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Abstract
The distribution of the nuclear ground-state spin in a two-body random ensemble (TBRE) was studied using a general clas-
sification neural network (NN) model with two-body interaction matrix elements as input features and the corresponding 
ground-state spins as labels or output predictions. The quantum many-body system problem exceeds the capability of our 
optimized NNs in terms of accurately predicting the ground-state spin of each sample within the TBRE. However, our NN 
model effectively captured the statistical properties of the ground-state spin because it learned the empirical regularity of 
the ground-state spin distribution in TBRE, as discovered by physicists.

Keywords Neural network · Two-body random ensemble · Spin distribution of nuclear ground state

1 Introduction

The atomic nucleus is a complex many-body quantum sys-
tem. Conventionally, a many-body Hamiltonian or Lagran-
gian must be constructed based on reliable interactions to 
investigate this complex system. However, such a task is 
usually challenging, as the interactions in many-body prob-
lems are strongly entangled with the structures. Thus, the 
self-consistency requirement under a certain ansatz leads to 
a vague or inaccurate many-body Hamiltonian. Fortunately, 
if only the regularity and robust properties of many-body 
systems that are independent of the interaction details are 
required, the vagueness of the Hamiltonian provides an alter-
native perspective, with random numbers as parameters of 
nuclear interactions, that is, by using random interactions to 
statistically probe the robust regularity of nuclei.

The study of random interactions can be traced back to 
the investigation of Wigner’s random matrix theory (RMT) 
[1], where random numbers were used as the matrix ele-
ments of the many-body Hamiltonian. The diagonalization 
of these random matrices yields spectral statistical properties 
that agree with experimental data. The spectral properties of 
the RMT were further linked to quantum chaos [2]. In the 
1970s, Wong, Bohigas, et al. [3–5] randomized the two-body 
interaction matrix elements in shell-model calculations [6, 7] 
to quantitatively demonstrate the phenomenon of quantum 
chaos in nuclei [5, 8–11]. The shell-model calculations with 
random interactions generate an ensemble of virtual nuclei, 
which is known as the two-body random ensemble (TBRE). 
A study based on TBRE revealed that certain robust features 
of nuclei may be independent of the specific details of the 
interaction.

Following this ensemble, Johnson, Bertsch, et al. [12, 
13] reported a series of robust and interaction-independent 
statistical properties of low-lying states in nuclei. A signifi-
cant finding was the “predominance of the spin-zero ground 
state” in even–even nuclei. Even–even nuclei exhibited a 
considerably higher probability of having spin-zero ground 
states compared to the fraction of spin-zero configurations 
in the entire shell-model space. Subsequently, this phenom-
enon was observed in the interacting boson model (IBM) 
[14–16]. The spin-zero ground states of even–even nuclei 
are conventionally attributed to the short-range nature of the 
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nuclear force. However, in the TBRE, the interactions are 
entirely random and no specific force was predominant. The 
predominance of the spin-zero ground state in the TBRE 
contradicts the conventional understanding of how spin-
zero ground states emerge from even–even systems. There-
fore, considerable effort has been devoted to understand-
ing this robust property of TBRE, which has proved to be 
significantly challenging and reflects the complexity of the 
quantum many-body problem. Phenomenological attempts 
include the studies of the distribution of the lowest eigenval-
ues for each spin [14] and its width [17], geometric chaos of 
spin coupling [18], maximum and minimum diagonal matrix 
elements [19], IBM limit of spin distribution in the IBM 
with TBRE [20–22], wave function properties of different 
spin ground states [23, 24], energy scale features of different 
spin ground states [25], and correlation between the proba-
bility of spin-zero ground states and the central values of the 
distribution of two-body matrix elements [26]. The probabil-
ity distributions of various spin states as ground states must 
be mathematically calculated to explain this phenomenon. 
However, nuclear models are typically nonlinear systems, 
which are difficult to apply to statistical theories. Therefore, 
several empirical rules have been proposed to predict the 
probability distribution of ground-state spins. For example, 
Kusnezov et al. used the random polynomial method [24] to 
a priori determine the probability distribution for sp bosons 
and obtained results that were consistent with those obtained 
by Bijker et al. using mean-field methods [21, 22]. Chau 
et al. discussed the cases of d boson systems and four fermi-
ons in the f7∕2 shell, demonstrating the correlation between 
specific ground states and the geometric shapes determined 
by nuclear observables, and predicting the probabilities for 
the ground-state spin [27]. Zhao et al. suggested that the 
spins of ground states in the TBRE may be associated with 
specific two-body interaction matrix elements and thus pro-
posed an empirical approach [28] to predict the distribution 
of ground-state spins. The correlation between the ground-
state spin and two-body interaction matrix elements in this 
empirical approach is also crucial in our work.

