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Abstract
Prompt radiation emitted during accelerator operation poses a significant health risk, necessitating a thorough search and 
securing of hazardous areas prior to initiation. Currently, manual sweep methods are employed. However, the limitations 
of manual sweeps have become increasingly evident with the implementation of large-scale accelerators. By leveraging 
advancements in machine vision technology, the automatic identification of stranded personnel in controlled areas through 
camera imagery presents a viable solution for efficient search and security. Given the criticality of personal safety for stranded 
individuals, search and security processes must be sufficiently reliable. To ensure comprehensive coverage, 180° camera 
groups were strategically positioned on both sides of the accelerator tunnel to eliminate blind spots within the monitoring 
range. The YOLOV8 network model was modified to enable the detection of small targets, such as hands and feet, as well as 
larger targets formed by individuals near the cameras. Furthermore, the system incorporates a pedestrian recognition model 
that detects human body parts, and an information fusion strategy is used to integrate the detected head, hands, and feet 
with the identified pedestrians as a cohesive unit. This strategy enhanced the capability of the model to identify pedestrians 
obstructed by equipment, resulting in a notable improvement in the recall rate. Specifically, recall rates of 0.915 and 0.82 
were obtained for Datasets 1 and 2, respectively. Although there was a slight decrease in accuracy, it aligned with the intended 
purpose of the search-and-secure software design. Experimental tests conducted within an accelerator tunnel demonstrated 
the effectiveness of this approach in achieving reliable recognition outcomes.

Keywords Search and secure · Machine vision · Camera · Human body parts recognition · Particle accelerator · Hazardous 
area

1 Introduction

Prompt radiation is generated during the operation of par-
ticle accelerators. The prompt radiation area has a high 
energy level and exhibits intense radiation characteristics. 
Consequently, individuals within the controlled area are sub-
jected to significant doses of radiation from the generated 
neutrons and gamma rays [1]. Thus, all personnel must be 

evacuated within the controlled area before initiating accel-
erator operations.

Conventionally, skilled personnel are deployed to evacu-
ate personnel from a controlled area. These proficient indi-
viduals enter a controlled area and meticulously inspect and 
evacuate the other personnel according to a pre-established 
sequence and location [2, 3]. This approach presents several 
issues: (1) With the continuous advancement of scientific 
technology, there is a noticeable trend towards the scaling up 
of accelerator installations. Accelerators measuring several 
kilometers or even tens of kilometers in length have already 
emerged, and plans are underway for accelerators approach-
ing a length of 100 km [4, 5]. These large-scale accelerators 
correspond to a substantial expansion of the controlled area. 
Consequently, the traditional approach faces increasingly 
prominent drawbacks such as prolonged time consump-
tion and low efficiency. (2) Large accelerators encompass 
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a multitude of components and intricate structures, result-
ing in numerous blind spots within hazardous areas. These 
obstructions give rise to significant safety concerns, as they 
may conceal individuals who have not been found by profi-
cient personnel.

In light of these circumstances, we present a machine-
vision-based intelligent search-and-secure technology as a 
solution. This technology leverages a camera group deployed 
in a hazardous area and a server with an identification pro-
gram specifically designed to perform intelligent and rapid 
identification of stranded individuals within a tunnel.

