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Abstract

Prompt radiation emitted during accelerator operation poses a significant health risk, necessitating a thorough search and
securing of hazardous areas prior to initiation. Currently, manual sweep methods are employed. However, the limitations
of manual sweeps have become increasingly evident with the implementation of large-scale accelerators. By leveraging
advancements in machine vision technology, the automatic identification of stranded personnel in controlled areas through
camera imagery presents a viable solution for efficient search and security. Given the criticality of personal safety for stranded
individuals, search and security processes must be sufficiently reliable. To ensure comprehensive coverage, 180° camera
groups were strategically positioned on both sides of the accelerator tunnel to eliminate blind spots within the monitoring
range. The YOLOVS network model was modified to enable the detection of small targets, such as hands and feet, as well as
larger targets formed by individuals near the cameras. Furthermore, the system incorporates a pedestrian recognition model
that detects human body parts, and an information fusion strategy is used to integrate the detected head, hands, and feet
with the identified pedestrians as a cohesive unit. This strategy enhanced the capability of the model to identify pedestrians
obstructed by equipment, resulting in a notable improvement in the recall rate. Specifically, recall rates of 0.915 and 0.82
were obtained for Datasets 1 and 2, respectively. Although there was a slight decrease in accuracy, it aligned with the intended
purpose of the search-and-secure software design. Experimental tests conducted within an accelerator tunnel demonstrated
the effectiveness of this approach in achieving reliable recognition outcomes.

Keywords Search and secure - Machine vision - Camera - Human body parts recognition - Particle accelerator - Hazardous
area

1 Introduction evacuated within the controlled area before initiating accel-

erator operations.

Prompt radiation is generated during the operation of par-
ticle accelerators. The prompt radiation area has a high
energy level and exhibits intense radiation characteristics.
Consequently, individuals within the controlled area are sub-
jected to significant doses of radiation from the generated
neutrons and gamma rays [1]. Thus, all personnel must be
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Conventionally, skilled personnel are deployed to evacu-
ate personnel from a controlled area. These proficient indi-
viduals enter a controlled area and meticulously inspect and
evacuate the other personnel according to a pre-established
sequence and location [2, 3]. This approach presents several
issues: (1) With the continuous advancement of scientific
technology, there is a noticeable trend towards the scaling up
of accelerator installations. Accelerators measuring several
kilometers or even tens of kilometers in length have already
emerged, and plans are underway for accelerators approach-
ing a length of 100 km [4, 5]. These large-scale accelerators
correspond to a substantial expansion of the controlled area.
Consequently, the traditional approach faces increasingly
prominent drawbacks such as prolonged time consump-
tion and low efficiency. (2) Large accelerators encompass
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a multitude of components and intricate structures, result-
ing in numerous blind spots within hazardous areas. These
obstructions give rise to significant safety concerns, as they
may conceal individuals who have not been found by profi-
cient personnel.

In light of these circumstances, we present a machine-
vision-based intelligent search-and-secure technology as a
solution. This technology leverages a camera group deployed
in a hazardous area and a server with an identification pro-
gram specifically designed to perform intelligent and rapid
identification of stranded individuals within a tunnel.

Owing to the multitude of equipment within the hazard-
ous area of the accelerator, some of which have large dimen-
sions, the line of sight of personnel responsible for search-
ing and security may be obscured. Obstruction also remains
a challenge in pedestrian target detection [6]. To address
this challenge, Pang et al. introduced a strategy that utilizes
masks to guide attention networks, enhancing the detection
of obstructed pedestrians by emphasizing the visible parts of
the human body and suppressing obscured areas [7]. Zhang
et al. proposed an OR-CNN (Occlusion Region Convolu-
tional Neural Network) focusing on both loss and core ROI
(Region of Interest) pooling operations in a two-stage detec-
tion process [8]. To address the complexities of pedestrian
pose variability and mutual occlusion, Khan et al. proposed
a novel perspective, asserting that human heads, which are
less susceptible to obstructions, could serve as robust focal
points for detection across diverse scales in intricate sce-
narios. Their innovative head detection system demonstrated
highly promising results, encouraging the exploration of
local detection techniques to identify obstructed pedestri-
ans [9]. Moreover, Chen et al. presented a comprehensive
pedestrian detection methodology that integrated both head
and full-body information through multi-feature fusion [10].
We drew inspiration from these methodologies by discern-
ing the head, hands, and feet as subsets of a pedestrian’s
body. Subsequently, we seamlessly integrated these subsets
into the overarching pedestrian structure. This integration
addresses the concern regarding the shielding of individuals
stranded in a tunnel due to equipment obstruction.

