applied in 
artificial intelligence and have achieved great success 
in various fields. Their application has also been 
introduced in the field of particle accelerators  [9–12]. 
In the Advanced Light Source  (ALS), an NN model is 
used to maintain the vertical beam size when the gap of 
insertion devices varies [13]. The NN model can also be 
used to significantly reduce the simulation time for beam 
dynamics optimization [14]. At the Shanghai Synchrotron 
Radiation Facility (SSRF), an image processing technique 
using convolutional neural networks (CNNs) was adopted 
to extract bunch longitudinal phase information [15]. These 
applications demonstrate the substantial potential of NNs for 
improving accelerator performance.
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In this study, we present a new BBA method that uses an 
NN model to predict the golden orbit of a storage ring. To 
initiate the experiment, different closed orbits were generated 
by randomly changing the strengths of all the orbit correctors. 
Beams with various orbital deviations in the quadrupoles are 
subject to various degrees of influence from their magnetic 
field feed-down. This effect can be evaluated by measuring 
the change in the orbit caused by the quadrupole strength 
variation. Because the beam on the ideal golden orbit should 
not be disturbed by changing the quadrupole strength, an NN 
model can be trained to search for the orbit that is least affected 
by varying the quadrupole strength. To train this model, the 
orbit differences owing to quadrupole changes were used as 
input data, and the corresponding orbits before quadrupole 
adjustment were used as output data. The golden orbit was 
predicted by setting the input value to zero in the NN model.

To demonstrate its validity, the new BBA method was 
tested in the HLS-II storage ring through simulations and 
online experiments. The results indicated that the golden orbit 
obtained from the NN model was consistent with that obtained 
after several iterations using the conventional method. The 
golden orbit obtained using this method can be directly used 
for operation or as a starting point to speed up the conventional 
BBA, which requires several iterations. In general, this new 
method is less time-consuming than the conventional BBA, 
particularly during initial commissioning [16].

In the following sections, the methods of the conventional 
BBA and the new BBA using an NN model are shown in 
Sect. 2. The simulation results obtained using these two 
BBA methods for the HLS-II storage ring are described in 
Sect. 3. The online experiments using both BBA methods 
are introduced in Sect. 4. Finally, the work is summarized in 
Sect. 5.

2 � Beam‑based alignment

2.1 � Conventional BBA method

The purpose of BBA is to find a reference orbit in which the 
beam passes the centers of all quadrupoles in a storage ring 
using beam position monitors (BPMs) and orbit corrector 
magnets (OCMs). The dipole fields seen by an off-axis particle 
in a quadrupole is given by

where B0�0 is the magnetic rigidity, K0 is the normalized 
quadrupole strength, and x0 and y0 are the beam offsets 
relative to the quadrupole center in the horizontal and 

(1)Bx = B0�0K0y0,

(2)By = B0�0K0x0,

vertical planes, respectively. Therefore, changing the 
quadrupole strength by ΔK causes a dipole field variation by

resulting in a kick that leads to an orbital change at the 
observation point s by [17]

where L0 is the length of the quadrupole, � is the betatron 
tune, and �(s0) and �(s) are the beta functions at the locations 
of the quadrupole and observation points, respectively. 
�(s0) and �(s) are the phase advances at the locations of 
the quadrupole and observation points, respectively, and 
u represents the beam positions in the horizontal and 
vertical planes. This equation shows that the beam orbit 
can be affected by the quadrupole strength variation and 
beam positions in the quadrupoles. To avoid this effect, the 
reference orbit of the orbit feedback system is typically set 
to the centers of all quadrupoles with u = 0 . The reference 
orbit is determined using the BBA technique.

The quadrupole center is measured using the nearest 
BPM. Suppose that when the beam passes through the 
quadrupole center, the related reading of this BPM is v0 . 
According to Eq. (5), by changing the quadrupole strength 
ΔK , the beam orbit change is given by

where v is the reading of the target BPM before the 
quadrupole strength change, and F  is the coefficient that can 
be easily obtained from Eq. (5). To measure the quadrupole 
center, the beam is set to several different positions at its 
related BPM. For each position, the quadrupole strength 
is varied with the same ΔK , and the corresponding orbit 
changes are recorded. By applying a linear fit to Eq. (6), 
the quadrupole center v0 is obtained. The conventional 
BBA always determines the horizontal and vertical offsets 
separately  [18]. The above analysis implies that the 
coefficient F  is treated as a constant, which implies that 
the beam optics remain unchanged during the BBA process. 
In fact, the change in quadrupole strength and closed orbit 
distortion can affect the beam optics. At the beginning of 
commissioning, the beam orbit and beam optics are possibly 
significantly different from the ideal model, which induces 
strong nonlinearity and coupling. In this case, several 
iterations are required for the conventional BBA method 