Owing to the multitude of equipment within the hazard-
ous area of the accelerator, some of which have large dimen-
sions, the line of sight of personnel responsible for search-
ing and security may be obscured. Obstruction also remains 
a challenge in pedestrian target detection [6]. To address 
this challenge, Pang et al. introduced a strategy that utilizes 
masks to guide attention networks, enhancing the detection 
of obstructed pedestrians by emphasizing the visible parts of 
the human body and suppressing obscured areas [7]. Zhang 
et al. proposed an OR-CNN (Occlusion Region Convolu-
tional Neural Network) focusing on both loss and core ROI 
(Region of Interest) pooling operations in a two-stage detec-
tion process [8]. To address the complexities of pedestrian 
pose variability and mutual occlusion, Khan et al. proposed 
a novel perspective, asserting that human heads, which are 
less susceptible to obstructions, could serve as robust focal 
points for detection across diverse scales in intricate sce-
narios. Their innovative head detection system demonstrated 
highly promising results, encouraging the exploration of 
local detection techniques to identify obstructed pedestri-
ans [9]. Moreover, Chen et al. presented a comprehensive 
pedestrian detection methodology that integrated both head 
and full-body information through multi-feature fusion [10]. 
We drew inspiration from these methodologies by discern-
ing the head, hands, and feet as subsets of a pedestrian’s 
body. Subsequently, we seamlessly integrated these subsets 
into the overarching pedestrian structure. This integration 
addresses the concern regarding the shielding of individuals 
stranded in a tunnel due to equipment obstruction.

This study aimed to develop an intelligent monitoring sys-
tem tailored for the sweep of an accelerator tunnel, encom-
passing considerations in both the hardware and software 
realms. On the hardware front, our primary emphasis was 
on devising and implementing a camera group that boasts 
expansive 180° horizontal and vertical field angles. Strategi-
cally positioned on both sides of the tunnel, these cameras 
adeptly alleviate the challenge of pedestrians encountering 
complete obstruction. On the software facet, we designed 
the Parts of the Human Body (PHB) model for pedestrian 
recognition. This model employs a comprehensive approach; 
covered pedestrians are identified by analyzing their heads, 
hands, and feet, and intelligent search and security software 

was designed. By seamlessly integrating the camera group 
with the PHB model, our system achieves a one-key intel-
ligent clearing of the accelerator tunnel.

The contributions of this study are as follows: (1) A novel 
machine-vision-based search-and-secure system is intro-
duced, marking a pioneering approach ensuring the evacua-
tion of all individuals from the tunnel before the accelerator 
activates. The core focus of this study is to tailor the system 
to suit the specifics of an accelerator tunnel environment. (2) 
To address the issue of accelerator occlusion, we introduced 
a novel design featuring a camera array consisting of six 
units that ensures comprehensive visual coverage, a dimen-
sion that has not been previously explored. (3) The YOLOv8 
model is enhanced by leveraging body part recognition to 
detect stranded personnel. This innovative approach signifi-
cantly increased the recall rate.

2  System architecture

The hazardous area of a large accelerator typically has a 
width of no more than 10 m, a height of no more than 6 m, 
and a length ranging from several hundred meters to tens of 
kilometers. The primary accelerator equipment spans the 
length of the hazardous area, as illustrated in Fig. 1. In our 
proposed intelligent search-and-secure system, we organized 
detection units at 15 m intervals, each equipped with a set 
of camera groups situated on both sides of the hazardous 
area, which were connected to both the regular video sur-
veillance server and the intelligent video surveillance server. 
The regular video surveillance server is responsible for 
standard functionalities, such as real-time monitoring and 
video playback, whereas the intelligent video surveillance 
server incorporates a PHB recognition program specifically 
designed for intelligent sweep purposes.

3  Design of 180° camera group

The main equipment of the accelerator comprises magnets, 
vacuum beam tubes, high-frequency cavities, beam detec-
tion equipment, and various equipment supports [11–13], 
as illustrated in Fig. 2. Smaller equipment, such as vacuum 
pipes, allows personnel to perform maintenance tasks in 
their proximity; however, the majority of the maintain-
er's body remains uncovered, enabling identification 
by cameras positioned on either side of the equipment. 
Conversely, larger equipment, such as magnets and high-
frequency cavities, may require personnel to work on the 
upper and lateral sides. Personnel situated on the magnet 
side experienced significant body obstruction, render-
ing the camera's recognition effect ineffective or making 
them non-identifiable. Therefore, camera groups must be 
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arranged on both sides of the magnet. The limited space 
beneath the magnet restricts the full entry of personnel 
bodies; however, body parts such as the head, hands, and 
feet are consistently identifiable. In the vertical range of 
the 3–5 m controlled area, cable bridges and ventilation 
pipes are typically installed along the walls, with cranes 
positioned at the top. Personnel may approach these areas 
for maintenance, which makes it crucial for the camera 
to have visibility of these individuals. In the longitudinal 
direction of the controlled area, the monitoring distance 
of the camera must be maximized. Simultaneously, it is 
crucial to ensure that the camera can effectively monitor 
the body parts of individuals in close proximity.

