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Abstract
The heterogeneous variational nodal method (HVNM) has emerged as a potential approach for solving high-fidelity neutron 
transport problems. However, achieving accurate results with HVNM in large-scale problems using high-fidelity models has 
been challenging due to the prohibitive computational costs. This paper presents an efficient parallel algorithm tailored for 
HVNM based on the Message Passing Interface standard. The algorithm evenly distributes the response matrix sets among 
processors during the matrix formation process, thus enabling independent construction without communication. Once 
the formation tasks are completed, a collective operation merges and shares the matrix sets among the processors. For the 
solution process, the problem domain is decomposed into subdomains assigned to specific processors, and the red-black 
Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation. Point-to-point communica-
tion is conducted between adjacent subdomains to exchange data along the boundaries. The accuracy and efficiency of the 
parallel algorithm are verified using the KAIST and JRR-3 test cases. Numerical results obtained with multiple processors 
agree well with those obtained from Monte Carlo calculations. The parallelization of HVNM results in eigenvalue errors of 
31 pcm/− 90 pcm and fission rate RMS errors of 1.22%/0.66%, respectively, for the 3D KAIST problem and the 3D JRR-3 
problem. In addition, the parallel algorithm significantly reduces computation time, with an efficiency of 68.51% using 36 
processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem.
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1  Introduction

The solution of the neutron transport equation plays a piv-
otal role in the analysis of neutron distribution in a nuclear 
system. In recent years, with the advancements in compu-
tational resources, the one-step neutron transport method 
with homogenization eliminated has garnered increasing 
attention as a prominent research focus. The method of char-
acteristics (MOC) [1, 2] has been identified as a promising 
method for one-step whole-core neutronics calculation. The 

fundamental idea behind this method is to generate a set of 
parallel rays for each discretized angle and solve the one-
dimensional (1D) neutron transport equation along these 
rays. However, applying MOC directly to three-dimensional 
(3D) whole-core domains leads to prohibitively high compu-
tational costs. Therefore, a common practice is to employ the 
two-dimensional/one-dimensional (2D/1D) approximation, 
known as 2D/1D-MOC [3–5]. In 2D/1D-MOC, the coupling 
of 2D MOC calculation in the lateral plane with the diffu-
sion or transport calculation in the axial direction strikes 
an optimal balance between accuracy and computational 
costs. Several neutronics codes based on this method have 
been developed, including MPACT [3], PROTEUS-MOC 
[6], PANDAS-MOC [7], NECP-X [8, 9], and SHARK [10]. 
However, 2D/1D-MOC still faces challenges, such as the 
complexity of the coupling strategy between 2D and 1D cal-
culation and potential convergence issues when refining the 
axial mesh [11, 12].
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The variational nodal method (VNM) offers another 
option for one-step whole-core neutronics calculations. This 
method utilizes the functional for second-order even-parity 
transport equation, with odd-parity Lagrange multipli-
ers employed to enforce nodal balance. Response matrices 
(RMs) are obtained using a classical Ritz procedure. The 
VNM was first proposed in the 1980 s and initially applied 
to homogenous node problems [13]. Over the years, VNM-
based codes, such as VARIANT [14, 15] and VITAS [16–24], 
have emerged, benefiting from its accuracy and adaptabil-
ity to mesh geometry. Since 1997, the VNM has expanded 
its capability to handle heterogeneous materials within the 
nodes, enabling high-fidelity neutronics calculations.

In 2017, a significant milestone was reached with the 
development of the 3D heterogeneous variational nodal 
method (HVNM), specifically designed for pin-resolved 
problems. This method, implemented in PANX [25, 26] and 
VITAS [17, 21], treats each pin cell as a single node and uti-
lizes iso-parametric finite element to accurately represent the 
pin-resolved geometry. Angular expansion is achieved using 
spherical harmonics, while radial and axial leakage expan-
sion employs polynomials and piece-wise constants. HVNM 
directly performs full 3D calculations without necessitating 
coupling calculations between 2D and 1D domains, as seen 
in 2D/1D-MOC. Therefore, HVNM avoids lateral integra-
tion and eliminates issues associated with negative leakage 
terms. Recent research [27] has compared the accuracy 
and efficiency of HVNM and 2D/1D-MOC in pin-resolved 
problems. It was reported that for the KAIST problem, the 
NuScale problem, and the Beavrs problem, HVNM produces 
a more accurate pin power distribution and superior compu-
tational efficiency compared to 2D/1D-MOC [27]. This dem-
onstrates the significant potential of HVNM as an alternative 
option to 2D/1D-MOC for one-step neutronics calculation.

In our previous publication [17], we introduced and veri-
fied the high-fidelity modeling capability of HVNM using 
the C5G7 benchmark problem set. It is worth noting that the 
previous verifications were limited to relatively small-scale 
pin-cell geometry cases. Therefore, further verification of 
HVNM is necessary to comprehensively investigate its fea-
sibility for larger problems. In addition, it is crucial to exam-
ine whether the method can be applied to problems with fine 
mesh sizes, such as plate-type assemblies with fuel plates at 
the millimeter scale. Unfortunately, the limited serial capa-
bility of HVNM has hindered its ability to achieve sufficient 
space-angle orders for the desired accuracy when dealing 
with strong heterogeneous problems or to calculate prob-
lems significantly larger than those of the C5G7 benchmark 
problem. Consequently, there is an urgent need for research 
on parallel algorithms for HVNM.

Prior to this work, significant efforts have been devoted to the 
development of parallel algorithms for the VNM. Several paral-
lel strategies have been proposed, including a parallel approach 

based on the Message Passing Interface (MPI) standard imple-
mented in VARIANT. However, the existing parallel imple-
mentation of the VNM was only devoted to the axial planes 
[28], limiting its applicability to 3D problems. Another parallel 
approach [29] based on non-overlapping domain decomposition 
has been investigated for the solution of a red-black algorithm; 
however, its restriction to regular-shaped finite elements hinders 
its effectiveness in addressing heterogeneous problems. Further-
more, a hybrid parallelization of HVNM for pin-resolved neu-
tron transport calculations has been presented by Wang et al 
[30]. However, the study lacks a detailed analysis of parallel 
efficiency and is confined to pressurized water reactors. These 
limitations highlight the research gap that still exists in develop-
ing a comprehensive and efficient parallel algorithm, which is 
specifically tailored for HVNM, capable of addressing the chal-
lenges posed by intense heterogeneity and large-scale neutron 
transport problems. Therefore, this work aims to fill this research 
gap by proposing an efficient parallel algorithm for HVNM and 
conducting a thorough analysis of its parallel efficiency.