(3)ΔBx = B0�0ΔKy0,

(4)ΔBy = B0�0ΔKx0,

(5)
Δu(s) =ΔKu(s0)

⎛
⎜⎜⎝
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2 tan(��)
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(6)Δu = ΔKF(v − v0),
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to eliminate the nonlinear effects and obtain more accurate 
quadrupole centers. A neural network with multiple layers 
that address nonlinear problems can be adopted for the BBA 
process [19, 20].

2.2 � BBA using a neural network

BBA is based on the principle that the off-axis beam is 
affected by a quadrupole strength change. The golden orbit 
can then be evaluated using the relationship between the 
orbit changes and the initial beam orbits before varying 
the quadrupole strength. This relationship can be explored 
by training a neural network using orbital changes as the 
input data and initial orbits as the output data. By setting 
the orbital change to zero, the corresponding initial beam 
orbit becomes the predicted golden orbit. The main concept 
behind this proposed BBA method is illustrated in Fig. 1. To 
obtain data for training the NN model, a simulation or online 
experiment was performed as follows:

•	 Randomly exciting all corrector magnets to form an 
initial closed orbit;

•	 recording all BPM readings;
•	 changing all quadrupoles by the same amount to form a 

new closed orbit.
•	 recording the changes in all BPM readings;
•	 resuming the quadrupole and corrector strengths to the 

original values;
•	 repeating the above procedures.

A typical dense neural network has one input layer, 
several hidden layers (also called middle layers), and 
one output layer, as illustrated in Fig. 2 [21]. The nodes 
where the data are transferred are called neurons. The 

nodes between adjacent layers are connected to each 
other by an arrow, which shows the flow of data. Each 
arrow represents a linear transformation combined with 
an activation function used to introduce nonlinearity if 
necessary [11]. A loss function is used to describe the 
performance of the neural network. An NN also requires 
an optimizer function to optimize the parameters used 
for data transmission. The optimization is performed by 
minimizing the loss value.

3 � Simulation study for the HLS‑II storage 
ring

Before conducting the online experiments, a simulation was 
performed to evaluate the validity of the new BBA method 
based on an NN model. The accelerator toolbox (AT) is used 
for the simulation in this study [22]. TensorFlow, which is 
adopted in this study, provides a flexible platform that makes 
it easy for users to build and train an NN model [23, 24].

The HLS-II storage ring has two super periods with 
a circumference of 66.1m. The layout of a single super 
period is shown in Fig. 3. The orbit system of the storage 
ring consists of 32 BPMs and 32 correctors combined with 
sextupoles. 32 quadrupoles were installed to measure their 
real centers using the BBA procedure [25].

Random rotation and shift errors were applied to simulate 
the misalignment of the elements and girders. The errors 
were generated in a normal distribution with truncation at 
three standard deviations. Based on the design report, the 
error settings for all magnets, girders, and BPMs are listed 
in Table 1. A set of misalignment errors for the whole ring 
is shown in Table 4. Strength errors of all magnets were 
also applied. The BPM random measurement error was set 
to 0.5 μm [26].

Fig. 1   Schematic of the neural network-based BBA method. Different 
orbits are generated by randomly adjusting the orbit correctors. 
On each orbit, all quadrupoles are changed with the same ΔK 
simultaneously to generate orbit changes. The orbit changes are used 
as the input data of the neural network, and the corresponding initial 
orbits are used as the output data for the training

Fig. 2   Diagram of a typical dense neural network, which consists of 
one input layer, several hidden layers, and one output layer. Here, the 
hyperbolic tangent ( tanh ) is adopted as the activation function
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3.1 � Conventional BBA method