Based on the aforementioned analysis, it can be deduced 
that to prevent personnel from being overlooked because 
of the camera's blind spot, the vertical and horizontal field 
angles of the intelligent search-and-secure system cameras 
must be close to 180°. The field-of-view angle of a single 
camera fails to satisfy this criterion, necessitating a com-
bination of multiple cameras to form a camera group [14].

The camera group was affixed to a wall situated below 
the cable bridge and the ventilation duct. Simultaneously, 
larger equipment within the accelerator tunnel, such as mag-
nets, can extend up to a height of approximately 2 m. The 
installation of a camera group at an approximate height of 
2 m is recommended to reduce potential obstructions. The 
imaging size of a single camera with a 1/2.7" CMOS sensor 
was 5.27 mm × 3.96 mm (w × h). A smaller lens was used 
to achieve the widest field of view possible. By selecting a 
2.8 mm lens, the following formula yields a horizontal field 
angle of 86.5° and a vertical field angle of 70.5°.

where w represents the width of the field of view, h repre-
sents the height of the field of view, and f  denotes the focal 
length of the lens [15].

As illustrated in Fig. 3, a camera group consisting of six 
cameras covers a vertical viewing field of 180° and a hori-
zontal viewing field of 173°. The angular separation between 
cameras 1 and 4 was measured to be 86.5°. Similarly, the 
angular separation between cameras 2 and 3 is 109.5°, with 
the latter pair positioned above and below camera 1. Cor-
respondingly, cameras 5 and 6 were positioned above and 
below camera 4, respectively, with an angular separation 
of 109.5°.

The optimal viewing range of the 2.8 mm lens was lim-
ited to a maximum of 7.5 m. Meanwhile, owing to the cam-
era group's horizontal viewing angle of 173°, a blind field of 
view measuring 0.46 m will be present near the wall when 
the distance exceeds 7.5 m. Taking into account the fact that 
the actual field of view might slightly exceed the calculated 

(1)Horizontal field angle: �=2arttan(w∕2f )

(2)Vertical field angle: �=2arttan(h∕2f )

Fig. 1  Architecture diagram of 
intelligent search-and-secure 
system

Fig. 2  (Color online) Primary components of the particle accelerator
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field of view, we conducted a verification test and deter-
mined that a distance of 15 m between camera groups would 
be appropriate. This distance ensured adequate coverage and 
minimized the occurrence of blind spots in the monitoring 
area.

4  Design of intelligent search‑and‑secure 
software

The workflow of the intelligent search-and-secure software 
is illustrated in Fig. 4. After a sweep of the hazardous areas 
is initiated by the computer monitoring platform in the con-
trol room, the detained personnel identification program 
is activated. Simultaneously, all detection units within the 
corresponding hazardous area begin capturing continuous 
videos for a duration of 3 min. Subsequently, the captured 
images are segmented, enlarged, and enhanced. A PHB 
recognition model is employed to determine whether an 
individual is present in the captured images. If no person is 
detected, the intelligent search-and-secure server sends a sig-
nal indicating that the hazardous area has been searched and 
secured. However, if stranded personnel are identified in the 
images, the monitoring platform displays the corresponding 

images, allowing on-duty personnel to confirm or initiate 
rescan procedures.

