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Abstract
The most critical part of a neutron computed tomography (NCT) system is the image processing algorithm, which directly 
affects the quality and speed of the reconstructed images. Various types of noise in the system can degrade the quality of 
the reconstructed images. Therefore, to improve the quality of the reconstructed images of NCT systems, efficient image 
processing algorithms must be used. The anisotropic diffusion filtering (ADF) algorithm can not only effectively suppress 
the noise in the projection data, but also preserve the image edge structure information by reducing the diffusion at the 
image edges. Therefore, we propose the application of the ADF algorithm for NCT image reconstruction. To compare the 
performance of different algorithms in NCT systems, we reconstructed images using the ordered subset simultaneous alge-
braic reconstruction technique (OS-SART) algorithm with different regular terms as image processing algorithms. In the 
iterative reconstruction, we selected two image processing algorithms, the Total Variation and split Bregman solved total 
variation algorithms, for comparison with the performance of the ADF algorithm. Additionally, the filtered back-projection 
algorithm was used for comparison with an iterative algorithm. By reconstructing the projection data of the numerical and 
clock models, we compared and analyzed the effects of each algorithm applied in the NCT system. Based on the reconstruc-
tion results, OS-SART-ADF outperformed the other algorithms in terms of denoising, preserving the edge structure, and 
suppressing artifacts. For example, when the 3D Shepp–Logan was reconstructed at 25 views, the root mean square error 
of OS-SART-ADF was the smallest among the four iterative algorithms, at only 0.0292. The universal quality index, mean 
structural similarity, and correlation coefficient of the reconstructed image were the largest among all algorithms, with values 
of 0.9877, 0.9878, and 0.9887, respectively.
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1  Introduction

Neutron computed tomography (NCT) is a nondestructive 
testing technique that can accurately and rapidly detect the 
internal structure of a samples [1–3]. NCT has been exten-
sively used in a variety of domains, including porous media, 
biology, special nuclear materials, and archaeology [4–10], 
because of its strong neutron penetration into thick metals. 
Equipment for X-ray and neutron imaging has substantially 
improved with the rapid advancement in electronic informa-
tion technology. Advanced imaging instruments and high-
quality image processing algorithms continue to be explored 
and applied to 3D tomography and sample visualization, 
such as the large-area 3He tube array detector used for China 
spallation neutrons [11]. Owing to the strong penetration 
of neutrons, in some special cases, they can be used as a 
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complement to X-ray CT to provide better imaging results. 
NCT begins by rotating a test object to obtain neutron pro-
jection images at different angles, followed by processing 
the projection images using reconstruction algorithms to 
obtain 2D or 3D tomographic images [12, 13]. Additionally, 
machine learning is an emerging research tool that has seen 
a gradual increase in its use in radiation imaging and image 
processing, and has led to many innovations and advances in 
nuclear energy science and nuclear technology [14].

Neutron sources produce neutron beams, and are com-
monly used in fields such as materials research, neutron 
photography, and nuclear physics. Neutron sources can be 
divided into accelerator- and reactor-driven neutron sources. 
Several nations and international organizations are work-
ing to promote the construction and development of neutron 
source facilities such as accelerator-driven compact neutron 
sources, owing to the significance of neutron photography 
and neutron sources in scientific research and engineering 
applications [15–19]. Neutron source types range from radi-
oactive to large neutron sources. The neutron sources used 
in NCT systems are generally of low intensity, with neutron 
fluxes ranging from 105 to 1010 n/cm2 [20]. Because of the 
low neutron flux, the time required for a single projection 
scan is relatively long, which leads to low-quality neutron 
projection data. Therefore, improving the quality of neu-
tron imaging is a major research topic in NCT. There are 
two general approaches for improving the quality of neu-
tron tomography imaging. The first is to shorten the time 
required for a single scan by increasing the strength of the 
neutron source, which is difficult to achieve. The second 
method enhances the quality of NCT-recovered images by 
employing effective image-reconstruction algorithms. The 
primary algorithms used in NCT systems are analytical and 
iterative. The analysis algorithm requires complete projec-
tion data to reconstruct a high-quality image; therefore, it 
cannot be applied to sparse reconstruction. Since iterative 
reconstruction can embed a priori information, it is promis-
ing for applications in sparse reconstruction. The iterative 
algorithms include ART [21], SIRT [22], and SART [23]. 
The development of the compressive sensing theory has led 
to the successful application of total variance (TV)-based 
algebraic iterative reconstruction algorithms for CT recon-
struction. To reduce noise and effectively preserve edge and 
structure detail information, Rudin proposed a denoising 
model using the total variance as a rule constraint, which 
has excellent results in preserving edges [24]. Several stud-
ies have proposed including directional TV [25], anisotropic 
TV [26], edge-preserving TV [27], and weighted TV [28].