This study aimed to develop an intelligent monitoring sys-
tem tailored for the sweep of an accelerator tunnel, encom-
passing considerations in both the hardware and software
realms. On the hardware front, our primary emphasis was
on devising and implementing a camera group that boasts
expansive 180° horizontal and vertical field angles. Strategi-
cally positioned on both sides of the tunnel, these cameras
adeptly alleviate the challenge of pedestrians encountering
complete obstruction. On the software facet, we designed
the Parts of the Human Body (PHB) model for pedestrian
recognition. This model employs a comprehensive approach;
covered pedestrians are identified by analyzing their heads,
hands, and feet, and intelligent search and security software
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was designed. By seamlessly integrating the camera group
with the PHB model, our system achieves a one-key intel-
ligent clearing of the accelerator tunnel.

The contributions of this study are as follows: (1) A novel
machine-vision-based search-and-secure system is intro-
duced, marking a pioneering approach ensuring the evacua-
tion of all individuals from the tunnel before the accelerator
activates. The core focus of this study is to tailor the system
to suit the specifics of an accelerator tunnel environment. (2)
To address the issue of accelerator occlusion, we introduced
a novel design featuring a camera array consisting of six
units that ensures comprehensive visual coverage, a dimen-
sion that has not been previously explored. (3) The YOLOvVS8
model is enhanced by leveraging body part recognition to
detect stranded personnel. This innovative approach signifi-
cantly increased the recall rate.

2 System architecture

The hazardous area of a large accelerator typically has a
width of no more than 10 m, a height of no more than 6 m,
and a length ranging from several hundred meters to tens of
kilometers. The primary accelerator equipment spans the
length of the hazardous area, as illustrated in Fig. 1. In our
proposed intelligent search-and-secure system, we organized
detection units at 15 m intervals, each equipped with a set
of camera groups situated on both sides of the hazardous
area, which were connected to both the regular video sur-
veillance server and the intelligent video surveillance server.
The regular video surveillance server is responsible for
standard functionalities, such as real-time monitoring and
video playback, whereas the intelligent video surveillance
server incorporates a PHB recognition program specifically
designed for intelligent sweep purposes.

3 Design of 180° camera group

The main equipment of the accelerator comprises magnets,
vacuum beam tubes, high-frequency cavities, beam detec-
tion equipment, and various equipment supports [11-13],
as illustrated in Fig. 2. Smaller equipment, such as vacuum
pipes, allows personnel to perform maintenance tasks in
their proximity; however, the majority of the maintain-
er's body remains uncovered, enabling identification
by cameras positioned on either side of the equipment.
Conversely, larger equipment, such as magnets and high-
frequency cavities, may require personnel to work on the
upper and lateral sides. Personnel situated on the magnet
side experienced significant body obstruction, render-
ing the camera's recognition effect ineffective or making
them non-identifiable. Therefore, camera groups must be
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Fig.2 (Color online) Primary components of the particle accelerator

arranged on both sides of the magnet. The limited space
beneath the magnet restricts the full entry of personnel
bodies; however, body parts such as the head, hands, and
feet are consistently identifiable. In the vertical range of
the 3-5 m controlled area, cable bridges and ventilation
pipes are typically installed along the walls, with cranes
positioned at the top. Personnel may approach these areas
for maintenance, which makes it crucial for the camera
to have visibility of these individuals. In the longitudinal
direction of the controlled area, the monitoring distance
of the camera must be maximized. Simultaneously, it is
crucial to ensure that the camera can effectively monitor
the body parts of individuals in close proximity.