In the conventional BBA measurement for one quadrupole, 
the beam is moved to three different positions with the help 
of the corrector magnets [27]. At each position, the change 
in the beam orbit from all BPM readings was recorded 
after varying the strength of the target quadrupole by a 
certain ΔK . The orbital changes can be fitted linearly as 
a function of the beam position in the target quadrupole. 
An immobile point can be found by setting the position 
at which the BPM changes vanish. The quadrupole center 
was then obtained by adding all the immobile points from 
each BPM. The entire BBA routine repeats this process for 
all quadrupoles in both the horizontal and vertical planes 
in the storage ring. To increase the BBA accuracy, the 
measurement was repeated after moving the beam to the 
orbit obtained from the previous BBA experiment. This 
scheme is typically required in the machine commissioning 
stage. Figure 5 shows the simulated measurements of the 
horizontal and vertical centers of the quadrupole magnet in 
the HLS-II storage ring. At least three conventional BBA 
iterations are required to decrease the standard deviation 
of the fitted Gaussian function of the quadrupole center to 

several micrometers, which is of the same order as BPM 
measurement resolution [28].

3.2 � BBA using an NN model

In the simulation, the correctors were set randomly within 
a certain range of kicks to move the beam orbit. The kick 
angle variations were generated using a normal distribution 
with a standard deviation of 0.05 mrad, and a truncation 
at three standard deviations was applied. For each random 
orbit, all quadrupoles were simultaneously changed by the 
same amount of ΔK ( −0.02m−2 ). The corresponding initial 
beam orbit and orbit changes were recorded for all BPMs.

The entire simulation generates 10,000 samples. In each 
sample, there were 64 initial orbits and 64 orbit change 
data points, with 32 in the horizontal plane and 32 in the 
vertical plane. These samples were adopted to train the 
neural network. Figure 6 shows the random initial beam 
orbits within the range (−5, 5) mm. Figure 7 shows the orbit 
change after quadrupole adjustment. The range of the orbit 
change was within (−1.5, 1.3) mm and (−0.8, 0.8) mm in the 
horizontal and vertical planes, respectively.

An NN model is trained using these data to obtain the 
golden orbit. The 64 sets of orbit change data were used as 
the input to the model, and the 64 sets of the corresponding 
initial orbit data were used as the output. Eighty percent 
of the data were used to train the model, and the rest were 
used to test the performance of the model. There were 128, 
256, and 128 neurons in the three hidden layers, respectively. 
The tanh is considered the activation function that provides 
nonlinearity. The NN model was trained using the Adam 
optimizer [29]. The loss function is the mean squared error 
(MSE) between the measured data and model-predicted 
results, which is

Figure 8 compares the golden orbits obtained from the 
conventional BBA and BBA using a neural network. The 
consistency between these two BBA methods demonstrates 
the validity and effectiveness of the new BBA technique. 
Subsequently, an online experiment was conducted in the 
HLS-II storage ring.

(7)loss = mean((rmodel − rreal)
2).

Fig. 3   One super period of the HLS-II lattice. There are 32 
quadrupoles and 32 BPMs in the storage ring. The 32 combined-
function sextupoles are used as the horizontal and vertical correctors

Table 1   Misalignment error 
settings used for the HLS-II 
storage ring

Type axis Shift error ( μm) Rotation error ( μrad)

X Y S X Y S

Girder 50 50 200 500 500 500
Dipole 200 200 150 500 500 500
Quadrupole 200 200 150 500 500 500
Sextupole 200 200 150 500 500 500
BPM 200 200 150 500 500 500
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4 � Online experiment in the HLS‑II storage 
ring

A conventional BBA was applied to the HLS-II storage 
ring  [30]. Figure 9 shows the BBA results for a single 
quadrupole. The fitting errors for most of the quadrupoles 
were within 20 μm.

4.1 � Training data acquisition

Similar to the simulation, training data can be obtained 
from a real storage ring. Before the experiment, the magnet 
strengths were set according to the results of the early 

commissioning of the storage ring. In this case, the beam 
is not on the golden orbit that connects the centers of the 
quadrupoles. An online experiment to obtain the training 
data is presented in this subsection.