Because the nonlinearity of the nuclear model is too 
complex to overcome, one can take an indirect approach to 
explain the origin of the predominance of spin-zero ground 
states. This can be achieved by using a sufficiently simple 
nonlinear to simulate the behavior of the shell model and 
studying the spin determination mechanism therein, which 
may provide more insight from a different perspective. The 
neural network (NN) model is a potential candidate for 
such simulations owing to its powerful learning, predic-
tion, and adaptation capabilities, which have been success-
fully applied in diverse fields such as language translation, 
speech recognition, computer vision, and even complex 
physical systems [29–32]. Specifically, NN models have 

been extensively used in nuclear structure studies to predict 
unknown nuclear properties using existing experimental 
data. These properties include the mass [33–35], charge radii 
[36, 37], low-lying excitation spectra [38, 39], and � decay 
lifetimes [40]. However, most of these studies only utilized 
the fitting capacity of the NN without fully exploring its 
classification capability for nuclear structure research.

In this study, we attempted to distinguish between sam-
ples with different ground-state spins in the TBRE by adopt-
ing the classification capability of an NN with supervised 
learning. The adopted NN was trained using the interaction 
matrix elements from the TBRE samples as features and 
the ground-state spin as the label. In this process, the NN 
learnt the behavior of the ground-state spin in the TBRE, as 
well as the specific correlations between the interaction ele-
ments and ground-state spin, as described in the empirical 
approach [28]. A significant advantage of using the NN in 
the TBRE study lies in the ability of the TBRE to provide 
nearly infinite independent samples for NN training, thereby 
avoiding overfitting. This enhanced the generalization ability 
of the NN and facilitated the simulation of the shell-model 
production of the ground-state spin. We present the perfor-
mance of the NN in predicting the ground-state spins and 
reproducing their distribution in the TBRE. The proposed 
NN architecture may serve as a valuable benchmark for other 
classification-based applications.

2  Model framework

2.1  Two‑body random ensemble (TBRE)

In the TBRE, the nuclear Hamiltonian includes only two-
body interactions and is expressed as follows:

In Eq. (1), GJ
j1j2;j3j4

 represents the matrix elements of the two-
body interaction; A†

J

(
j1j2

)
 denotes the creation operator of 

the nucleon pair with two nucleons on the j1 and j2 orbits 
coupled to total angular momentum J; and AJ
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)
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sents the annihilation operator of the nucleon pair.
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to maintain the invariance of the statistical distribution of 
interaction matrix elements during an arbitrary single-par-
ticle transformation.

2.2  Classification neural network

The classification model presented in this paper utilizes an 
NN, which consists of an input layer, one or more hidden lay-
ers, and an output layer. The structure is illustrated in Fig. 1, 
(with one hidden layer shown as an example). The input layer 
receives the matrix elements of the two-body interactions in 
the shell model, specifically the GJ

j1j2;j3j4
 values in Eq. (1), 

where the number of inputs is equal to the number of inde-
pendent two-body interaction matrix elements in a specific 
shell-model space. Based on the corresponding input interac-
tions, the output layer provides the probabilities of different 
spin states being the ground state. The number of outputs 
should equal the number of possible ground-state spins. The 
activation function used in this model was the rectified linear 
unit (ReLU) function [41], which is explained in Table 2. 
Assuming that the vector x⃗ =

{
xi
}
 represents the network 

input, that is, G two-body interaction matrix elements in Eq. 
(1), and y⃗ is the network output, whose elements correspond 
to the probability of each spin being the ground-state spin, the 
relationship (with one hidden layer) can be expressed analyti-
cally as follows:

Here, �⃗� = {ak, bkj, cj, dji} denotes the NN parameter vector.
The output layer introduces the softmax function [42], 

which transforms the unnormalized output values into non-
negative probability values whose sum is one.

(3)�2 =
1

2

(
1 + �j1j3�j2j4

)
,

(4)yk(x⃗; �⃗�) = ak +
∑
j

bkjReLU
(
cj +

∑
djixi

)
.

(5)Pk = Softmax(y⃗)��k = eyk∑
k e

yk
.

This operation preserves the differentiability property of the 
model and the relative order of unnormalized output values. 
It also allows the model output to be interpreted as a prob-
ability for each class, facilitating the direct interpretation and 
utilization of these probabilities for classification decisions. 
Therefore, they are frequently employed in NN models to 
solve classification problems. Here, Pk is the probability that 
the kth spin is the ground-state spin. Thus, the maximum of 
Pk determines the ground-state spin according to the x⃗ fea-
ture. All the elements Pk construct the predicted probability 
P⃗ from the NN model.