4.1  Design of pedestrian recognition model 
with fusion of body parts

The primary objective of intelligent search and security soft-
ware is to identify individuals trapped in hazardous areas 
through the analysis of images captured by cameras, with 
pedestrian target detection as its fundamental technology. 
With the rapid advancement of deep learning, technolo-
gies rooted in deep learning, such as image recognition and 
data processing, have also gained popularity in the nuclear 
technology domain [16, 17]. Visual inspection technology 
leveraging deep learning is advancing rapidly. For instance, 
Tang et al. employed machine vision technology for the 
precise detection of crack widths [18]. Similarly, they uti-
lized binocular vision methods to accurately measure the 
deformation of concrete columns [19]. As a crucial subset of 
visual detection technology, pedestrian target detection has 
extensive applications in diverse fields such as autonomous 

Fig. 3  (Color online) Structure diagram of the 180˚ camera group

Fig. 4  Working flow chart of intelligent search-and-secure software
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driving, robotics, intelligent monitoring, and human behav-
ior analysis [20, 21].

The search and security process within a hazardous area 
demands a high level of reliability, posing challenges for 
existing pedestrian detection technologies in scenarios 
where pedestrians are obstructed by equipment [22, 23]. 
Through a comprehensive analysis of the equipment layout 
and pedestrian occlusion within the hazardous area of the 
accelerator, we observed that certain body parts, such as 
the head, hands, and feet, were less likely to be completely 
occluded when using our developed camera group arrange-
ment on both sides of the hazardous area. Considering these 
characteristics, we propose a novel pedestrian recognition 
model that incorporates the distinctive features of different 
body parts, thereby enhancing the reliability of intelligent 
searches and secure systems.

The PHB recognition model is an enhanced design based 
on the YOLOv8 network model, as depicted in Fig. 5. The 
network model comprises three main components: feature 
extraction, detection, and header modules.

The feature extraction module follows the YOLOv8 back-
bone network, which consists of five CBL layers that per-
form operations such as convolution and normalization on 
the input feature map. The module includes four C2f mod-
ules that facilitate learning of the residual characteristics. To 
improve the receptive field of the network, the spatial pyra-
mid pooling fusion (SPPF) module performs feature extrac-
tion through a parallel input using multiple maximum pool-
ing layers [24, 25]. Building on the three detection layers 
of YOLOv8, the detection module introduced minimal and 
maximum target detection layers. The minimal target detec-
tion layer focuses on detecting small targets such as hands 
and feet. It processes the feature map after the 14th layer of 
the original network and expands it. In the 21st layer, the 
resulting 160 × 160 feature map is ConCat fused with the 
feature map from the second layer of the backbone network, 
enabling the detection of very small targets [26, 27].

By contrast, the maximum target detection layer addresses 
cases in which individuals approach the camera too closely, 
leading to super-large targets. It fuses the 10 × 10 feature 
map obtained from the 11th layer of the original network 
with the 8th layer feature map of the backbone network to 
obtain the minimum feature map for detecting the maximum 
targets. After splicing and fusing the features from different 
layers, namely layers 22, 25, 28, 31, and 34, they are passed 
to the detection head. The detection head consists of five 
detector modules that output the prediction information. The 
final detection results are obtained by further calculations 
and comparisons.

In the PHB recognition model, the five detection layers 
corresponded to five sets of initial detection boxes. When 
the input image size was 640 × 640 pixels and the distance 
between the camera and hand target was 8 m, the size of the 

hand target was approximately 6 × 6 pixels. The minimal target 
detection layer has a size of 160 × 160 pixels and is designed 
to detect minimal targets larger than 4 × 4 pixels, thus fulfilling 
the requirements for hand target detection [28].

The small-target detection layer has a size of 80 × 80 pix-
els and is responsible for detecting ordinary small targets 
larger than 8 × 8 pixels. The detection layer corresponding to 
medium-sized targets measures 40 × 40 pixels and detects tar-
gets larger than 16 × 16 pixels. Similarly, the detection layer 
corresponding to large targets has a size of 20 × 20 pixels and 
can detect targets larger than 32 × 32 pixels.