Based on the aforementioned analysis, it can be deduced
that to prevent personnel from being overlooked because
of the camera's blind spot, the vertical and horizontal field
angles of the intelligent search-and-secure system cameras
must be close to 180°. The field-of-view angle of a single
camera fails to satisfy this criterion, necessitating a com-
bination of multiple cameras to form a camera group [14].

The camera group was affixed to a wall situated below
the cable bridge and the ventilation duct. Simultaneously,
larger equipment within the accelerator tunnel, such as mag-
nets, can extend up to a height of approximately 2 m. The
installation of a camera group at an approximate height of
2 m is recommended to reduce potential obstructions. The
imaging size of a single camera with a 1/2.7" CMOS sensor
was 5.27 mm X 3.96 mm (wX k). A smaller lens was used
to achieve the widest field of view possible. By selecting a
2.8 mm lens, the following formula yields a horizontal field
angle of 86.5° and a vertical field angle of 70.5°.

Horizontal field angle: a=2arttan(w/2f) €))

Vertical field angle: f=2arttan(k/2f) )

where w represents the width of the field of view, h repre-
sents the height of the field of view, and f denotes the focal
length of the lens [15].

As illustrated in Fig. 3, a camera group consisting of six
cameras covers a vertical viewing field of 180° and a hori-
zontal viewing field of 173°. The angular separation between
cameras 1 and 4 was measured to be 86.5°. Similarly, the
angular separation between cameras 2 and 3 is 109.5°, with
the latter pair positioned above and below camera 1. Cor-
respondingly, cameras 5 and 6 were positioned above and
below camera 4, respectively, with an angular separation
of 109.5°.

The optimal viewing range of the 2.8 mm lens was lim-
ited to a maximum of 7.5 m. Meanwhile, owing to the cam-
era group's horizontal viewing angle of 173°, a blind field of
view measuring 0.46 m will be present near the wall when
the distance exceeds 7.5 m. Taking into account the fact that
the actual field of view might slightly exceed the calculated
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Fig.3 (Color online) Structure diagram of the 180° camera group

field of view, we conducted a verification test and deter-
mined that a distance of 15 m between camera groups would
be appropriate. This distance ensured adequate coverage and
minimized the occurrence of blind spots in the monitoring
area.

4 Design of intelligent search-and-secure
software

The workflow of the intelligent search-and-secure software
is illustrated in Fig. 4. After a sweep of the hazardous areas
is initiated by the computer monitoring platform in the con-
trol room, the detained personnel identification program
is activated. Simultaneously, all detection units within the
corresponding hazardous area begin capturing continuous
videos for a duration of 3 min. Subsequently, the captured
images are segmented, enlarged, and enhanced. A PHB
recognition model is employed to determine whether an
individual is present in the captured images. If no person is
detected, the intelligent search-and-secure server sends a sig-
nal indicating that the hazardous area has been searched and
secured. However, if stranded personnel are identified in the
images, the monitoring platform displays the corresponding
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images, allowing on-duty personnel to confirm or initiate
rescan procedures.

4.1 Design of pedestrian recognition model
with fusion of body parts

The primary objective of intelligent search and security soft-
ware is to identify individuals trapped in hazardous areas
through the analysis of images captured by cameras, with
pedestrian target detection as its fundamental technology.
With the rapid advancement of deep learning, technolo-
gies rooted in deep learning, such as image recognition and
data processing, have also gained popularity in the nuclear
technology domain [16, 17]. Visual inspection technology
leveraging deep learning is advancing rapidly. For instance,
Tang et al. employed machine vision technology for the
precise detection of crack widths [18]. Similarly, they uti-
lized binocular vision methods to accurately measure the
deformation of concrete columns [19]. As a crucial subset of
visual detection technology, pedestrian target detection has
extensive applications in diverse fields such as autonomous
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driving, robotics, intelligent monitoring, and human behav-
ior analysis [20, 21].