In this study, we propose a parallel formulation specifically 
tailored for HVNM within an MPI framework. Considering 
HVNM as a representative RM method, the procedure of 
HVNM is divided into two steps: (a) constructing the RMs 
and (b) solving the resulting matrix equations. In step (a), each 
RM is constructed independently, which inherently allows for 
parallelism. Therefore, we employ a specialized parallel strat-
egy, rather than domain decomposition, for RM formation to 
ensure optimal load balance. This approach evenly distributes 
the computational workload among MPI processors, optimiz-
ing the parallel performance. The solution process is paral-
lelized through non-overlapping domain decomposition. The 
entire space domain is divided into multiple subdomains, with 
each subdomain assigned to an MPI processor. The subdo-
mains are coupled through interface nodes located along their 
boundaries.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the theoretical models of HVNM and the 
parallel algorithm. In Sect. 3, numerical results for representa-
tive heterogeneous neutron transport problems, KAIST and 
JRR-3, are obtained to verify the accuracy and performance of 
the parallel algorithm. The parallel performance is evaluated 
by comparing the CPU time between serial and multi-core 
parallel computations. Finally, Sect. 4 concludes the paper and 
discusses possible future improvements.

2 � Theoretical descriptions

2.1 � Theoretical models for neutron transport

This section provides the essential equations for HVNM, but 
for a comprehensive understanding of the derivation pro-
cess and detailed matrix expressions, please refer to Ref. 
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[25]. HVNM is based on the second-order neutron transport 
equation (NTE) with isotropic scattering approximation. The 
second-order NTE within the group takes the form of

where Σt(r) and Σs(r) are the macroscopic total and scatter-
ing cross sections, respectively. �+

(r,�) is the even-parity 
angular flux at position r in direction � . �(r) is the scalar 
flux satisfying �(r) = ∫ �(r,�)dΩ . q(r) is the group source 
consisting of scattering and fission terms:

In addition, the odd-parity angular flux �−

(r,�) is defined 
and satisfies

In HVNM, the second-order NTE is formulated as a vari-
ational principle in terms of a global functional F[�+,�−

]

which is a superposition of the functional for each node, 
Fv[�

+,�−

]:

In summary, the spatial and angular independent vari-
ables r and � are suppressed. In local coordinates, 
dV = dxdydz with −Δx∕2 ≤ x ≤ Δx∕2 , −Δy∕2 ≤ y ≤ Δy∕2 , 
−Δz∕2 ≤ z ≤ Δz∕2 . np is the outward normal to the lateral 
interfaces extending over the periphery Γ , while nz+ and nz− 
are the outward normal to the top and bottom axial inter-
faces, respectively.

Within the node, the even-parity angular flux is expanded 
as

where f (z) and g(x, y) are vectors of orthonormal polyno-
mials and continuous finite-element trial functions, respec-
tively. ⊗ represents a tensor product. �(�) is a vector of 
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expansion moments with respect to � . Correspondingly, the 
scalar flux is expanded as

where � is a vector of scalar flux moments, satisfying 
� = ∫ dΩ�(�) . It is worth noting that the radial flux distri-
bution within the node is represented by continuous, piece-
wise finite-element functions. This treatment allows for the 
discontinuities in cross sections at the finite-element inter-
faces within each node, thereby eliminating the requirement 
for homogeneous nodes.

The odd-parity angular flux is expanded as

and

on the axial and lateral interfaces, respectively. h(x, y) 
denotes a piecewise constant vector, with each of its com-
ponents equal to one over the domain of one or more finite 
elements and zero elsewhere. yz(�) and y� (�) are vectors 
consisting of odd-parity spherical harmonics defined on 
the axial and lateral interfaces, respectively. � z and � � are 
expansion moment vectors. The material interfaces within 
a single node can be explicitly described using these trial 
functions, ensuring that there is no smearing between the 
materials at axial interfaces.

Inserting Eq. (6) through Eq. (9) into Eq. (5) results in the 
discretized functional in the form of

Requiring the discretized functional given in Eq. (10) to be 
stationary with respect to variation in �(�) , � � and � z , and 
employing the linear transformation of variables, finally 
results in the following equations:

where j+ and j− stand for the vectors of the expansion 
moments of outgoing and incoming partial currents along 
the nodal surfaces, respectively. B , R , V , and C are the 
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nodal RMs, which are coefficient matrices solely related to 
the nodal geometry and macroscopic cross sections. Equa-
tion  (11) signifies the relationship between the neutron 
source within the node and the partial current on the node’s 
surface, while Eq. (12) represents the neutron conservation 
within the node.

The numerical solution process in HVNM involves three 
levels of iteration [27]. The outermost iteration is the fission-
source (FS) iteration, which utilizes the power method [31]. 
In each FS iteration, if up-scattering is present, the multi-
group (MG) flux system is solved using the legacy Gauss-
Seidel (GS) algorithm, referred to as the MG iteration. How-
ever, if there is no up-scattering, only a single sweep over 
the energy groups is required. Within each energy group, 
the within-group (WG) RM system, expressed by Eq. (11), 
is solved using the Red-Black Gauss-Seidel (RBGS) algo-
rithm, referred to as WG iteration. The detailed solution 
process is presented in Algorithm 1.

Algorithm 1   The HVNM iteration process

Several techniques, specifically tailored for HVNM, 
including the flat source region (FSR) acceleration method 
[25], partitioned matrix (PM) method [32], and quasi-
reflected interface condition (QRIC) method [26], are 
employed to accelerate the solution process. These accelera-
tion methods have been elaborated in our previous publica-
tions [21] and thus are not described in detail in this paper.

The FSR acceleration method aims to reduce the degrees 
of freedom within the node by partitioning the finite ele-
ments into FSRs. Within each FSR, the group source at each 
finite-element vertex is approximated as the average source 
within that FSR.

The PM method involves decomposing the response 
matrices into a low-order matrix corresponding to the 

surfaces of each node and a high-order spatial-angular 
matrix. The high-order terms are used to construct a correc-
tion source term for solving the low-order diffusion matrix 
equation during the iteration process.