During the online experiment, the orbit feedback 
system was turned off, and the correctors were randomly 

Fig. 4   Misalignment errors applied to the HLS-II storage ring. a Shift 
errors. b Rotation errors Fig. 5   Simulated BBA measurement in the HLS-II storage ring. The 

horizontal and vertical measurements are applied, respectively. a 
Horizontal quadrupole center measurement. b Vertical qaudrupole 
center measurement. The plots show the orbit change observed from 
all BPMs by varying the target quadrupole strength with a certain 
ΔK when the beam is at three different positions. For each BPM, 
its changes can be fitted to find a center for the quadrupole. All the 
found centers are then fitted using the Gaussian function. The red line 
shows the fitted centers using all BPMs, which represents the BBA 
center of this quadrupole
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set to generate different orbits. As a compromise between 
beam stability and data diversity, the adjustment range 
of all correctors was set to ± 0.8A relative to the 
starting point. This corrector adjustment range ensured 
no beam loss during the experiment by controlling the 
orbit change within a distinguishable range, as shown 
in Fig.  10. The horizontal tune in the HLS-II storage 
ring was approximately 4.44, whereas the vertical tune 
was 2.36, which is further from the half-integer. When 
the quadrupole strength is simultaneously increased, the 
horizontal tune increases accordingly which may reach 
the half-integer resonance and thus cause beam loss. 
Therefore, all quadrupole strengths were adjusted in the 

decreasing direction by −0.02m−2 (normalized focusing 
strength). After the orbital change was recorded, all 
quadrupole strengths were restored to their original values. 
For the HLS-II storage ring, the time constant for the orbit 
corrector power supply is approximately 15  ms  [30]. 
The time constant for the quadrupole power supply is 
approximately 30ms. This implies that one complete loop 
of this measurement could be performed within 1 s. To 
ensure the data acquisition accuracy, the measurement 
time for each loop was set to 2 s.

An online experiment was conducted during the 
machine study time [31]. The entire measurement process 
generated 21,000 samples. These samples were used to 

Fig. 6   Distribution of the initial orbits generated by randomly 
adjusting the orbit correctors within a certain range. a Initial orbits in 
the horizontal plane. b Initial orbits in the vertical plane

Fig. 7   Distribution of orbit change caused by varying the quadrupole 
strength for each random orbit in the simulation. a Horizontal orbit 
changes. b Vertical orbit changes
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train the neural network. Figure 10 shows the randomly 
generated initial beam orbits before the quadrupole 
strength is varied. The distribution shows that orbits were 
generated within a range of approximately (−10, 10) mm, 
and the densest distribution was approximately 0. The 
orbit change after the quadrupole adjustment was also 
analyzed, and the distribution of the orbit differences 

is plotted in Fig. 11. The range of the orbit change was 
within (−3, 2)  mm in the horizontal plane and within 
(−1.5, 1.5) mm in the vertical plane.

4.2 � NN model training using online data

In this subsection, the relationship between the initial orbit 
and the orbit change after quadrupole adjustment is explored 
using a dense neural network. Similar to the simulation, 64 
sets of orbit change data were set as the input to the model, 
and 64 sets of the corresponding initial orbit data were set as 
the output. To determine the data-size requirements, the two 
models were trained using different numbers of samples. In 

Fig. 8   The quadrupole centers obtained from the conventional BBA 
and the NN-based BBA. The simulation shows good consistency 
between these two methods
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Fig. 9   Measurement of BBA for one quadrupole in the HLS-II 
storage ring. The upper and lower plots show the horizontal and 
vertical orbit changes observed from all BPMs by varying the target 
quadrupole strength with a certain ΔK when the beam is at three 
different positions. For each BPM, the change in its reading can 
be fitted to find a center for the quadrupole. The red line shows the 
averaged fitted centers using all BPMs, which represents the BBA 
center of this quadrupole

Fig. 10   Distribution of the orbits generated by randomly adjusting the 
orbit correctors within a certain range. a Horizontal BPM readings. b 
Vertical BPM readings
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Model I, all 21,000 samples were adopted, 5/6 of the samples 
were used for training, and 1/6 were the validation data set. 
For comparison, Model II was trained with only 3000 samples 
in the training set and 600 samples in the validation set; 3600 
samples were adopted in total. The Adam optimizer and MSE 
loss function were used to train the models.