To train the NN model, we first prepared a training set con-
sisting of N samples, D =

{(
x⃗1, S1

)
,
(
x⃗2, S2

)
,… ,

(
x⃗N , SN

)}
 

out of ∼100,000 shell-model calculations. Here, x⃗i includes 
two-body interaction matrix elements in a single shell-model 
calculation, while Si is the corresponding ground-state spin 
obtained from such a shell model. Secondly, for each Si spin, 
we created the label ̂⃗Pi vectors, which is a hot-one vector, 
and only include one nonzero elements of value “1,” corre-
sponding to a 100% probability of Si ground-state spin, and 
0% probabilities of the rest other spins. Third, we defined the 
loss function to evaluate the similarity between the label ̂⃗Pi 
vector and the NN predicted P⃗i vector from Eq.   (5).

which is a common loss function for training an NN model 
for classification problems. Using the training samples and 
corresponding loss function, we trained our network by 
adjusting the network parameter vector �⃗� with the adaptive 
moment estimation (Adam) optimization algorithm [43] to 
minimize the sum of the loss functions for all training sam-
ples. Consequently, an NN model with predictive capabili-
ties was developed.

2.3  Shell‑model spaces

We performed approximately 100,000 TBRE calculations 
in six model spaces. These included four valence nucleons 
in the f7∕2 orbital of the virtual nucleus (simply expressed 
as (f7∕2)4 ), four valence nucleons in the h11∕2 orbital virtual 
nuclear ( (h11∕2)4 ), and two, four, and six valence neutrons in 
the sd shell (corresponding to 18Ne, 20Ne, and 22 Ne nucleus, 
respectively), and six valence neutrons in the pf shell ( 46 Ca 
nuclear). These six model spaces represent various levels of 
many-body complexity.

In the (f7∕2)4 space, the eigenvalues from the shell model 
are simple linear combinations of the two-body interaction 
matrix elements, as shown in Eq. (1.81) [44]. The ground-
state spin corresponds to the lowest eigenvalue associated 
with a specific spin. An NN without a hidden layer cor-
responds to linear combinations of the input two-body 

(6)L(P⃗i,
̂⃗
P
i) = −

∑
P
i

m
log P̂i

m
,

Fig. 1  Schematic of the adopted NN classification model
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interaction matrix elements, followed by the application of 
the softmax operation to identify the smallest linear combi-
nations. Both models employ similar calculation processes 
to determine the ground-state spin, where the weight param-
eters. Thus, dji parameters in Eq. (4) in the NN correspond to 
the cfp coefficients [44] in the shell model, and the softmax 
input to the NN is equivalent to the energy eigenvalues of 
the shell model. Because a hidden layer complicates the NN 
model and violates the correspondence between the NN and 
shell models, we excluded the hidden layer in our NN model 
for the (f7∕2)4 space.

For the (h11∕2)4 and 18 Ne spaces, the complexity increases 
beyond the (f7∕2)4 space. Some eigenvalues remain linear 
combinations of two-body interaction matrix elements, 
whereas others must be obtained through diagonalization. 
Although some diagonalization processes with fewer than 
5 are analytical, the weight parameters dji can no longer 
be related to cfp coefficients. Therefore, hidden layers can 
enhance the adaptability of NN models to nonlinear diago-
nalization [45]. In the 20, 22 Ne and 46 Ca spaces, the relation-
ship between the eigenvalues and cfp coefficients is com-
pletely nonlinear. The transcendental nature of some of these 
relationships further necessitates hidden layers. Table 1 pre-
sents the TBRE sample sizes and input–output settings of 
our NN models for different spaces.

2.4  Optimization of the network architecture

For the (f7∕2)4 space, the shell-model eigenvalues were linear 
combinations of two-body interaction matrix elements and 
the softmax input in the NN model. Therefore, both models 
employed similar calculation processes for determining the 
ground-state spin. As mentioned in Sect. 2.3, hidden layers 
were not required. In fact, an NN model without a hidden 
layer has already predicted ground-state spins in the (f7∕2)4 
space with up to 98% accuracy.

For the (h11∕2)4 space, because certain eigenvalues dis-
played nonlinear correlations with the two-body interaction 

matrix elements, incorporating hidden layers into the model 
was essential for enhancing the prediction accuracy. We first 
added one hidden layer and empirically selected 64 hidden 
nodes for the test run. The results demonstrated an accuracy 
of 97%, which was a satisfactory outcome.

For the remaining four spaces, the arbitrary accura-
cies were not always optimal. Therefore, we attempted to 
improve the prediction accuracy of our NN classification 
model by including more hidden layers and increasing the 
number of neural nodes in the 18Ne, 20Ne, 22Ne, and 46 Ca 
model spaces.

First, the prediction accuracy improved when the number 
of neural nodes was doubled, as indicated by the difference 
between the prediction accuracies with N/2 and N neural 
nodes, as shown in Fig. 2. The absence of negative differ-
ences (Fig. 2) suggests that doubling the number of neural 
nodes consistently improves results, as expected. Further-
more, the differences reached a peak when N = 32 for all 
four model spaces. For N > 32 , the prediction accuracy 
improved by only 0 ∼ 2 %. Considering that more nodes 
entail additional computational overhead, we believe that 32 
nodes may be an optimal and balanced choice for this study.