The QRIC method aims to reduce the number of angular 
degrees of freedom on the interfaces by applying the reflec-
tive boundary condition (B.C.) to the high-order angular 
terms. This reduction leads to a smaller size of the response 
matrix, resulting in improved computational efficiency and 
reduced memory requirements.

2.2 � Parallel algorithm

The parallel algorithm tailored for HVNM is based on MPI. 
In the subsequent sections, we introduce the parallel algo-
rithms for matrix formation and solution. Although HVNM 
incorporates acceleration methods such as PM, FSR, and 
QRIC, it is not necessary to consider the parallelization of 
these acceleration methods themselves. The parallel algo-
rithm described in the following sections is fully compatible 
with these acceleration techniques.

2.2.1 � Matrix formation parallel algorithm

According to the expressions of RMs (i.e., B , R , V and C 
designated as a matrix set), they are purely dependent on 
the node’s geometry and macroscopic cross sections. This 
implies that for a specific energy group, nodes with the same 
geometry, material, and finite-element grid (categorized as a 
unique node) will have identical matrix sets. Therefore, the 
formation of matrix sets is an independent operation for each 
unique node and energy group; this independence allows 
for perfect scalability in a parallel computing environment 
using the MPI framework. Each MPI processor can construct 
matrix sets for a subset of unique nodes and energy groups 
simultaneously, without any communications.

The most straightforward and intuitive parallel scheme is 
to evenly assign the matrix formation tasks to all the proces-
sors to achieve optimal load balance. Assuming there  
are NG energy groups and NU unique nodes, a total of  
NM = NG × NU matrix sets need to be constructed. The 
formation of NM matrix sets is partitioned by NP  
processors so that each processor undertakes a part of the 
calculation simultaneously. If NM is exactly divisible  
by NP, the index of matrix sets to be calculated on the  
processor p  ( p ∈ [0,NP − 1] ) can be defined as 
ip ∈

[
p ⋅

NM

NP
+ 1, (p + 1) ⋅

NM

NP

]
 . However, in cases where NM 

cannot be evenly divided by NP, the bounds of ip need to be 
adjusted to allocate the remaining matrix sets to specific 
processors. Figure 1 illustrates a partition example with NU 
= 2 and NG = 4. When NP = 2, the matrix sets are evenly 
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distributed among 2 processors with each processor being 
assigned 4 matrix sets. When NP = 3, Processor 0 and Pro-
cessor 1 are assigned 3 matrix sets, while Processor 2 is 
assigned 2 matrix sets. The partition scheme enforces that 
the number of matrix sets assigned to each processor is as 
balanced as possible.

Each processor requires the corresponding set of RMs for 
its subdomain during the solution of the matrix equations 
presented in Eqs. (11) and (12). However, the distribution 
scheme of matrix sets may result in some processors not hav-
ing the required response matrix sets locally. Instead, these 
matrix sets are allocated to other processors for construc-
tion. In such cases, communication between processors is 
necessary to ensure that each processor obtains the required 
response matrix sets for its subdomain. The communica-
tion scheme employed in this study involves transmitting the 
local matrix sets constructed by each processor to a desig-
nated processor, which preforms the merging process to gen-
erate a global matrix set encompassing all unique nodes and 
energy groups. Finally, the global matrix set is dispatched to 
all other processors.

The parallelization for matrix formation is outlined in 
Algorithm 2, which highlights the steps involved in dis-
tributing the matrix formation tasks and preforming the 
necessary communication to generate the global matrix 
set. While no communication is required between proces-
sors during the calculation of matrix sets, load imbalances 
may occur if the number of matrix sets cannot be evenly 
distributed among the processors. In addition, the collec-
tive manipulations required to generate the global matrix 
set and transfer it to each processor introduce communica-
tion overhead, which can impact the parallel performance. 
The communication overhead is mainly influenced by both 
the number of processors involved in the communication 
and the size of the matrices that need to be communicated. 

The communication overhead becomes more significant 
as the number of processors and the size of the matrices 
increase.

Algorithm 2   Parallelization for matrix formation

2.2.2 � Solution parallel algorithm

In the parallelization of the solution process in HVNM, 
non-overlapping domain decomposition is employed. 

Fig. 1   (Color online) Matrix 
sets assignment for each proces-
sor

(1, 1) (1, 2) (1, 3) (1, 4)

Processor 0

(2, 1) (2, 1) (2, 3) (2, 4)

Processor 1

(1, 1) (1, 2) (1, 3)

Processor 0

(1, 4)

Processor 1 Processor 2

(2, 1) (2, 1) (2, 3) (2, 4)

NP = 2

NP = 3

(u, g) represents the matrix set corresponding to unique
node and energy group .

(1, 1) (1, 2) (1, 3) (1, 4) (2, 1) (2, 2) (2, 3) (2, 4)

1 2 3 4 5 6 7 8Matrix set index

Matrix set
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The entire space domain is divided into multiple subdo-
mains, with each subdomain assigned to an MPI processor. 
Examples of 3D non-overlapping domain decomposition 
are shown in Fig. 2. The subdomains are coupled through 
interface nodes located along their edges. The primary 
challenge in parallelization lies in identifying the pro-
cesses that require parallel communication and determin-
ing the effective way to implement it.

The iteration process of HVNM, mentioned in Sect. 2.1, 
reveals that the update of the eigenvalue in the FS iteration 
and the solution of the RM equation in the WG iteration 
require data transfer between subdomains. The eigenvalue 
updates can be parallelized through collective manipula-
tion. The designated processor gathers the individual 
contributions to the total fission source from all proces-
sors, computes the next estimate of the eigenvalue, and 
broadcasts this value to all other processors. This ensures 
that all processors have consistent and updated eigenvalue 
estimates.

Conversely, the parallelization for the solution of the 
RM equation is more complex. When solving the RM 
equation, the global nodes are colored red and black, 
ensuring that adjacent nodes have different colors. Fig-
ure 3 shows the red-black coloring scheme in a 2D domain. 
Based on the principle of continuity, it can be deduced that 
the incoming partial current on a surface of the red node is 
equal to the outgoing partial current on the same surface 
of the adjoining black node and vice versa. This equality 
relationship is applied to update the incoming partial cur-
rent, while the RM equation is used to update the outgo-
ing partial current. Obviously, the data transfer between 
subdomains is necessary when updating the partial current 
defined across the boundaries of subdomains. A simple 
illustration of the data transfer is presented in Fig. 4.