Additionally, a super-large target detection layer measuring 
10 × 10 pixels aids in the identification of scenarios in which 
the large target detection layer encounters challenges in detect-
ing the body occupying the entire image, as depicted in Fig. 6.

4.2  Information fusion strategy

Khan et al. partitioned a broad spectrum of scales into a sub-
scale ensemble encompassing three distinct scales. This seg-
mentation enabled them to effectively process heads aligned 
with particular subscales. Subsequently, these components 
were amalgamated into an end-to-end network, yielding highly 
satisfactory detection outcomes [29]. Inspired by this meth-
odology, our approach extends its concept to address blocked 
pedestrians. We treated the hands, head, and feet as individual 
subsets within the overall obstructed pedestrian category. Each 
subset was detected independently, and a fusion strategy was 
employed to assemble a comprehensive pedestrian detection 
framework after detecting these components separately.

Let us consider the overall pedestrian detection box, 
denoted as box Bbody =
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where wb represents the width of the overall pedestrian 
detection frame, and hb represents the height of the overall 
pedestrian detection frame.

In crowded scenarios, the body parts of other targets can 
appear within a pedestrian detection frame. To address this 
issue, a processing method that involves calculating the 

distance between a specific type of body part and the center 
of the target body part was employed. This calculation was 
performed when the number of body parts within the overall 
pedestrian detection frame exceeded the expected count. The 
nearest body part was then matched to the overall pedestrian 
detection frame.

Fig. 5  Network architecture dia-
gram of the PHB model. a PHB 
model main frame. b structure 
of submodules
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4.3  Search‑and‑secure software and interface 
design

This study used PyQt5 to design the software interface, as 
depicted in Fig. 7. Upon initiating the search and secur-
ing process through the software button, the underlying 
program proceeds by capturing a screenshot for 3 min. 

The captured image is then sent to a designated folder 
for segmentation, followed by the automated execution 
of the PHB detection program. If a target is detected, the 
interface displays an image with annotations denoting the 
entire pedestrian or specific body parts within the scene. 
On-duty personnel are prompted to confirm or initiate res-
canning procedures. In the absence of a detected target, the 
interface provides a signal indicating a successful sweep.

In practical scenarios, an acceleration tunnel is divided 
into multiple smaller, controlled areas, each of which is 
scanned at distinct time intervals. Meanwhile, consider-
ing the gradual nature of human movements, we captured 
images at 30-s intervals for detection purposes. These 
measures are crucial for reducing the number of captured 
images and improving overall work efficiency.

The PHB system adopts the image input approach of 
YOLOv8, which involves resizing the image to a dimen-
sion of 640 × 640 pixels before feeding it into a detection 
model. However, the camera group outputs images with a 
size of 1920 × 1080 pixels. Direct scaling of these images 
results in a reduction in the number of target pixels, poten-
tially affecting the detection performance for small tar-
gets. To mitigate this issue, the search-and-secure program 
employed in this study divided the original image into 
3 × 3 subgraphs. These subgraphs, along with the original 
image, were provided as inputs for the PHB program.

Fig. 6  (Color online) Comparison of object recognition results for 
oversized targets. a unrecognized objects by YOLOv8s. b recognized 
objects by PHB

Fig. 7  (Color online) Intelligent search-and-secure software user interface
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5  Experimental validation results

5.1  Construction of the validation dataset

Dataset 1: The homemade human body part dataset comprised 
a collection of 3998 images extracted from scenes within an 
accelerator tunnel. This dataset encompasses more than 15,000 
pedestrian targets. To diversify the dataset, the backgrounds 
surrounding each pedestrian in the selected images were cap-
tured randomly to introduce occlusions. Subsequently, the 
LabelImg tool was used for precise annotation. The annota-
tions were categorized into four classes: person, head, hand, 
and foot. The annotated data were then converted from XML 
to YOLO format and split into training and validation sets, 
adhering to a ratio of 9:1 for effective model training and 
evaluation.