The TV-based denoising algorithm performs the same 
function for different regions of an image. Although this 
method can effectively remove noise, it inevitably consid-
ers a part of the image detail information as the object of 

the noise reduction process, which is an important feature 
that we focus on when processing images. Therefore, it 
is important to protect detailed image information during 
image denoising. In recent years, through an in-depth study 
of the governing partial differential equations (PDEs), it has 
been found that the anisotropic diffusion model can solve 
this problem to a certain extent, and its adaptive smoothing 
function can be smoothed to different degrees according to 
different image features to preserve the edge details based on 
retaining image noise reduction information. The PDE-based 
anisotropic diffusion model can reduce noise by enhancing 
diffusion in the flat regions of the image, and can also be uti-
lized to reduce diffusion at the edges of the image to preserve 
edge detail information. This is due to the fact that the PDE-
based image processing method smooths only the parallel 
edges of the projection data and not the vertical edges, thus 
preserving the main features of the image while reducing 
noise and smoothing the image. The projection data obtained 
in the NCT system exhibited a high level of noise, which had 
a direct impact on the quality of the reconstructed image. 
Recently, several studies have been conducted on the use of 
anisotropic diffusion filters for image manipulation. In 1990, 
Perona and Malik first used the gradient as an edge detector 
to derive each anisotropic diffusion model, merging diffu-
sion sparsity into the filtering process such that it diffused in 
the smooth region and stopped diffusing in the edge region 
[29]. You and Kaveh [30] proposed a fourth-order partial 
differential model using the Laplace algorithm to describe 
the image smoothing map, which eliminates the "step effect" 
of the second-order partial differential model, but the noise 
reduction efficiency required further improvement. Baxi and 
Feng [31] proposed a fractional-order variational model to 
improve noise reduction efficiency. Alvarez et al. [32] intro-
duced a mean curvature equation of motion for anisotropic 
diffusion that considers the directional information of the 
edges and varies only in the direction of the minimum gradi-
ent, and not in the direction of the maximum gradient dur-
ing the diffusion process. Thus, the image is smoothed only 
in an orientation parallel to the edge. Although there are 
many anisotropic diffusion noise reduction methods, all of 
them have diffusion strengths that use gradient information 
to effectively detect edges. Therefore, when the edge is heav-
ily contaminated by noise, these methods may not be able to 
detect the edges and preserve the other features protected by 
that edge. This requires a more sophisticated diffusion-based 
noise-reduction model than edge detection.

Therefore, in this study, we propose an efficient 3D recon-
struction algorithm for NCT that extends the 2D anisotropic 
diffusion filter to 3D applications of NCT imaging. Our 
primary goal is to eliminate noise and artifacts that appear 
in sparse-view projection reconstruction. To achieve this 
goal, we propose the ordered subset simultaneous algebraic 
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reconstruction technique (OS-SART) anisotropic diffusion 
filtering (ADF) algorithm based on the analysis of traditional 
image filtering algorithms, which uses the OS-SART algo-
rithm for image reconstruction and applies an anisotropic dif-
fusion filter to remove image noise in the reconstruction pro-
cess while preserving the structural information of the image 
edges.

2 � Algorithms

2.1 � TV algorithm

Rudin, Osher, and Fetamin proposed an ROF model using the 
L1 parameterization of the image gradient as regularization 
[24]. The model uses TV regularization to minimize the total 
variance and improve the image quality. The ROF model uses 
the L1 norm in the minimization process, which maintains the 
nonlinear characteristics of the image and thus allows more 
image edge structures to be retained. The expression for this 
model is as follows:

where ‖p − wf‖2
2
 is a data fidelity item and ‖f‖TV is the regu-

larization term, which is the TV norm of the image. The 
TV norm is the L1 norm of the image gradient, and can be 
expressed as follows:

where f  denotes a 3D image, ∇fi represents the gradient 
along the i direction, and |⋅| represents the complex modulus.

2.2 � Split Bregman solved total variation (SBTV)

The Bregman distance [33], also known as the Bregman scat-
ter, between two points u and v, is defined by the following 
equation:

where E(u) is a convex function, p denotes the subgradient 
of E(u) , and ⟨, ⟩ denote the inner product.

In the optimization problem, the Bregman distance is intro-
duced as a regularization term. The Bregman iterative regulari-
zation method can be expressed using the imaging principle 
formula as follows:

since Eq. (4) is a convex optimization problem. Substituting 
this into Eq. (5), the following results can be obtained using 
the optimal conditions:

(1)freg = argmin
�‖p − wf‖2

2
+ �‖f‖TV

�
,

(2)‖f‖TV =
��

��∇xf
��2 + ���∇yf

���
2

+ ��∇zf
��2,

(3)D
p

E
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(4)uk+1 = min
u

D
pk

E
(u, uk) +

u

2
‖�u − f‖2

2
,

The Bregman iterative method comprises Eqs. (4) and 
(5). Equation (4) optimizes the subproblem, and Eq. (5) 
updates the search direction of the iterative solution. How-
ever, owing to the difficulty of the subgradient calculation, 
the two equations above are only warped according to the 
nature of recursion. Therefore, Bregman’s iterative method 
is obtained in a simplified form [34] as