In each subdomain, the partial currents are first updated 
through a loop over nodes in the order of red nodes followed 
by black nodes. Once a sweep of all red nodes or all black 
nodes is completed, the two adjacent subdomains engage 
in simultaneous point-to-point communication to exchange 
partial currents on each boundary, as illustrated in Fig. 4. 
In Fig. 4, the yellow arrows indicate the direction of data 
transfer after solving all red nodes, while the green arrows 
indicate the direction of data transfer after solving all black 
nodes. When the partial currents of all red nodes have been 
updated, each subdomain will engage in the exchange of 
updated partial currents of red nodes with its neighboring 

Z-direction 
domain decomposition

Y-direction 
domain decomposition

X-direction 
domain decomposition

Fig. 2   (Color online) 3D non-overlapping domain decomposition

Subdomain 1 Subdomain 2

Subdomain 3 Subdomain 4

Fig. 3   (Color online) Red-black coloring scheme in a 2D domain
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subdomains on the boundaries. Subsequently, each sub-
domain will utilize the received partial currents to update 
the partial currents of the black nodes on the boundaries. 
Likewise, parallel communication follows a similar process 
after updating all black nodes. The parallel algorithm for the 
solution process preserves the benefits of RBGS, ensuring 
that the incoming partial current used for updating the out-
going partial current on the subdomain’s boundaries is the 
most up to date. Thus, the parallel algorithm ensures a sat-
isfactory convergence speed when solving the WG response 
matrix equation. During each WG iteration, the number of 
point-to-point communications is equal to twice the num-
ber of adjoining subdomain boundaries. Taking Fig. 4 as an 
example, one WG iteration needs 2 × 4 point-to-point com-
munications. At the end of all nodes sweep, the designated 
processor gathers the individual contributions to the itera-
tion error from all processors, computes the final iteration 
error, and broadcasts this value to all other processors. If the 
partial currents satisfy the convergence criterion, the WG 
iteration will be terminated. The detailed parallelization for 
WG solution is shown in Algorithm 3.

In the parallel algorithm for solution process, there are 
three factors that can affect the parallel performance. First, 
local workload imbalances may occur if the subdomains 
have an unequal number of nodes (referred to as local 
nodes), which can lead to load imbalances among proces-
sors. Second, the ratio of communication effort to local work 
also increases as the number of subdomains increases. In 
summary, the communication overhead becomes more sig-
nificant compared to the computational workload, which 

can have a negative impact on the efficiency of the paral-
lel algorithm. Third, communication imbalances may arise 
when subdomains have different numbers of communicated 
boundaries. Subdomains located in the middle of the prob-
lem typically have more adjacent subdomains to communi-
cate with compared to those on the surfaces. This imbalance 
may also affect the parallel performance.

Algorithm 3   Parallelization for WG solution

3 � Results and discussion

The foregoing parallel algorithm has been implemented 
through a revision of the VITAS code. In this section, the 
accuracy and performance of the algorithm are evaluated 
using the KAIST problem [27] and the JRR-3 problem [33, 
34]. These problems represent challenging scenarios in 
terms of computational requirements and spatial heteroge-
neity, making them suitable for assessing the performance 
of the parallel algorithm. It is worth noting that applying 
HVNM to plate-type assemblies in the JRR-3 problem 
involves modeling the internal structure of the reactor 
with mm-level grids, which poses significant challenges 
and represents the first attempt at applying this method 
to such reactors. Furthermore, the use of JRR-3 problem 
for verification and analysis of the parallel algorithm 
underscores the appropriateness of the proposed parallel 

Subdomain 1 Subdomain 2

Subdomain 3 Subdomain 4

Fig. 4   (Color online) Data transfer between subdomains in the paral-
lelization for WG solution
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algorithm in tackling various types of heterogeneous trans-
port problems.

The evaluation of parallel performance is measured 
using speedup (S) and efficiency ( � ). Speedup is defined 
as the ratio of the sequential run time ( Ts ), estimated using 
the run time with one processor ( T1 ), to the parallel run 
time when using P processors ( Tp ). Efficiency measures 
the utilization of resources in the parallel system.

All the following computations were performed on the PI 
2.0 cluster supported by the Center for High Performance 
Computing at Shanghai Jiao Tong University. The PI 2.0 
cluster consists of 654 compute nodes. Each compute node is 
equipped with two Intel Xeon Scalable Cascade Lake 6248 
CPUs @ 2.5GHz, with each CPU having 20 cores.

3.1 � KAIST problems

The KAIST problem is derived from the MOX bench-
mark problem 2A proposed by KAIST in South Korea. It 

(13)
Sp =

Ts

Tp
≈

T1

Tp

�p =
Sp

P

represents a simplified model of a light-water reactor with 52 
fuel assemblies surrounded by a water reflector. The prob-
lem is simplified to an 1/8 core by applying reflective B.C. 
on the south, west, and bottom sides of the core for reduc-
ing computational complexity. The lateral geometry of the 
eighth core is illustrated in Fig. 5, including three types of 
fuel assemblies: UOX-1, UOX-2, and MOX-1. Each assem-
bly consists of 289 pin cells arranged in a 17× 17 pin layout. 
The UOX-1 and UOX-2 assemblies comprise UO2 pin cells 
with enrichment of 2.0% and 3.3%, respectively. The MOX-1 
assembly contains three different types of MOX pin cells 
with enrichment of 4.3%, 7.0%, and 8.7%. The geometry 
of each pin cell is illustrated in the upper right corner of 
Fig. 5, where the circle area can represent fuel, moderator, 
or control rod, while the area between circle and square rep-
resents moderator. The height of core is 150 cm with 15-cm 
reflectors on the top.