Dataset 2: The pedestrian detection fusion dataset com-
prised a collection of 10,000 images that were randomly 
sampled from prominent datasets such as COCO, VOC2012, 
VOC2017, SYSU, and PRW [31]. After a meticulous data 
cleaning process, the dataset was curated to extract images that 
specifically contained pedestrians. In total, 9257 images were 
obtained, encompassing a diverse range of scenarios involv-
ing occluded and unoccluded pedestrians, as well as varying 
distances between the pedestrians and the camera. The dataset 
was subsequently divided into training and verification sets at 
a ratio of 1:9. This partitioning scheme ensures an effective 
evaluation of both the PHB and classical models in terms of 
their generalization abilities across different pedestrian detec-
tion scenarios.

5.2  Evaluation metrics

The detection and evaluation processes used in this study were 
divided into two main components. The first part focuses on 
pedestrian-component detection, in which the performance 
of the detection results is compared with those of YOLOv5s 
and YOLOv8s. This comparison aimed to validate the impact 
of the introduced minimal target detection layer (frame) and 
maximum target detection layer (frame). The evaluation of the 
detection results was based on conventional metrics such as 
precision, recall, and mean average precision (mAP). The mAP 
is computed as the overall average value when the detection 
threshold ranges from 0.5 to 0.95, denoted as mAP0.5:0.95. 
The calculation formula is as follows:

(6)Precision =
TP

TP + FP
,

(7)Recall =
TP

TP + FN
,

where TP represents cases in which the prediction is positive 
and aligns with the actual positive instances. FN denotes 
instances in which the prediction is negative but the actual 
value is positive. FP indicates cases where the prediction is 
positive yet the actual value is negative.

The second part of the evaluation focused on the overall 
pedestrian detection performance. A comparison was made 
between the detection results obtained using the PHB model 
and classical models, such as the YOLO series and Faster 
R-CNN, aiming to assess the generalization ability of the 
PHB model. The evaluation metrics employed included pre-
cision, recall, and average precision (AP) [32].

5.3  Experimental setup and results analysis

5.3.1  Experimental setup and parameter configuration

The experiments were conducted using a Windows 10 oper-
ating system with CUDA 11.1, and the training was per-
formed on a single NVIDIA GeForce RTX 3070 GPU. The 
input image size was set to 640 × 640 pixels, and the training 
process was performed for 300 epochs. Each training batch 
consisted of 16 images. The gradient descent optimizer uti-
lized a momentum parameter of 0.937 and a weight decay 
regularization coefficient of 0.0005. The initial learning rate 
(Lr0) for training was set to 0.01.

5.3.2  Detection results and analysis

The training process for YOLOv5s was completed in 
approximately 10.4 h, whereas training with YOLOv8s 
took approximately 8.9 h and PHB took approximately 
14 h. Despite the longer training time, PHB outperformed 
YOLOv5s and YOLOv8s in terms of accuracy, recall rate, 
and AP [33]. This improvement was particularly notable in 
the recall rate index of the search and security software, in 
which the overall recall rate for pedestrians increased by 
0.158 (Table 1). The inclusion of the PHB model resulted in 
an increase in the number of detection layers, which affected 
the detection speed. However, considering the significance 
of reliability indicators for intelligent search-and-secure 
software, the tradeoff of computing time for improved reli-
ability is deemed worthwhile.

In the context of machine vision searches and secure soft-
ware, the ability to accurately identify all stranded individu-
als is of paramount importance. However, upon analyzing 
the results presented in Table 1, while the PHB model shows 
an improvement in the overall recall rate of pedestrians, the 
achieved performance falls short of the desired ideal.