The search and security process within a hazardous area
demands a high level of reliability, posing challenges for
existing pedestrian detection technologies in scenarios
where pedestrians are obstructed by equipment [22, 23].
Through a comprehensive analysis of the equipment layout
and pedestrian occlusion within the hazardous area of the
accelerator, we observed that certain body parts, such as
the head, hands, and feet, were less likely to be completely
occluded when using our developed camera group arrange-
ment on both sides of the hazardous area. Considering these
characteristics, we propose a novel pedestrian recognition
model that incorporates the distinctive features of different
body parts, thereby enhancing the reliability of intelligent
searches and secure systems.

The PHB recognition model is an enhanced design based
on the YOLOvVS8 network model, as depicted in Fig. 5. The
network model comprises three main components: feature
extraction, detection, and header modules.

The feature extraction module follows the YOLOv8 back-
bone network, which consists of five CBL layers that per-
form operations such as convolution and normalization on
the input feature map. The module includes four C2f mod-
ules that facilitate learning of the residual characteristics. To
improve the receptive field of the network, the spatial pyra-
mid pooling fusion (SPPF) module performs feature extrac-
tion through a parallel input using multiple maximum pool-
ing layers [24, 25]. Building on the three detection layers
of YOLOVS, the detection module introduced minimal and
maximum target detection layers. The minimal target detec-
tion layer focuses on detecting small targets such as hands
and feet. It processes the feature map after the 14th layer of
the original network and expands it. In the 21st layer, the
resulting 160 X 160 feature map is ConCat fused with the
feature map from the second layer of the backbone network,
enabling the detection of very small targets [26, 27].

By contrast, the maximum target detection layer addresses
cases in which individuals approach the camera too closely,
leading to super-large targets. It fuses the 10x 10 feature
map obtained from the 11th layer of the original network
with the 8th layer feature map of the backbone network to
obtain the minimum feature map for detecting the maximum
targets. After splicing and fusing the features from different
layers, namely layers 22, 25, 28, 31, and 34, they are passed
to the detection head. The detection head consists of five
detector modules that output the prediction information. The
final detection results are obtained by further calculations
and comparisons.

In the PHB recognition model, the five detection layers
corresponded to five sets of initial detection boxes. When
the input image size was 640x 640 pixels and the distance
between the camera and hand target was 8 m, the size of the

hand target was approximately 6 X 6 pixels. The minimal target
detection layer has a size of 160X 160 pixels and is designed
to detect minimal targets larger than 4 X4 pixels, thus fulfilling
the requirements for hand target detection [28].

The small-target detection layer has a size of 80x 80 pix-
els and is responsible for detecting ordinary small targets
larger than 8 x 8 pixels. The detection layer corresponding to
medium-sized targets measures 40X 40 pixels and detects tar-
gets larger than 16X 16 pixels. Similarly, the detection layer
corresponding to large targets has a size of 20X 20 pixels and
can detect targets larger than 32 X 32 pixels.

Additionally, a super-large target detection layer measuring
10x 10 pixels aids in the identification of scenarios in which
the large target detection layer encounters challenges in detect-
ing the body occupying the entire image, as depicted in Fig. 6.

4.2 Information fusion strategy

Khan et al. partitioned a broad spectrum of scales into a sub-
scale ensemble encompassing three distinct scales. This seg-
mentation enabled them to effectively process heads aligned
with particular subscales. Subsequently, these components
were amalgamated into an end-to-end network, yielding highly
satisfactory detection outcomes [29]. Inspired by this meth-
odology, our approach extends its concept to address blocked
pedestrians. We treated the hands, head, and feet as individual
subsets within the overall obstructed pedestrian category. Each
subset was detected independently, and a fusion strategy was
employed to assemble a comprehensive pedestrian detection
framework after detecting these components separately.

Let us consider the overall pedestrian detection box,
denoted as box B4 = (xll’ s y}]’ s xg yg ) where the coordinates
(x?, y’f ) and (xlz’, yg) represent the upper-left and lower-right
points of the detection box, respectively.