The calculations employ seven group macroscopic cross 
sections, which can be found in Ref. [27]. Each pin cell 
is treated as one node in radial, and the whole problem is 
evenly divided into 10 layers in axial. Thus, there are 85 × 
85 × 10 nodes in the problem. Each node has the dimen-
sion of 1.26 cm × 1.26 cm × 15 cm. The fuel pin cells are 
meshed using five radial rings for the fuel zone, one radial 
ring for the moderator zone, and eight azimuthal sectors. 
Each fuel pin cell comprises 48 quadratic finite elements, 
as shown in Fig. 6. The meshing scheme for control rod 
pin cells and guide tube pin cells follows the same pat-
tern as the fuel pin cells, with the only difference being the 
replacement of fuel material with the corresponding control 
rod material or guide tube material. The FSR acceleration 
method is employed to accelerate the calculations, treating 
each finite element as one FSR. We specify 48 quadratic x-y 
finite elements in each node, using 2nd-order polynomials in 
the axial direction. On the lateral and axial interfaces, 2nd-
order polynomials and 48 piecewise constants are employed, 
respectively. Angular integrals are evaluated utilizing a 25 
× 25 Square Legendre-Chebyshev (SLC) cubature. On the 
nodal interfaces, PN_n expansions are employed where Pn 
represents the approximations on the interface after apply-
ing QRIC method to eliminate high-order angular moments 

3.3% UO2

4.3% MOX

7.0% MOX

8.7% MOX

Guide Tube

Guide Tube /Control Rod

2.0% UO2

Moderator

evitcelfe
R Va

cu
um

Vacuum

Reflective

1.
26

cm

Fig. 5   (Color online) The lateral layout of the KAIST problem

Fig. 6   (Color online) The 
quadratic finite-element grid 
for three pin cells in the KAIST 
problem

UO2/MOX pin Control rod pin Guide tube/Reflector pin
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from n+1 through N. Table 1 summarizes detailed calcula-
tion settings for the KAIST problem, including the expan-
sion orders, the convergence tolerance, and the applied 
acceleration methods. The sensitive analysis for the spatial 
and angular expansion order indicates that this set of discre-
tization schemes are adequate to eliminate the errors associ-
ated with the spatial and angular approximations. For brev-
ity, the detail of sensitive analysis is omitted in this paper.

3.1.1 � Accuracy comparison

We performed both serial and parallel computations using 
multiple MPI processors to verify the accuracy of the paral-
lel algorithm. As a comparison, the numerical results are 
compared with those obtained from MG Monte Carlo (MC) 
calculation, which served as the reference solution. In the 
MC calculation using MCNP, a simulation of 5 million par-
ticles per batch was performed, with a total of 500 batches, 
of which 300 batches were skipped. The large amount of 
particles was sufficient for an accurate simulation, and the 
statistical deviation of the eigenvalue was 3 pcm.

Table 2 presents the comparison results of the eigenvalue 
and axially integrated pin fission rate, including eigenvalue 
error, maximum fission rate percent error (MAX), aver-
age fission rate percent error (AVG), and root-mean-square 
(RMS) of the fission rate percent error. Table 2 only presents 
the results obtained from parallel computations using 48 
processors, for the sake of brevity, due to obtaining identical 
results with different numbers of parallel processors. From 
Table 2, it is observed that the parallel calculation yields 
the same eigenvalues and fission rate as the serial code: The 
eigenvalue error is 31 pcm, while the RMS of the fission rate 
percent error is 1.22%; this demonstrates the correct imple-
mentation of the parallel algorithm. The normalized fission 

rate distribution is depicted in Fig. 7a. It can be observed 
that sharp power gradients emerge throughout the core, 
with the power peak positioned at the interface between the 
MOX-1 and UOX-1 assemblies. Figure 7b shows the percent 
error distribution of the fission rate.

3.1.2 � Parallel performance analysis

This section focuses on analyzing the parallel performance 
of the parallel algorithm using two metrics: speedup and 
parallel efficiency, to assess its effectiveness. The speedup 
measures the extent to which parallel computation is faster 
than its sequential counterpart. The parallel efficiency 
assesses the utilization of computational resources in a 
parallel computation. These metrics are calculated using 
Eq. (13).

Table 3 compares the computation effort and parallel 
performance using 1, 4, 8, 12, 18, 25, and 36 processors. 
The computation time, speedup, and efficiency for response 
matrix formation (referred to as formation time/speedup/effi-
ciency) and solution (referred to as solution time/speedup/
efficiency) are provided. All parallel computations are per-
formed using a single compute node to mitigate the impact 
of inter-node communication on parallel efficiency. Based 
on Table 3, it is evident that as the number of participating 
processors in parallel computation increases, the computa-
tion time significantly decreases, leading to an increase in 
speedup. The overall speedup with 36 processors exceeds 
24.0. This demonstrates the effectiveness of paralleliza-
tion in reducing the total computational time. Furthermore, 
increasing the number of processors generally results in a 
decrease in parallel efficiency. When the number of proces-
sors increases from 4 to 36, the formation efficiency, solu-
tion efficiency, and overall efficiency decrease from 88.92%, 
93.31%, and 93.31% to 43.83%, 70.50%, and 68.51%, 
respectively. This decrease is primarily attributed to the 
growing proportion of communication overhead compared 
to local work.

Regarding matrix formation, the workload assigned 
to each processor decreases as the number of processors 
increases because of the reduced number of local matrix 
sets. However, the communication overhead required to 

Table 1   Calculation settings for the KAIST problem

Calculation parameters Value

Volume spatial expansion in x-y 48 Quadratic x-y finite elements
Volume spatial expansion in z Second-order polynomials
Surface spatial expansion in x/y Second-order polynomials
Surface spatial expansion in z 48 piecewise constants
Volume angular integrals 25 × 25 SLC cubature
P
N

 order on the lateral interfaces P23_3

P
N

 order on the axial interfaces P3_1

Fission source tolerance 5.0 × 10−5

Eigenvalue tolerance 1.0 × 10−5

Flux tolerance 1.0 × 10−5

Tolerance for WG iteration 1.0 × 10−7

FSR acceleration Yes
PM acceleration Yes
QRIC acceleration Yes

Table 2   Comparison of results for the KAIST problem

Method HVNM MC (Ref.)

Number of processors 1 48 –
Eigenvalue 1.14395 1.14395 1.14364
Eigenvalue error (pcm) 31 31 –
Pin fission rate (%) RMS 1.22 1.22 –

MAX 4.49 4.49 –
AVG 0.83 0.83 –
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construct the global matrix sets becomes more significant 
with an increased number of processors, resulting in a larger 
portion of time spent on communication surpasses the time 
saved by distributing the workload across multiple proces-
sors. Consequently, the efficiency for matrix formation drops 
from nearly 90% with 4 processors to only 43.83% with 36 
processors. Additionally, the workload imbalance caused by 
the uneven distribution of matrix sets can also impact paral-
lel efficiency. This workload imbalance may become more 
pronounced as the number of processors increases, further 
decreasing parallel efficiency.