Furthermore, we investigated the impact of hidden layers 
on the prediction accuracy. By employing 32 neural nodes 
in each layer, as shown in Fig 2, we present the difference in 
prediction accuracy between networks with n − 1 and n hid-
den layers against the layer number n in Fig 3 for the 18Ne, 
20Ne, 22Ne, and 46 Ca model spaces. The accuracy improved 
significantly with a single hidden layer, that is, n = 1 . How-
ever, these improvements diminished with the introduction 
of additional layers. Because additional layers also consume 

Table 1  Input–output settings 
for the six model spaces

The input and output numbers 
correspond to the number of 
two-body interaction matrix ele-
ments and the number of possi-
ble ground-state spins, respec-
tively

Model space Input Output

(f
7∕2)

4 4 5
(h

11∕2)
4 6 10

18Ne 30 5
20Ne 30 7
22Ne 30 8
46Ca 94 13

Fig. 2  (Color online) Difference in the prediction accuracies of mod-
els employing N/2 and N neural nodes for 18Ne, 20Ne, 22Ne, and 46 Ca 
model spaces with a single hidden layer. Thirty-two nodes are recom-
mended
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computational resources, a single hidden layer may be the 
optimal choice.

Activation functions [46] play a crucial role in NNs by 
learning abstract features via nonlinear transformations. 
Common activation functions are the sigmoid (also called 
the logistic function), tanh (hyperbolic tangent), and ReLU 
functions. Table 2 presents the impact of different activation 
functions on the prediction accuracy of our NN model. The 
tanh and ReLU functions exhibit similar model prediction 
accuracies for the five model spaces. However, because the 
tanh activation function includes an exponential operation, 
the computational overhead may be larger; therefore, we 
used the ReLU function throughout this study.

In summary, the optimal network configuration for the 
18Ne, 20Ne, 22Ne, and 46 Ca model spaces considered in our 
analysis comprised one hidden layer with 32 ReLU neural 
nodes.

3  Results and analysis

3.1  Model comparison

As shown in Fig. 1, we adopted a fully connected NN model. 
However, considering the recent application of Bayesian 
NNs (BNNs) in nuclear physics [33, 34, 37, 39] and the 
great success of convolutional NNs [47–50] (CNN) and 
recurrent NNs [51–53] (RNN), we compared these four 
networks in terms of accuracy, as shown in Fig 4.

The BNN was implemented via Bayesian sampling of 
weights and biases facilitated by a variational inference algo-
rithm to optimize model training. The model adopted 1000 
iterations to update loss and accuracy. During the prediction 
process, we sampled 1000 times to obtain precise probability 
prediction results. The CNN included a convolutional, pool-
ing, fully connected, and softmax layers. In particular, in the 
convolutional layer, the input channel was the number of 
input features, and the output channel was defined as 16. The 
convolution kernel size was specified as three to facilitate 
feature extraction. Subsequently, in the pooling layer, the 
pooling kernel size and step size were set to two to reduce 
the dimensions of the feature map. The fully connected layer 
mapped the features extracted by the convolutional layer to 
the final classification result based on the feature dimensions 
and category counts of the task. The model parameters were 
adjusted and iteratively optimized throughout the construc-
tion process to ensure effective feature extraction and clas-
sification. A remarkable characteristic of the RNN is its abil-
ity to continuously transmit and share information through 
recurrent connections. In addition, the network calculation 

Fig. 3  (Color online) Difference between the prediction accuracies of 
networks employing n and n − 1 hidden layers for the 18Ne, 20Ne, 22
Ne, and 46 Ca model spaces. Thirty-two neural nodes in each hidden 
layer are recommended, as in Fig 2. A single hidden layer is recom-
mended

Table 2  Prediction accuracy (%) with three different activation func-
tions, namely sigmoid, tanh, and ReLU

All the calculations are performed with a single 32-node hidden layer 
NN model

Activation function (h
11∕2)

4 18Ne 20Ne 22Ne 46Ca

Sigmoid 95.36 79.21 66.95 77.22 55.34
Tanh 96.15 85.10 67.69 78.39 55.67
ReLU 96.69 86.36 67.88 78.62 55.62 Fig. 4  (Color online) Prediction accuracies with different NN models. 

We adopt the classic fully connected NN as demonstrated in Fig. 1. 
BNN stands for Bayesian NN; CNN for convolutional NN; RNN for 
recurrent NN
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process defines the forward propagation function, which 
encompasses the output generated after the input calcula-
tion and subsequent prediction through the fully connected 
layer and softmax function. All four models, including the 
adopted classic softmax model, shared consistent param-
eters, including a training-to-test set ratio of 2:1, a learning 
rate of 0.01, over 1000 training epochs, and the use of the 
ReLU activation and Adam optimization functions.