In accordance with the observations made in [10], the
analysis considered different pedestrian postures, including
standing forward and sideways [30]. In this analysis, the upper
section of the pedestrian detection frame was designated as the
head area, whereas the lower section represented the foot area.
Given the flexible nature of hand positioning, the middle and
upper regions of a pedestrian's body, along with both sides, are
considered potential areas where hands may appear. The head,
foot, and hand areas were calculated as follows:

Head_region = (x?, Wb v+ %hb>, 3
Foot_region = (x’l’, ¥+ %hb, 8, y§>, )
Hand_region = (x'l’ —wh, y'f, xiz’ +wP, yé’—%hh>, 5)
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Fig.5 Network architecture dia-

gram of the PHB model. a PHB
model main frame. b structure
of submodules

The feature extraction module

i
=
T
=
-

@ - oo~

_____ S
| = CBL )

=—~(BL)
(CBL) = (Conv Y_ BN YReLU[SiLU)—~ ’ ’

2 VIV DRI JI 1 T P
Detection module; irHeadel' module|

Output

|
i
i
i
i
i
i
i
i
i
|
i
i
i
i
i
:
il
W o
:
|
i
i
i
i
i
i
i
i
i
i
i
i
i
i

Maxpool )+(Maxpool )+(Maxpool)

> ConCat

@ -@ @ -

(BotiTensck?) - ~(GBL) ~(GED) ~

| v
=—»(CBLYSplit)'>(Bottleneckl )| ConCat

l y
=—>p1 it)J*CBott1eneck1)LCBottleneckl>—>| ConCat | CBL )

[ v
=»plit CBottleneck.?H ConCat

where w? represents the width of the overall pedestrian
detection frame, and 4 represents the height of the overall
pedestrian detection frame.

In crowded scenarios, the body parts of other targets can
appear within a pedestrian detection frame. To address this
issue, a processing method that involves calculating the
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distance between a specific type of body part and the center
of the target body part was employed. This calculation was
performed when the number of body parts within the overall
pedestrian detection frame exceeded the expected count. The
nearest body part was then matched to the overall pedestrian
detection frame.



Research on intelligent search-and-secure technology in accelerator hazardous areas based...

Page70f12 74

(@)
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Fig.6 (Color online) Comparison of object recognition results for
oversized targets. a unrecognized objects by YOLOVSs. b recognized
objects by PHB

4.3 Search-and-secure software and interface
design

This study used PyQt5 to design the software interface, as
depicted in Fig. 7. Upon initiating the search and secur-
ing process through the software button, the underlying
program proceeds by capturing a screenshot for 3 min.

The captured image is then sent to a designated folder
for segmentation, followed by the automated execution
of the PHB detection program. If a target is detected, the
interface displays an image with annotations denoting the
entire pedestrian or specific body parts within the scene.
On-duty personnel are prompted to confirm or initiate res-
canning procedures. In the absence of a detected target, the
interface provides a signal indicating a successful sweep.

In practical scenarios, an acceleration tunnel is divided
into multiple smaller, controlled areas, each of which is
scanned at distinct time intervals. Meanwhile, consider-
ing the gradual nature of human movements, we captured
images at 30-s intervals for detection purposes. These
measures are crucial for reducing the number of captured
images and improving overall work efficiency.

The PHB system adopts the image input approach of
YOLOVS8, which involves resizing the image to a dimen-
sion of 640 x 640 pixels before feeding it into a detection
model. However, the camera group outputs images with a
size of 1920 % 1080 pixels. Direct scaling of these images
results in a reduction in the number of target pixels, poten-
tially affecting the detection performance for small tar-
gets. To mitigate this issue, the search-and-secure program
employed in this study divided the original image into
3% 3 subgraphs. These subgraphs, along with the original
image, were provided as inputs for the PHB program.

Fle Edit

Please review and confirm each one individuallv!

The system has detected 15 pictures containing pedestrians!

Start Scanning

Pedestrians detected in tunnel!

Please rescan or confirm mannually!