During the solution process, the local workload can be 
measured by the number of local nodes, while communica-
tion overhead is associated with the number of communi-
cation boundaries between subdomains. Table 4 presents a 
comparison of communication and local work in the solution 
process, including the maximum and minimum numbers of 
local nodes and communication boundaries. A significant 
decrease in the local nodes is observed as the number of 
processors increases, while the number of communication 
boundaries increases. This leads to a decrease in the ratio 
of local work to communication efforts. For instance, as 
the number of local nodes decreases from 18,490/17,640 
to 2,250/1,960, the number of communication bounda-
ries increases from 2/2 to 4/2. Furthermore, as mentioned 
in Sect. 2.2.2, subdomains situated in the middle of the 

problem generally exhibit a larger number of communication 
boundaries compared to those on the surfaces. This com-
munication imbalance further reduces efficiency. The extent 
of communication imbalance can be estimated by calculat-
ing the relative difference between the maximum number 
of communication boundaries and the minimum number 
of communication boundaries. As indicated in Table 4, the 
number of communication boundaries is 2/2 with 4 proces-
sors, but it is 4/2 with 36 processors. Therefore, the commu-
nication imbalance may become more severe as the number 
of processors increases.

Figure 8 depicts a visualized representation of the parallel 
performance with varying numbers of processors. Figure 8 

Fig. 7   (Color online) The nor-
malized fission rate distribution 
and percent error distribution 
for the KAIST problem

(a) Normalized fission rate distribution (b) Fission rate percent error distribution/%

Table 3   Comparison of 
computation effort and parallel 
performance for the KAIST 
problem

Number of processors 1 4 8 12 18 25 36

Formation time (h) 0.79 0.22 0.12 0.10 0.09 0.07 0.05
Solution time (h) 15.80 4.22 2.30 1.66 1.20 0.80 0.62
Total time (h) 16.64 4.45 2.42 1.76 1.29 0.87 0.67
Formation speedup – 3.56 6.48 8.11 8.38 10.74 15.78
Solution speedup – 3.74 6.87 9.49 13.21 19.80 25.38
Overall speedup – 3.73 6.85 9.42 12.85 19.03 24.66
Formation efficiency (%) – 88.92 80.95 67.61 46.53 42.95 43.83
Solution efficiency (%) – 93.31 85.91 79.10 73.38 79.19 70.50
Overall efficiency (%) – 93.31 85.65 78.46 71.41 76.12 68.51

Table 4   Comparison of communication and local work for the 
KAIST problem

Number of 
processors

Subdomain 
distribution

Max/Min local nodes Max/Min commu-
nication bounda-
ries

4 (2,2,1) 18,490/17,640 2/2
8 (2,2,2) 9245/8820 3/3
12 (2,3,2) 6235/5880 4/3
18 (3,3,2) 4206/3920 5/3
25 (5,5,1) 2890/2890 4/2
36 (6,6,1) 2250/1960 4/2
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illustrates that the overall parallel performance is predomi-
nantly influenced by the parallel performance of the solution 
phase. This is due to the relatively insignificant contribu-
tion of the formation time compared to the solution time. 
For instance, considering the results obtained using a sin-
gle processor, the ratio of solution time to formation time 
is 20.0. This implies that the response matrix formation is 
more susceptible to the escalating communication overhead 
resulting from increased processors, compared to the solu-
tion phase. As illustrated in Fig. 8a, the solution speedup 
exhibits a nearly linear growth trend as the number of pro-
cessors increases, while the formation speedup progresses 
at a relatively slower pace. This discrepancy becomes par-
ticularly noticeable when the number of processors rises 
from 12 to 18, where the formation speedup remains almost 
unchanged. Conversely, the efficiency of matrix formation 
experiences a more pronounced decline with an increasing 
number of processors compared to the solution efficiency, 
as depicted in Fig. 8b.

It is worth noting, as observed from Fig. 8b, that the 
solution efficiency actually increases when the number of 
processors transitions from 18 to 25. This improvement in 
efficiency is likely attributed to load balancing. As shown 
in Table 4, when utilizing 18 processors, a significant load 
imbalance exists, with a maximum/minimum number of 
local nodes of 4206/3920. This imbalance leads to some 
processors being underutilized, while others are overloaded. 
However, when the number of processors is adjusted to 25, 
each processor is assigned subdomain with an equal number 
of local nodes. The equal distribution of local nodes among 
processors promotes load balance in the solution process, 
ultimately contributing to enhanced parallel efficiency.

3.2 � JRR‑3 problems

We model the JRR-3 problem to demonstrate the applicabil-
ity of the parallel algorithm to a spatial domain with a more 
complex geometry structure. This problem is constructed 
based on the Japan Research Reactor No.3 (JRR-3) [33, 

34] designed by Japan Atomic Energy Research Institute 
(JAERI). JRR-3 is a water-cooled research reactor using 
plate-type fuels. The geometric representation of the JRR-3 
reactor is illustrated in Fig. 9. The reactor core is composed 
of 26 standard fuel assemblies, 6 follow fuel assemblies 
with neutron absorber, and 5 glory hole assemblies. Sur-
rounding the core is a baffle with a thickness of 1 cm and an 
inner radius of 30.0 cm. Furthermore, there is a 30-cm axial 
reflector located at the top and bottom of the reactor. The lat-
eral geometry of typical assemblies is illustrated in Fig. 10. 
All assemblies have dimensions of 7.72 cm × 7.72 cm. The 
standard fuel assembly comprises 20 evenly arranged fuel 
plates, each with a thickness of 0.076 cm and a length of 
6.16 cm. The follow fuel assembly consists of 16 fuel plates, 
also with a thickness of 0.076 cm, but a shorter length of 4.9 
cm. The absorber assembly incorporates an absorber mate-
rial with a thickness of 0.5 cm. Further detailed parameters 
of assemblies can be found in Ref. [34]. The calculations 
employ seven group macroscopic cross sections, which are 
provided in Ref. [34]. The reference solutions for all the 
cases in this problem were obtained from the MC code RMC 
[35–37]. In the MC calculation using RMC, a simulation of 
10 million particles per batch was performed, with a total 
of 800 batches, of which 300 batches were skipped. The 
statistical deviation of the eigenvalue was 1 pcm.