According to Fig. 4, the CNN performs the worst, while 
the accuracies of both BNN and RNN are similar to that of 
the adopted network. However, the adopted networks had 
faster training speeds and required fewer computational 
resources. Therefore, we believe that the adopted network 
was the optimal choice for our study.

3.2  Feature selection

Feature selection is crucial in machine learning and data 
analysis because it enhances model performance, mitigates 
the risk of overfitting, boosts computational efficiency, 
streamlines model interpretation, and addresses problems 
related to noise and redundant information. This involves 
conducting a correlation analysis to assess the relationship 
between each feature and target variable. Subsequently, the 
features exhibiting a strong correlation with the target vari-
able are selected, whereas the others are excluded from fur-
ther training. Considering the nonlinear nature of both our 
feature and label data, we utilized the Spearman correlation 
coefficient � [54] for feature selection as

where di and n represent the difference in the rank values 
of the ith data pair and total number of observed samples, 
respectively.

We calculated the � coefficients for four high-dimensional 
model spaces, namely 18∼22 Ne and 46 Ca model spaces, and 
used different threshold sizes to select input features with 
strong correlation. Only features with � values greater than 
the threshold were retained for further training. In Table 3, 
we list the number of elements of the two-body matrix, that 
is, the number of input features over a certain threshold, and 
the corresponding accuracy.

According to Table 3, the number of inputs after fea-
ture selection decreases with increasing threshold values, 
as anticipated. However, this reduction in the input number 
implies declining performance. Consequently, each input 
two-body matrix element within the four model spaces sig-
nificantly affects the output, and thus, the exclusion of any 
of these from network training is not recommended.

(7)� = 1 −
6
∑

d2
i

n
�
n2 − 1

� ,

3.3  Accuracy

Figure 5 presents the evolution of the loss function during 
training. As expected, the loss functions of the six model 
spaces converge, indicating that the network parameters 
are optimal. The loss values of two single-j model spaces, 
namely (f7∕2)4 and (f11∕2)4 , decrease the most dramatically 
because the single-j spaces are simpler than the other 4 mod-
els. Furthermore, 46Ca, 20Ne, 22Ne, and 18 N all converge with 
large loss values, corresponding to the unsatisfactory accu-
racy described in Table 4. Thus, increasing the number of 
training epochs does not improve the accuracy.

Table 4 shows the correlation between the prediction 
accuracy (%) of the NN for the ground-state spin and the 

Table 3  Model accuracies (%) and input numbers under different fea-
ture selection thresholds

Threshold 0 indicates no feature selection

Threshold 0.1 0.01 0.001 0

18Ne
 Accuracy 70 77 85 86
 Input number 5 14 28 30

20Ne
 Accuracy 60 65 66 68
 Input number 6 17 25 30

22Ne
 Accuracy 71 74 76 80
 Input number 4 16 25 30

46Ca
 Accuracy 53 56 56 56
 Input number 1 30 80 94

Fig. 5  (Color online) Evolution of the loss functions during training



Neural network study of the nuclear ground‑state spin distribution within a random interaction… Page 7 of 12 64

dimensions of the six model spaces under investigation. The 
shell-model eigenvalues of the (f7∕2)4 space are linear combi-
nations of two-body interaction matrix elements; therefore, 
the NN model is equivalent to linear regression and achieves 
high prediction accuracy of up to 98%. The accuracy is 97% 
for the (h11∕2)4 space with one hidden layer; however, some 
eigenvalues in the (h11∕2)4 space exhibit nonlinear relation-
ships with the two-body interaction matrix elements.

For the remaining four spaces, the accuracy decreased 
significantly with increasing dimensions. We obtained a 
Pearson correlation coefficient [55] of − 0.753 between the 
prediction accuracy (%) and dimensions on a logarithmic 
scale, indicating a negative correlation between the two vari-
ables. As the dimensions of the space and the shell com-
plexity increased, the ability of the NN model to predict the 
ground-state spin diminished. As shown in Figs. 2 and 3, 
introducing additional hidden layers or neural nodes does 
not significantly improve the performance of general clas-
sification NNs. Thus, to accurately predict the ground-state 
spin in the TBRE, the generalization capability of the NN is 
strongly challenged by the complexity of the quantum many-
body system, and a more specialized NN architecture and 
activation function should be designed according to the cfp 
coefficient property and diagonalization process.

To obtain a more detailed picture of the prediction perfor-
mance of the NN model for TBRE samples with a specific 
spin, Fig. 6 presents the confusion matrix for the NN models 
of the six model spaces. In the confusion matrices, the y- and 
x-axes represent the ground-state spin predicted by the NN 
( INN ) and that obtained from the shell-model calculations 
( ISM ), respectively. The gray scale indicates the probability 
of the shell-model calculation yielding a ground-state spin 
of ISM in the samples for which the NN predicts a ground-
state spin of INN . The main diagonal of the confusion matrix 
appears predominantly dark, indicating a reasonably high 
degree of consistency between the NN and shell model for 
a specific ground-state spin. From a statistical perspective, 
the NN captures some correlations between the ground-state 
spin and two-body interaction matrix elements of the TBRE.