Rescan Confirm Manually

Last No Personnel

Next

Fig.7 (Color online) Intelligent search-and-secure software user interface
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5 Experimental validation results
5.1 Construction of the validation dataset

Dataset 1: The homemade human body part dataset comprised
a collection of 3998 images extracted from scenes within an
accelerator tunnel. This dataset encompasses more than 15,000
pedestrian targets. To diversify the dataset, the backgrounds
surrounding each pedestrian in the selected images were cap-
tured randomly to introduce occlusions. Subsequently, the
Labellmg tool was used for precise annotation. The annota-
tions were categorized into four classes: person, head, hand,
and foot. The annotated data were then converted from XML
to YOLO format and split into training and validation sets,
adhering to a ratio of 9:1 for effective model training and
evaluation.

Dataset 2: The pedestrian detection fusion dataset com-
prised a collection of 10,000 images that were randomly
sampled from prominent datasets such as COCO, VOC2012,
VOC2017, SYSU, and PRW [31]. After a meticulous data
cleaning process, the dataset was curated to extract images that
specifically contained pedestrians. In total, 9257 images were
obtained, encompassing a diverse range of scenarios involv-
ing occluded and unoccluded pedestrians, as well as varying
distances between the pedestrians and the camera. The dataset
was subsequently divided into training and verification sets at
a ratio of 1:9. This partitioning scheme ensures an effective
evaluation of both the PHB and classical models in terms of
their generalization abilities across different pedestrian detec-
tion scenarios.

5.2 Evaluation metrics

The detection and evaluation processes used in this study were
divided into two main components. The first part focuses on
pedestrian-component detection, in which the performance
of the detection results is compared with those of YOLOvS5s
and YOLOVSs. This comparison aimed to validate the impact
of the introduced minimal target detection layer (frame) and
maximum target detection layer (frame). The evaluation of the
detection results was based on conventional metrics such as
precision, recall, and mean average precision (mAP). The mAP
is computed as the overall average value when the detection
threshold ranges from 0.5 to 0.95, denoted as mAP0.5:0.95.
The calculation formula is as follows:

Precision = _TP 6
" TP +FP’ ©)
TP
Recall = ———,
T IPrEN )
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mAP = ZAP(C), ®)

ceC

where TP represents cases in which the prediction is positive
and aligns with the actual positive instances. FN denotes
instances in which the prediction is negative but the actual
value is positive. FP indicates cases where the prediction is
positive yet the actual value is negative.

The second part of the evaluation focused on the overall
pedestrian detection performance. A comparison was made
between the detection results obtained using the PHB model
and classical models, such as the YOLO series and Faster
R-CNN, aiming to assess the generalization ability of the
PHB model. The evaluation metrics employed included pre-
cision, recall, and average precision (AP) [32].

5.3 Experimental setup and results analysis
5.3.1 Experimental setup and parameter configuration

The experiments were conducted using a Windows 10 oper-
ating system with CUDA 11.1, and the training was per-
formed on a single NVIDIA GeForce RTX 3070 GPU. The
input image size was set to 640 X 640 pixels, and the training
process was performed for 300 epochs. Each training batch
consisted of 16 images. The gradient descent optimizer uti-
lized a momentum parameter of 0.937 and a weight decay
regularization coefficient of 0.0005. The initial learning rate
(LrO) for training was set to 0.01.

5.3.2 Detection results and analysis

The training process for YOLOv5s was completed in
approximately 10.4 h, whereas training with YOLOvV8s
took approximately 8.9 h and PHB took approximately
14 h. Despite the longer training time, PHB outperformed
YOLOvVS5s and YOLOvSs in terms of accuracy, recall rate,
and AP [33]. This improvement was particularly notable in
the recall rate index of the search and security software, in
which the overall recall rate for pedestrians increased by
0.158 (Table 1). The inclusion of the PHB model resulted in
an increase in the number of detection layers, which affected
the detection speed. However, considering the significance
of reliability indicators for intelligent search-and-secure
software, the tradeoff of computing time for improved reli-
ability is deemed worthwhile.