Fig. 8   (Color online) Parallel 
performance versus number of 
MPI professors for the KAIST 
problem

(a) Speedup (b) Efficiency

Radial cut Axial cut

30
.0

75
.0

30
.0

Fig. 9   (Color online) The geometric diagram of the JRR-3 problem
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3.2.1 � Accuracy comparison

(1) Assembly cases
Adhering to a progressive approach, we initially perform 

calculations for 2D fuel assemblies. We divide the stand-
ard fuel assembly into nodes of 7 × 20, while dividing the 
follow fuel assembly into nodes of 6 × 18, to facilitate the 
comparison of the fission rates of fuel plates, as illustrated 
in Fig. 11. Given the intricate composition of assemblies 
in the JRR-3 problem, a more refined finite-element grid 
is necessitated to accurately represent the geometry within 
each unique node, in contrast to the grids employed in the 
KAIST problem. The size of the finite-element grids is even 
smaller than 0.05 cm, as illustrated in Fig. 12. During the 
calculation, P 11_3 spherical harmonics and 2nd-order poly-
nomials are employed on the lateral interfaces, while retain-
ing the remaining calculation parameters identical to those 
employed in the KAIST problem. Concerning the parallel 

calculation, the fuel assembly is decomposed into 2 × 8 sub-
domains, with each subdomain assigned to an individual 
processor.

Table 5 presents the comparison results of the eigenvalue 
and plate fission rates for the standard fuel assembly and 
follow fuel assembly. It can be observed that using 16 pro-
cessors for computation yields results that closely align with 
the reference results. The eigenvalue error is below 50 pcm, 
and the RMS of plate fission rate percent error is less than 
0.1%. This not only demonstrates the feasibility of HVNM 
in dealing with plate-type fuel assemblies but also confirms 
the correctness of the parallel algorithm.

Figure 13 illustrates the fission rate distribution of the 
fuel plate for the standard fuel assembly and the follow fuel 
assembly. In the standard fuel plates, the fission rates are 
homogenized into 5 sections, while in the follow fuel plates, 
they are homogenized into 4 sections. It can be found that 
the fuel plate segments located near the periphery of the 
assembly exhibit higher fission rates compared to the ones 
located at the center of the assembly.

Fig. 10   (Color online) The lat-
eral geometry of typical assem-
blies in the JRR-3 problem
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Fig. 11   (Color online) The node division scheme for fuel assemblies in the 2D assembly cases of the JRR-3 problem
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(2) Whole-core cases
In the whole-core calculation, the entire reactor is 

divided into 9 × 9 assemblies, with each assembly further 
subdivided into 7 × 20 nodes. Both 2D and 3D whole-core 
cases are examined. In the 3D calculation, the axial direc-
tion is divided into 45 layers, each with a height of 3 cm. 
The spatial and angular expansion schemes for the whole-
core calculation are listed in Table 6. All other calculation 

parameters remain the same as those used in the KAIST 
problem.

Table 7 presents the comparison results for the eigen-
value and axially integrated assembly fission rates. In the 
2D and 3D whole-core cases, the eigenvalue errors are − 56 
pcm/− 90 pcm, and the RMS of fission rate percent error is 
0.54%/0.65%, respectively. These results indicate the high 
accuracy achieved through the parallelization of HVNM.

Figure 14 illustrates the normalized fission rate distri-
bution of the assemblies, excluding the assemblies in the 
reflector region. It can be observed that the fuel assemblies 
positioned at the central region of the core display higher 
fission rates compared to the assemblies located at the 
periphery of the core. Figure 15 illustrates the error dis-
tribution of the assembly fission rates, with an error range 
of −0.94% to 1.72%. The maximum error is observed in 
the assembly near the reflector region.

3.2.2 � Parallel performance analysis

The 3D whole-core case is more capable of demonstrat-
ing the superiority of the parallel algorithm due to the 

Fig. 12   (Color online) The 
finite-element grids for a follow 
fuel assembly in the 2D assem-
bly cases of the JRR-3 problem
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Table 5   Comparison of results for the 2D assembly cases of the 
JRR-3 problem

Assembly type Standard fuel Follow fuel
assembly assembly

Number of processors 16 16
Eigenvalue 1.43143 1.32202
Eigenvalue error (pcm) 22 44
Fission rate error (%) RMS 0.04 0.07

MAX 0.12 0.20
AVG 0.03 0.05
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significantly larger computational workload compared to 
the assembly cases and 2D whole-core cases; this is evident 
from the results presented in Table 8. As shown in Table 8, 
the total number of spatial-angular degrees of freedom 
for the 3D whole-core case exceeds 10 million, posing a 
significant challenge for the computational resources and 
indicating the necessity of employing a parallel algorithm 
for 3D whole-core calculations. Consequently, this section 
focuses on analyzing the performance of the parallel algo-
rithm specifically for the 3D whole-core case. Furthermore, 

considering the computational memory and time constraints 
associated with performing 3D whole-core calculations 
using a single processor, the results with 36 processors are 
taken as the baseline for evaluating the parallel performance. 
Accordingly, the definition of speedup and efficiency is 
adjusted to

where T36 represents run time with 36 processors.
The comparative results regarding the computational 

effort and parallel performance, employing 36, 60, and 
144 processors, are presented in Table 9. In all cases, 
the calculations are performed using an equal number of 
compute nodes, specifically 12, to minimize the impact of 
inter-node communication on parallel performance. It is 
observed that the parallel algorithm demonstrates efficient 
acceleration and parallel efficiency. Additionally, the paral-
lel performance exhibits a similar trend to that observed in 

(14)
Sp ≈

T36

Tp

�p =
Sp ⋅ 36

P

Fig. 13   (Color online) Normal-
ized fission rate distribution of 
the fuel assemblies for the 2D 
assembly cases of the JRR-3 
problem

1.0838 1.0200 1.0051 1.0200 1.0838
1.0626 0.9985 0.9838 0.9985 1.0626
1.0497 0.9852 0.9707 0.9852 1.0497
1.0413 0.9769 0.9624 0.9769 1.0413
1.0357 0.9714 0.9569 0.9714 1.0357
1.0317 0.9677 0.9532 0.9677 1.0317
1.0290 0.9653 0.9508 0.9653 1.0290
1.0271 0.9637 0.9492 0.9637 1.0271
1.0260 0.9627 0.9482 0.9627 1.0260
1.0255 0.9622 0.9478 0.9622 1.0255
1.0255 0.9622 0.9478 0.9622 1.0255
1.0260 0.9627 0.9482 0.9627 1.0260
1.0272 0.9637 0.9492 0.9637 1.0272
1.0290 0.9653 0.9508 0.9653 1.0290
1.0318 0.9677 0.9532 0.9677 1.0318
1.0357 0.9714 0.9569 0.9714 1.0357
1.0414 0.9769 0.9624 0.9769 1.0414
1.0496 0.9852 0.9707 0.9852 1.0496
1.0626 0.9985 0.9838 0.9985 1.0626
1.0837 1.0200 1.0051 1.0200 1.0837