(8)mAP =
1

C

∑

c∈C

AP(c),
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Therefore, this study adopted a two-step approach to the 
process of information fusion. First, the PHB model was 
employed to detect the pedestrian body parts within the 
image. Then, the pedestrian body parts were considered a 
subset of the overall pedestrian and combined with the over-
all pedestrian bounding boxes. Specifically, for each overall 
pedestrian bounding box, the presence of the head, hand, and 
foot bounding boxes within the region was assessed. If these 
bounding boxes are identified, the component bounding box 
with the highest confidence score in that region is selected 
and paired with the entire pedestrian bounding box. In cases 
where the pedestrian bounding box has a low score but the 
body part component bounding box exhibits high confi-
dence, the overall bounding box is retained. Additionally, 
if a component bounding box demonstrates high confidence 
but does not match the overall pedestrian bounding box, it 
is preserved and output as a pedestrian label. This approach 
aligns with our aim, as depicted in Fig. 8, where the pres-
ence of the head, hands, feet, and other body parts indicates 
the presence of a pedestrian, even if the entire pedestrian is 
not fully visible.

We conducted a comparative analysis of the YOLOv5s- 
and YOLOv8s-enhanced PHB models using Dataset 1. The 
results are presented in Table 2. Notably, the incorporation 
of information from other body parts led to a significant 
improvement in the recall rate of the YOLOv5s-PHB model. 
However, it is essential to acknowledge that the accuracy, 
as indicated in Table 1, of the overall and head recogni-
tion of pedestrians was somewhat diminished. This could 
be attributed to the influence of the recognition performance 
associated with other body parts. In contrast, the PHB model 
based on YOLOv8s exhibited a slightly reduced recall rate 
compared with its YOLOv5s counterpart. However, this 
compensates for the improved precision. Consequently, it 
is crucial to strike a balance between recall and accuracy.

5.3.3  Comparison and analysis of classical algorithms

Upon implementation of the information fusion strategy, the 
PHB model demonstrated superior pedestrian recognition 
performance for Dataset 1 compared to YOLOv8s. How-
ever, it is important to acknowledge the limitations stem-
ming from the relatively small scale of Dataset 1. Thus, 
generalization experiments must be conducted on Dataset 2 
to validate the generalization capabilities of PHB and assess 
its effectiveness in diverse scenarios.

Under identical configuration conditions, the PHB-based 
intelligent search-and-secure algorithm was compared with 
the classical pedestrian target detection algorithm using 
Dataset 2. Table 3 presents the results of the study. Nota-
bly, despite being designed based on the smaller YOLOv8s 

Table 1  Performance comparison PHB, YOLOv5s and YOLOv8s

Class Model Precision Recall Map0.5 Map0.5:0.95

Person YOLOv5s 0.922 0.737 0.827 0.481
YOLOv8s 0.938 0.715 0.821 0.488
PHB 0.941 0.873 0.913 0.706

Head YOLOv5s 0.97 0.928 0.966 0.714
YOLOv8s 0.979 0.919 0.962 0.723
PHB 0.979 0.929 0.969 0.76

Hand YOLOv5s 0.821 0.71 0.777 0.404
YOLOv8s 0.862 0.702 0.773 0.442
PHB 0.873 0.756 0.818 0.475

Foot YOLOv5s 0.767 0.696 0.734 0.383
YOLOv8s 0.798 0.683 0.727 0.387
PHB 0.805 0.715 0.763 0.412

Fig. 8  (Color online) Compari-
son of effects before and after 
information fusion. a pre-fusion 
recognition result. b post-fusion 
recognition result