The data in Table 4 indicate that the prediction accuracy 
for the ground-state spin of the 20 Ne nucleus is lower than 
that for higher-dimensional 22Ne. This finding is consistent 
with the observations shown in Fig. 6. Specifically, for 20
Ne, the difference in colors between the main diagonal and 
other regions is less pronounced than in other nuclei. This 
suggests that the prediction of the ground-state spin in 20 Ne 
space poses greater challenges to the NN, which may be 
related to some special properties of the cfp coefficients of 

Table 4  Model space dimensions, prediction accuracy of the NN, and consistent rate of the G − I correlations between the SM and NN (see 
Sect. 3.4 for definition)

Model space (f
7∕2)

4 (h
11∕2)

4 18Ne 20Ne 22Ne 46Ca

Dimension 8 23 14 81 142 3952
Accuracy (%) 98 97 86 68 80 56
Consistency (%) 100 100 100 60 80 74

Fig. 6  Confusion matrices for 
predicting the ground-state 
spin using the NN model in the 
(f
7∕2)

4 , (h
11∕2)

4 , 18Ne, 20Ne, 22Ne, 
and 46 Ca TBRE calculations. 
The y- and x-axes represent 
the ground-state spin predicted 
by the NN ( I

NN
 ) and that 

obtained from the shell-model 
calculations ( I

SM
 ), respectively. 

The gray scale represents the 
probability of the shell-model 
calculation yielding a ground-
state spin of I

SM
 in the samples 

for which the NN predicts a 
ground-state spin of I

NN
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20Ne. Further exploration of specific multibody complexity 
features in 20 Ne space is desirable.

To further evaluate the statistical performance of the NN 
model, Fig. 7 presents the distribution of ground-state spins 
I ( PI ) obtained using both the shell model and the well-
trained NN model with random interactions. The NN model 
is consistent with the shell model for all model spaces and 
partially succeeds in capturing the robust statistical proper-
ties of the TBRE.

3.4  G − I correlation

To predict PI in TBRE, Zhao et al. proposed a general empir-
ical approach [19]. In their approach, one of the two-body 
interaction matrix elements was set to − 1, whereas the rest 
were set to 0. This interaction was then input into the shell 
model, and the output ground-state spin I was recorded. If N 
independent two-body interaction matrix elements existed in 
the model space, the process was repeated N times, setting 
a different matrix element equal to -1 each time. Finally, the 
number of times the spin I was observed as the ground-state 
spin in N numerical experiments was represented as NI . The 
probability of spin I in the ground state was then estimated 
as follows:

The empirical approach [19] attributes the “specific spin 
I as the ground-state spin” to a few two-body interaction 
matrix elements. If there are more two-body interaction 
matrix elements responsible for the spin I = 0 , the empiri-
cal rule provides a phenomenological explanation for the 
dominance of the ground state with zero spin.

(8)PI = NI∕N.

Note that the empirical approach hints at the correlation 
between the two-body interaction matrix elements and 
ground-state spin, and its correlation determines the ground-
state spin distribution, as shown in Fig. 7. Thus, the NN 
model with a good prediction of the TBRE ground-state spin 
distribution should also produce a similar correlation 
between the two-body interaction matrix elements ( GJT

j1j2;j3j4
 ) 

and ground-state spin (I) as the shell model. Therefore, the 
element spin ( G − I ) correlations in the shell model must be 
compared with those in the NN model.

In Tables 5, 6, and 7, the G − I correlations between the 
two-body interaction matrix elements ( GJ

j1j2;j3j4
 defined in Eq. 

(1)) and the ground-state spin (I), obtained from the empiri-
cal approach applied to both the shell and NN models, are 

Fig. 7  (Color online) Distribu-
tion of the ground-state spin I 
( P

I
 ) for (f7∕2)4 , (h11∕2)4 , 18Ne, 20

Ne, 22Ne, and 46Ca. The black 
square and red circle represent 
the P

I
 obtained from shell-

model calculations with random 
interactions and that predicted 
by the NN model, respectively. 
The blue triangle and olive star 
represent the P

I
 obtained with 

the empirical approach [28] 
applied to the shell model and 
NN model, respectively

Table 5  Ground-state spin (I) from the shell and NN models for 
the (f

7∕2)
4 and (h

11∕2)
4 model spaces, with input GJ = −1 for some 

specific J, and other GJ s equal to 0. Here, GJ denotes the two-body 
interaction matrix element GJ

jj;jj
 , as defined in Eq. (1). This table 

summarizes the correlation between the two-body interaction matrix 
elements and ground-state spin in the empirical approach

GJ (f
7∕2)

4 (h
11∕2)

4

SM NN SM NN

G
0 0 0 0 0

G
2 4 4 4 4

G
4 2 2 0 0

G
6 8 8 4 4

G
8 8 8

G
10 16 16



Neural network study of the nuclear ground‑state spin distribution within a random interaction… Page 9 of 12 64

listed for the (f7∕2)4 and (h11∕2)4 model spaces, Ne isotopes, 
and 46Ca, respectively.