(a) Standard fuel assembly (b) Follow fuel assembly

1.1152 1.0624 1.0624 1.1152
1.0720 1.0097 1.0097 1.0719
1.0449 0.9757 0.9756 1.0449
1.0272 0.9534 0.9533 1.0272
1.0154 0.9387 0.9387 1.0154
1.0077 0.9293 0.9293 1.0076
1.0030 0.9238 0.9237 1.0029
1.0008 0.9212 0.9211 1.0007
1.0007 0.9212 0.9211 1.0007
1.0030 0.9238 0.9237 1.0029
1.0077 0.9293 0.9293 1.0076
1.0154 0.9387 0.9387 1.0154
1.0272 0.9534 0.9533 1.0272
1.0449 0.9757 0.9756 1.0449
1.0720 1.0097 1.0097 1.0719
1.1152 1.0625 1.0624 1.1152

Table 6   Spatial and angular 
expansion scheme for the 
whole-core case of the JRR-3 
problem

Calculation parameters Value

2D 3D

Whole core Whole core

Volume spatial expansion in x-y Quadrilateral finite elements
Surface spatial expansion in x/y Second-order polynomials
Volume angular integrals 25 × 25 SLC cubature
P
N

 order on the lateral interfaces P11_3

Volume spatial expansion in z – Second-order polynomials
Surface spatial expansion in z – 1 piecewise constant
P
N

 order on the axial interfaces – P5_3

Table 7   Comparison results for the whole-core cases of the JRR-3 
problem

Case 2D whole-core 3D whole-core

Number of processors 80 88
Eigenvalue 0.92157 0.88133
Eigenvalue error (pcm) −56 −90
Fission rate error (%) RMS 0.54 0.65

MAX 1.42 1.72
AVG 0.37 0.47
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the KAIST problem as the number of processors increases. 
The total computation time decreases from 1.24 h using 
36 processors to 0.40 h using 144 processors, yielding a 
speedup of 3.09. The overall efficiency stands at 95.42% 
and 77.14% using 60 and 144 processors, respectively. The 
underlying reasons for this trend are extensively discussed 
in Sect. 3.1.2 and will not be reiterated here. However, in 
contrast to the KAIST problem, the JRR-3 problem has a 
lower proportion of solution time. For instance, with 36 

processors, the formation time accounts for 93% of the 
total time in the KAIST problem, while in the JRR-3 prob-
lem, it constitutes only 65%. Consequently, the solution 
efficiency of the JRR-3 problem exerts a comparatively 
less dominant influence on the overall efficiency when 
compared to the KAIST problem.

Fig. 14   (Color online) Normal-
ized fission rate distribution 
of the whole-core cases in the 
JRR-3 problem

(b) 3D whole-core(a) 2D whole-core

Fig. 15   (Color online) Fission 
rate error distribution of the 
whole-core cases in the JRR-3 
problem

(b) 3D whole-core(a) 2D whole-core

Table 8   Comparison of computational workload for the JRR-3 prob-
lem

Case Assembly 2D whole-core 3D whole-core

Number of nodes 140 11,340 510,300
Number of unique 

nodes
9 281 356

Number of matrix sets 63 1,967 2,492
Number of spatial-

angular degrees of 
freedom

9,870 367,983 10,656,870

Table 9   Comparison of computation effort and parallel performance 
for the 3D whole-core case of the JRR-3 problem

Number of processors 36 60 144

Formation time (h) 0.44 0.29 0.16
Solution time (h) 0.80 0.49 0.24
Total time (h) 1.24 0.78 0.40
Formation speedup – 1.52 2.73
Solution speedup – 1.63 3.33
Overall speedup – 1.59 3.09
Formation efficiency (%) – 91.47 68.16
Solution efficiency (%) – 97.74 83.13
Overall efficiency (%) – 95.42 77.14
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4 � Conclusion

In this paper, we introduce an efficient parallel algorithm 
for HVNM within an MPI framework. The accuracy and 
efficiency of the parallel algorithm for HVNM are veri-
fied using the representative heterogeneous neutron trans-
port problems, KAIST and JRR-3. In the KAIST problem, 
which encompasses a large spatial domain, the numerical 
results using multiple processors align perfectly with those 
obtained from the serial calculation, thus confirming the 
accuracy of the parallel algorithm. Meanwhile, a signifi-
cant reduction in total computation time is achieved utiliz-
ing the parallel algorithm, decreasing from 16.64 h using a 
single processor to only 0.67 h using 36 processors, result-
ing in a speedup of 24.66. The efficiency achieved with 36 
processors amounts to 68.51%. In the 3D whole-core case 
of the JRR-3 problem, the parallelization HVNM results 
in an eigenvalue error of -90 pcm and an RMS error of the 
fission rate of 0.66% compared to the results obtained from 
the MC MG calculation; this signifies the effectiveness 
of HVNM in addressing the neutron transport problems 
involving mm-level finite-element grids. Additionally, the 
parallel calculation using 144 processors achieves an over-
all speedup of 3.09 and an overall efficiency of 77.14% 
compared with the results obtained with 36 processors, 
thus verifying the efficient acceleration and efficiency of 
the parallel algorithm.

Currently, the parallel algorithm has not achieved the 
desired scaling. Future endeavors will concentrate on 
improving the parallel efficiency of the algorithm. For 
matrix formation, one potential approach is to have each 
MPI processor store only the matrix sets corresponding to 
its subdomain, rather than storing the global matrix sets. 
This approach not only reduces the size of communica-
tion data and the amount of communication, resulting in 
decreased communication time but also minimizes unnec-
essary memory consumption.

Additionally, separating the matrix formation and solu-
tion segments of the process to allow for different num-
bers of processors in each segment could be considered in 
future investigations. Furthermore, a performance analysis 
of the parallel algorithm will be performed for the trans-
port problems that incorporate burnup, where each node in 
the problem domain represents a unique node. This analy-
sis will provide insights into the algorithm’s efficiency in 
handling such problems.
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