The trained NN models were evaluated by calculating the 
mean absolute error (MAE) between the measured and model-
predicted values of the validation samples for each BPM:

The absolute errors for both models are shown in Fig. 12, 
which shows that the errors in model I are smaller than those 

(8)MAE = mean(|rmeasured − rpredicted|).

in model II. In the horizontal plane, the overall average 
absolute error was approximately 99 μm for Model I and 
125 μm for Model II. In the vertical plane, the overall average 
absolute error was approximately 62 μm for Model I and 
71 μm for Model II. The results show that increasing the 
number of samples for the NN model training can improve 
the model’s accuracy.

4.3 � Golden orbit from the NN model

In the NN training, the orbit changes caused by varying 
quadrupoles were used as the input data. The corresponding 
initial orbits were used as the output data. The beam on 

Fig. 11   Distribution of orbit change after varying the quadrupoles for 
each random orbit. a Horizontal orbit change. b Vertical orbit change

Fig. 12   The mean absolute error (MAE) between the measured beam 
orbits and predicted values of the validation samples for all BPMs. a 
Horizontal plane. b Vertical plane



Beam based alignment using a neural network﻿	 Page 9 of 11  75

the golden orbit should have the least orbital distortion 
(ideally zero) owing to the change in quadrupole strength. 
Therefore, the input can be set to zero for the NN model, and 
the corresponding output is the golden orbit.

To estimate its accuracy, this golden orbit was compared 
with that obtained using the conventional BBA method, 
and the results are shown in Fig. 13. The sub-figures in 
Fig. 13 illustrate the differences between the novel and 
conventional BBA. The results show that this golden orbit 
is consistent with that obtained from the conventional 
BBA. In the horizontal plane, the average difference 
between the conventional BBA and the model prediction 
was approximately 46 μm for Model I and 53 μm for Model 
II. In the vertical plane, the average difference between the 
conventional BBA and the model prediction is approximately 
42 μm for Model I and 39 μm for Model II.

Although the training error of Model I was smaller than 
that of Model II, the difference in the predicted golden orbits 
from these two models did not exhibit a large deviation [32]. 
In the HLS-II storage ring, the typical experimental period 
for the conventional BBA process is approximately 5 h. 
In the machine commissioning phase, this BBA process 
is needed to be repeated several times to obtain precise 
results. Model II used only 3600 samples, which resulted 
in a shorter online measurement time ( ∼ 2 h). As discussed 
previously, the online measurement time for this new 
method is irrelevant to the total quadrupole number. This 
differs from the conventional BBA, where the larger storage 
ring requires more time. In contrast, the NN-trained golden 
orbit can be set as the starting point for the conventional 
BBA. This helps reduce the iterative process of the BBA 
starting from the initial commissioning orbit and, hence, the 
experimental time.

5 � Summary

A novel method is developed to search for the golden orbit 
of a storage ring. This method trains a neural network model 
using simulated or online data of different closed orbits and 
the corresponding orbit change caused by simultaneously 
varying all quadrupole strengths. The online experiments 
can be conducted in less time, particularly for large storage 
rings. This golden orbit is compared with that obtained 
using the conventional BBA, and the result shows good 
consistency.

The NN-based BBA is a good choice for the 
commissioning stage of a storage ring, where the beam 
optics are significantly different from the ideal model and the 
closed orbit deviates from the magnet centers. In this case, 
the linear process of conventional BBA is no longer accurate. 
Moreover, the conventional BBA treats the horizontal and 
vertical orbits separately. However, the coupling of a real 

machine is non-negligible, particularly when the coupling 
is not sufficiently corrected. The NN-based method deals 
with transverse planes simultaneously, which naturally 
solves the coupling issue. In addition, the new BBA method 
can be applied better to storage rings with strong nonlinear 
effects, which is often the case with DLSRs. With strong 
nonlinearity, the conventional BBA method might work 
within a limited region because the linearity of the orbit 
response is assumed. Because NNs can be used to solve 
nonlinear problems, as is well known, the NN-based BBA 
method is expected to be more effective for DLSRs. From 
another perspective, this new technique can better deal with 

Fig. 13   Comparison of the golden orbit obtained using the NN model 
and the conventional BBA method. The difference between the two 
golden orbits is shown in the subfigure. a Horizontal golden orbit. b 
Vertical golden orbit
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cases in which the quadrupoles are powered in series, as 
there is no need to vary the strengths of all quadrupoles 
individually. Some small light sources or boosters are 
expected to benefit from the new BBA method.
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