In the context of machine vision searches and secure soft-
ware, the ability to accurately identify all stranded individu-
als is of paramount importance. However, upon analyzing
the results presented in Table 1, while the PHB model shows
an improvement in the overall recall rate of pedestrians, the
achieved performance falls short of the desired ideal.
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Table 1 Performance comparison PHB, YOLOv5s and YOLOvS8s

Class Model Precision Recall Map0.5 Map0.5:0.95
Person  YOLOv5s 0.922 0.737  0.827 0.481
YOLOv8s 0.938 0.715  0.821 0.488
PHB 0.941 0.873 0913 0.706
Head YOLOvS5s  0.97 0.928  0.966 0.714
YOLOv8s 0.979 0919  0.962 0.723
PHB 0.979 0.929  0.969 0.76
Hand  YOLOv5s 0.821 0.71 0.777 0.404
YOLOv8s 0.862 0.702  0.773 0.442
PHB 0.873 0.756  0.818 0.475
Foot YOLOv5s  0.767 0.696  0.734 0.383
YOLOv8s 0.798 0.683  0.727 0.387
PHB 0.805 0.715  0.763 0.412

Therefore, this study adopted a two-step approach to the
process of information fusion. First, the PHB model was
employed to detect the pedestrian body parts within the
image. Then, the pedestrian body parts were considered a
subset of the overall pedestrian and combined with the over-
all pedestrian bounding boxes. Specifically, for each overall
pedestrian bounding box, the presence of the head, hand, and
foot bounding boxes within the region was assessed. If these
bounding boxes are identified, the component bounding box
with the highest confidence score in that region is selected
and paired with the entire pedestrian bounding box. In cases
where the pedestrian bounding box has a low score but the
body part component bounding box exhibits high confi-
dence, the overall bounding box is retained. Additionally,
if a component bounding box demonstrates high confidence
but does not match the overall pedestrian bounding box, it
is preserved and output as a pedestrian label. This approach
aligns with our aim, as depicted in Fig. 8, where the pres-
ence of the head, hands, feet, and other body parts indicates
the presence of a pedestrian, even if the entire pedestrian is
not fully visible.

Fig.8 (Color online) Compari-
son of effects before and after
information fusion. a pre-fusion
recognition result. b post-fusion
recognition result

We conducted a comparative analysis of the YOLOvSs-
and YOLOvS8s-enhanced PHB models using Dataset 1. The
results are presented in Table 2. Notably, the incorporation
of information from other body parts led to a significant
improvement in the recall rate of the YOLOv5s-PHB model.
However, it is essential to acknowledge that the accuracy,
as indicated in Table 1, of the overall and head recogni-
tion of pedestrians was somewhat diminished. This could
be attributed to the influence of the recognition performance
associated with other body parts. In contrast, the PHB model
based on YOLOVSs exhibited a slightly reduced recall rate
compared with its YOLOVSs counterpart. However, this
compensates for the improved precision. Consequently, it
is crucial to strike a balance between recall and accuracy.

5.3.3 Comparison and analysis of classical algorithms

Upon implementation of the information fusion strategy, the
PHB model demonstrated superior pedestrian recognition
performance for Dataset 1 compared to YOLOvS8s. How-
ever, it is important to acknowledge the limitations stem-
ming from the relatively small scale of Dataset 1. Thus,
generalization experiments must be conducted on Dataset 2
to validate the generalization capabilities of PHB and assess
its effectiveness in diverse scenarios.