According to Table 5, in the (f7∕2)4 and (h11∕2)4 model 
spaces, the NN model produces G − I correlations that are 
perfectly consistent with those of the shell model. This 
explains the agreement between the shell and NN models 
shown in Figs. 6a, b and 7a, b. In Table 6, this perfect con-
sistency can also be observed for 18 Ne space in coordination 
with Figs. 6c and 7c. However, as the dimensions increase, 
the consistency of 20 22 Ne in Table 6 and 46 Ca in Table 7 
gradually decreases. In the 20 Ne space, there are 12 incon-
sistent G − I correlations out of 30 (40%) between the SM 

and NN; in 22Ne, six out of 30 (20%) are inconsistent; and 
in 46 , 24 out of 94 ( ∼26%) are inconsistent. These inconsist-
ent rates are also correlated with the prediction accuracy for 
different model spaces, as shown in Table 4.

Furthermore, the empirical approach was also applicable 
to the trained NN model by setting one of the inputs of the 
NN to − 1 and the rest to 0 and recording the ground-state 
spin (I) from the network. This approach also revealed the 
correlation between the interaction matrix elements and the 
predicted ground-state spin, as well as the PI distribution, of 
the well-trained NN model. Table 5 presents the correlations 
between the matrix elements and the spin obtained from 

Table 6  Same as Table 5, 
except for 18Ne, 20Ne, and 22
Ne, with GI

j1j2;j3j4
 as the matrix 

elements of the two-body 
interaction

The subscripts j
1
, j

2
, j

3
, j

4
 are equal to 1, 2, 3, corresponding to s

1∕2 , d3∕2 , and d
5∕2 orbits in the sd shell, 

respectively. I = 0 ∼ 4 in this table represents the degenerate states with spin 0, 1, 2, 3, and 4 from the shell 
model. The inconsistency between the NN and shell models is highlighted in bold

GJ
j1j2;j3j4

18Ne 20Ne 22Ne

SM NN SM NN SM NN

G
0

1111
0 0 0∼4 0 0∼6 0

G
0

1122
0 0 0,2,4 0 0,2,4 0

G
0

1133
0 0 0 0 0,2 0

G
0

2222
0 0 0,2∼4 0 0∼5 0

G
0

2233
0 0 0 0 0 0

G
0

3333
0 0 0 0 0∼2 0

G
1

1212
1 1 1 0 0 0

G
1

1223
1 1 2 0 0 0

G
1

2323
1 1 0 0 0 3

G
2

1212
2 2 0,2 0 0 0

G
2

1213
2 2 2 0 2 2

G
2

1222
2 2 1∼4 0 0∼6 0

G
2

1223
2 2 0 0 0 2

G
2

1233
2 2 0 0 0 0

G
2

1313
2 2 4 2 0,2,4 2

G
2

1322
2 2 0 0 0 0

G
2

1323
2 2 0 2 0 0

G
2

1333
2 2 2 2 0∼4 2

G
2

2222
2 2 0 0 0,2∼4 0

G
2

2223
2 2 2 0 2,3 0

G
2

2233
2 2 0 0 0 0

G
2

2323
2 2 2 0 0 0

G
2

2333
2 2 0 0 0 0

G
2

3333
2 2 2 0 0 0

G
3

1313
3 3 5 2 0,2,4 3

G
3

1323
3 3 4 0 3 0

G
3

2323
3 3 0 0 0 0

G
4

2323
4 4 6 6 6 6

G
4

2333
4 4 4 0 2,3 0

G
4

3333
4 4 4 4 0 0
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the shell and NN models. The correlations from both mod-
els are identical, indicating that our NN model successfully 
learns the G − I correlation, as suggested by the empirical 
approach. Thus, it accurately reproduces the ground-state 
spin of the shell model for simple model.

With the G − I correlation from such an NN model, we 
counted the ground-state spin Is emerging in the G − I cor-
relation and then normalized them to the PI distribution, as 
guided by the empirical approach. The PI distributions based 
on the empirical approach using the NN model are shown in 
Fig. 7. The empirical approach from both the SM and NN 
models yields reasonably consistent PI distributions for all 
model spaces in this case, suggesting that the NN may effec-
tively capture the correlation between the two-body interac-
tion matrix elements and the ground-state spin, which fur-
ther explains its remarkable performance in reproducing the 
statistical properties of the ground-state spin in the TBRE.

4  Conclusion

This study used an NN model to investigate the distribu-
tion of the ground-state spin in the TBRE. Using a softmax 
classification NN model, we attempted to reproduce the 
correlation between the matrix elements of the interaction 
and ground-state spin, as labeled by the shell model, for the 
TBRE. The reliability of the NN model was analyzed based 
on its prediction accuracy and consistency with the empiri-
cal rules of the PI distribution.