Table 2  PHB person class detection performance

Model Precision Recall AP

YOLOv5s-PHB Pre-fusion 0.924 0.874 0.916
post-fusion 0.878 0.921 0.914

YOLOv8s-PHB Pre-fusion 0.941 0.873 0.913
post-fusion 0.896 0.915 0.911
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model within the YOLOv8 series, PHB achieves the same 
precision as the larger YOLOv8l model. The recall rate dem-
onstrated a 13.1% increase, whereas the average detection 
accuracy improved by 4.4%. Furthermore, when compared 
to Faster R-CNN, the PHB algorithm outperformed the other 
algorithms in terms of overall performance. However, the 
accuracy and recall rates of PHB in Dataset 2 were lower 
than those in Dataset 1. This discrepancy arises because, in 
the context of the sweep system, instances in which pedes-
trians are obstructed by other pedestrians are infrequent. 
Consequently, Dataset 1, which was used to train the PHB 
model, prioritizes interclass occlusion and may not effec-
tively address the challenges posed by the severe intraclass 
occlusion encountered in Dataset 2. In summary, the PHB-
based intelligent search-and-secure algorithm guarantees 
high detection accuracy and a low missed detection rate, 
specifically in scenarios where pedestrians are obstructed 
by equipment.

5.3.4  The impact of fusion strategies in classical models

The PHB model based on YOLOv8s was enhanced, followed 
by the implementation of an information fusion strategy to 
enhance model performance. Subsequently, this fusion strat-
egy was directly applied to the classical model, and a com-
parative evaluation was conducted against the PHB effect. 
The results are summarized in Table 4. Notably, the SSD 
model demonstrated significantly inferior performance com-
pared with the PHB model after fusion strategy adoption. 
Furthermore, the recall rate of the Faster RCNN surpasses 
that of the PHB effect after incorporating the fusion strat-
egy. However, it is evident that a Faster RCNN also requires 
nearly twice the processing time of PHB. Considering the 
high volume of images processed by the search-and-secure 
system and the emphasis on real-time performance, the PHB 
model enhanced by the YOLOv8 model proved more suit-
able [34, 35].

Moreover, our investigation included a comparison with 
the classical model to evaluate the recognition performance 
between larger targets simulated by pedestrians approach-
ing the camera and smaller targets, such as hands and feet. 
Our findings indicate that although the direct application of 

YOLOv8 exhibited limited effectiveness on smaller targets, 
our enhancements successfully mitigated this constraint. 
Consequently, the PHB model demonstrates proficiency 
analogous to that of the Faster RCNN in recognizing dimin-
utive targets. However, the PHB model excelled at identify-
ing significantly larger targets.

6  Conclusion

Based on the performance evaluation of the model, we 
installed two sets of 180° camera groups within a section 
of the China Spallation Neutron Source Accelerator Tunnel 
[36], as shown in Fig. 9. A relatively enclosed and controlled 
area was created by strategically introducing partial physical 
occlusion.

Several field tests were conducted within this controlled 
area, and the results demonstrated that the intelligent search 
and security system successfully detected stranded indi-
viduals and achieved notable outcomes. However, the tests 
revealed certain issues that require resolution. For instance, 
the system incorrectly identified body images within certain 
promotional photographs in the tunnel as pedestrian targets. 
These concerns will be addressed in the future as part of 
ongoing system enhancements.

Machine-vision-based search-and-secure technology has 
considerable potential for broad applications in diverse set-
tings such as railway yards, chemical plants, museums, and 

Table 3  Comparison of pedestrian detection performance

Model Precision Recall AP

YOLOv5s 0.822 0.698 0.79
YOLOv5l 0.846 0.74 0.833
YOLOv8s 0.861 0.687 0.793
YOLOv8l 0.867 0.689 0.798
Faster RCNN 0.813 0.796 0.781
PHB 0.869 0.82 0.842

Table 4  Comparison of fusion strategies' impact on classical models

Model Precision Recall AP

SSD Pre-fusion 0.801 0.681 0.77
Post-fusion 0.753 0.78 0.759

Faster RCNN Pre-fusion 0.813 0.796 0.781
Post-fusion 0.798 0.831 0.776

PHB Post-fusion 0.869 0.82 0.842

Fig. 9  (Color online) Photograph of the intelligent search-and-secure 
system deployed in the tunnel
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other intermittent hazardous areas [37, 38]. This technol-
ogy has a significant value and merits further promotion 
and implementation.
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