Under identical configuration conditions, the PHB-based
intelligent search-and-secure algorithm was compared with
the classical pedestrian target detection algorithm using
Dataset 2. Table 3 presents the results of the study. Nota-
bly, despite being designed based on the smaller YOLOvS8s

Table 2 PHB person class detection performance

Model Precision Recall AP

YOLOv5s-PHB Pre-fusion 0.924 0.874 0.916
post-fusion 0.878 0.921 0.914

YOLOv8s-PHB Pre-fusion 0.941 0.873 0.913
post-fusion 0.896 0.915 0911

(d)
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model within the YOLOVS series, PHB achieves the same
precision as the larger YOLOv8I model. The recall rate dem-
onstrated a 13.1% increase, whereas the average detection
accuracy improved by 4.4%. Furthermore, when compared
to Faster R-CNN, the PHB algorithm outperformed the other
algorithms in terms of overall performance. However, the
accuracy and recall rates of PHB in Dataset 2 were lower
than those in Dataset 1. This discrepancy arises because, in
the context of the sweep system, instances in which pedes-
trians are obstructed by other pedestrians are infrequent.
Consequently, Dataset 1, which was used to train the PHB
model, prioritizes interclass occlusion and may not effec-
tively address the challenges posed by the severe intraclass
occlusion encountered in Dataset 2. In summary, the PHB-
based intelligent search-and-secure algorithm guarantees
high detection accuracy and a low missed detection rate,
specifically in scenarios where pedestrians are obstructed
by equipment.

5.3.4 The impact of fusion strategies in classical models

The PHB model based on YOLOv8s was enhanced, followed
by the implementation of an information fusion strategy to
enhance model performance. Subsequently, this fusion strat-
egy was directly applied to the classical model, and a com-
parative evaluation was conducted against the PHB effect.
The results are summarized in Table 4. Notably, the SSD
model demonstrated significantly inferior performance com-
pared with the PHB model after fusion strategy adoption.
Furthermore, the recall rate of the Faster RCNN surpasses
that of the PHB effect after incorporating the fusion strat-
egy. However, it is evident that a Faster RCNN also requires
nearly twice the processing time of PHB. Considering the
high volume of images processed by the search-and-secure
system and the emphasis on real-time performance, the PHB
model enhanced by the YOLOvV8 model proved more suit-
able [34, 35].

Moreover, our investigation included a comparison with
the classical model to evaluate the recognition performance
between larger targets simulated by pedestrians approach-
ing the camera and smaller targets, such as hands and feet.
Our findings indicate that although the direct application of

Table 3 Comparison of pedestrian detection performance

Model Precision Recall AP
YOLOVS5s 0.822 0.698 0.79
YOLOV51 0.846 0.74 0.833
YOLOv8s 0.861 0.687 0.793
YOLOvS8I 0.867 0.689 0.798
Faster RCNN 0.813 0.796 0.781
PHB 0.869 0.82 0.842

@ Springer

Table 4 Comparison of fusion strategies' impact on classical models

Model Precision Recall AP
SSD Pre-fusion 0.801 0.681 0.77
Post-fusion 0.753 0.78 0.759
Faster RCNN Pre-fusion 0.813 0.796 0.781
Post-fusion 0.798 0.831 0.776
PHB Post-fusion 0.869 0.82 0.842

YOLOVS exhibited limited effectiveness on smaller targets,
our enhancements successfully mitigated this constraint.
Consequently, the PHB model demonstrates proficiency
analogous to that of the Faster RCNN in recognizing dimin-
utive targets. However, the PHB model excelled at identify-
ing significantly larger targets.

6 Conclusion

Based on the performance evaluation of the model, we
installed two sets of 180° camera groups within a section
of the China Spallation Neutron Source Accelerator Tunnel
[36], as shown in Fig. 9. A relatively enclosed and controlled
area was created by strategically introducing partial physical
occlusion.

Several field tests were conducted within this controlled
area, and the results demonstrated that the intelligent search
and security system successfully detected stranded indi-
viduals and achieved notable outcomes. However, the tests
revealed certain issues that require resolution. For instance,
the system incorrectly identified body images within certain
promotional photographs in the tunnel as pedestrian targets.
These concerns will be addressed in the future as part of
ongoing system enhancements.

Machine-vision-based search-and-secure technology has
considerable potential for broad applications in diverse set-
tings such as railway yards, chemical plants, museums, and

Fig.9 (Color online) Photograph of the intelligent search-and-secure
system deployed in the tunnel
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other intermittent hazardous areas [37, 38]. This technol-
ogy has a significant value and merits further promotion
and implementation.
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