Previous applications of NN models in nuclear physics 
primarily focused on their strong fitting capabilities. How-
ever, the analysis of the ground-state spin distribution in 
TBRE demonstrated the classification ability of the NN, 
which is rare in the literature. Furthermore, TBRE provided 
extensive samples for training NNs, thereby potentially 
enhancing the performance of the NN model.

In our investigation, we adopted various strategies to 
enhance network performance, including the introduction 
of BNN, CNN, and RNN, feature selection, and adjusting 
the number of neural nodes and hidden layers. However, 
none of these approaches yielded significant improvements 
with limited computational resources. Therefore, we must 
acknowledge that the quantum many-body problem remains 
a formidable challenge for NN models. Addressing this chal-
lenge may necessitate the further development of NN archi-
tectures tailored for analyzing the nuclear ground-state spin 
in the TBRE.

However, NN models still offer some insights into the 
specific robust statistical properties of the ground-state spin. 

Table 7  Same as Table 6, except for 46Ca

GJ
j1j2;j3j4

SM NN GI
j1j2;j3j4

SM NN

G
0

1111
0∼10 0 G

2

3334
0 0

G
0

1122
0∼10 0 G

2

3344
0 0

G
0

1133
0,2∼6 0 G

2

3434
4 0

G
0

1144
0∼4 0 G

2

3444
0 0

G
0

2222
0∼10 0 G

2

4444
2 2

G
0

2233
0,2,4,6 0 G

3

1313
0,2,4 3

G
0

2244
0 0 G

3

1314
3 0

G
0

3333
0∼6 0 G

3

1323
3 0

G
0

3344
0 0 G

3

1324
4 0

G
0

4444
0∼4 0 G

3

1334
4 0

G
1

1212
0 0 G

3

1414
0,2,4∼8 2

G
1

1223
0 0 G

3

1423
0 0

G
1

1234
0,9 0 G

3

1424
0 0

G
1

2323
0 0 G

3

1434
0 0

G
1

2334
0 0 G

3

2323
3 0

G
1

3434
1,8 0 G

3

2324
0 2

G
2

1212
0 0 G

3

2334
0 0

G
2

1213
2 0 G

3

2424
0 0

G
2

1222
0∼10 0 G

3

2434
0 0

G
2

1223
0,4,6 0 G

3

3434
0,10 0

G
2

1224
0 0 G

4

1414
0,2,4∼6,8 8

G
2

1233
0 0 G

4

1423
2 0

G
2

1234
0,9 0 G

4

1424
6 0

G
2

1244
0 0 G

4

1433
0 0

G
2

1313
0,2,4 2 G

4

1434
1 0

G
2

1322
0,2,4,6 0 G

4

1444
0∼4 0

G
2

1323
0 0 G

4

2323
6 0

G
2

1324
0 0 G

4

2324
2 0

G
2

1333
0∼8 0 G

4

2333
1∼6 0

G
2

1334
2 0 G

4

2334
0,9 0

G
2

1344
2 0 G

4

2344
4 0

G
2

2222
0∼6 0 G

4

2424
0 0

G
2

2223
1,2,4,5 0 G

4

2433
0 0

G
2

2224
0 0 G

4

2434
3 0

G
2

2233
0,2∼4,6 0 G

4

2444
0,2∼4 0

G
2

2234
0 0 G

4

3333
0 0

G
2

2244
0,2∼4 0 G

4

3334
0 0

G
2

2323
0 0 G

4

3344
0,10 0

G
2

2324
0 0 G

4

3434
0 0

G
2

2333
0,2∼4,6 0 G

4

3444
0 0

G
2

2334
0,10 0 G

4

4444
4 4

G
2

2344
0 0 G

5

2424
10 9

G
2

2424
0,9 0 G

5

2434
0 0

G
2

2433
0 0 G

5

3434
1 0

G
2

2434
0 0 G

6

3434
12 10

G
2

2444
0 0 G

6

3444
0 0

G
2

3333
0 0 G

6

4444
6 6

Table 7  (continued)
The subscripts j

1
, j

2
, j

3
, j

4
 are equal to 1, 2, 3, 4, corresponding to 

the p
1∕2 , p3∕2 , f5∕2 , and f

7∕2 orbits in the pf shell, respectively
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For example, they effectively capture the distribution of the 
ground-state spin, as shown in Fig. 7. Moreover, the result-
ing confusion matrix exhibits dominant diagonal elements, 
indicating the consistency between the ground-state spin 
from the shell model and that predicted by the NN model, 
as shown in Fig. 6. This success can be attributed to the 
capacity of the NN to replicate the correlation between the 
ground-state spin and two-body interaction matrix element 
in the shell model, as shown in Tables 5, 6, and 7.
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