When used to reconstruct NCT images, the reconstruction 
algorithm did not provide satisfactory reconstruction results. 
Therefore, the image must be preprocessed, and generally 
good results are achieved using the denoising TV method. 
The objective function of image denoising using the split-
Bregman method is expressed as follows:

Solving Eq. (7) using the split Bregman method trans-
forms the problem into three easily solvable subproblems. 
Therefore, transforming Eq. (7) into a constrained problem, 
it can be expressed as:

where dx = ∇xf , dy = ∇yf , dz = ∇zf  Subsequently, using 
Bregman iteration, we solved Eq. (7), which can be further 
expressed as

As we have observed, the split Bregman approach differ-
entiates the problem by separating the L1 part. We applied 
the Gauss–Seidel method [35] to solve f  in a simpler man-
ner, as follows:
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Additionally, since the parts of d are unrelated, they 
can be separated into dx , dy , and dz . Thus, we employ the 
shrinkage operator to obtain the optimal solution [36], 
which can be written as follows:

2.3 � 3D anisotropic diffusion filtering algorithms 
(3D‑ADF)

Sun et al. extended two-dimensional anisotropic diffu-
sion filtering to three dimensions and proposed a three-
dimensional anisotropic diffusion filtering algorithm that 
can retain image edge structure information, as well as 
perform denoising [37]. Drawing on this algorithm, we 
introduced it into CT reconstruction.

where f  denotes the three-dimensional image, ∇ represents 
the gradient operator, and div denotes the diffusion coef-
ficient. Current research on anisotropic diffusion-filtering 
algorithms focuses on the selection of q(x). For, example, 
the q(x) is expressed as follows:

The equation for the diffusion coefficient of 3D aniso-
tropic diffusion is

where var[z(t)] denotes the intensity variance, and z(t) rep-
resents the average value of the artifacts area at position t . 

(10)

f kg,j,v =
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(12)
�f (i, l, r;t)

�t
= div[q(i, l, r;t)∇f (i, l, r;t)],

(13)q(i, l, r;t) =
1
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[ |∇f (i,l,r;t)|2

f (i,l,r;t)2
− p2
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0
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]
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√
var[z(t)]
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The expression for the instantaneous coefficient of variation 
h(i, l, r;t) in three dimensions is as follows:

These algorithms not only remove noise, but also retain 
more information about the image edge structure.

In order to solve Eq. (17), it was discretized, and the dis-
crete expression of the 3D anisotropic diffusion is obtained as 

in Eq. (18):

2.4 � OS‑SART algorithm

The OS-SART algorithm is a variant of the SART algorithm. 
By repeatedly breaking up the projection data into ordered 
subgroups for each subset, the computing efficiency of SART 
is increased. At each iteration, the algorithm reconstructs a 
subset of the image based on the corresponding projected 
subset. This procedure was repeated for each subgroup, and 
the results were combined to create a final reconstructed 
image. By using ordered subsets, OS-SART creates a tradeoff 
between the computation time and image quality. It provides 
faster reconstruction speeds than conventional SART, while 
still achieving better image quality. By varying the number of 
subsets and iterations, the equilibrium between the reconstruc-
tion speed and image accuracy can be regulated. The formula 
is given by the equation below:
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where i represents the i-th ray at a particular projection 
angle, j refers to the pixel value in the i-th ray, k represents 
the number of iterations, and � is a relaxation factor.

2.5 � Proposed algorithm

Based on the OS-SART image reconstruction and 3D ADF 
image processing algorithms, we presented a sparse recon-
struction algorithm (OS-SART-ADF) for NCT. The algo-
rithm comprises two loops: the outer loop employs OS-
SART for image reconstruction, and the inner loop employs 
ADF for image denoising.

3 � Experimental

3.1 � Quantitative evaluation index

The correlation coefficient (CC) is a commonly used met-
ric in image evaluation that utilizes the covariance between 
the pixel values of two images to measure the correlation 
between them using the following formula:

(19)
f
(k+1)

j
= f k

j
+

∑
i∈Si

�
�k

pi−
∑M - 1

m=0
wimf

(k)

im
wij∑M - 1

m=0
wim

�

∑
i∈Si

wij

,

where � true represents the measurement image, M denotes 
the voxel number, and �(y) represents the reconstructed 
value at voxel y.

The mean structural similarity (MSSIM) was used to 
measure the structural similarity between two images. This 
takes into account information such as contrast, brightness, 
and structure of the image to provide a more comprehensive 
evaluation.

where �,� represents the reference image and measurement 
image, separately; u� and u� are the averages of the image, 
�� and �� are the standard deviations of the image, ��� is the 
covariance of the image, and C1 , C2 , and C3 are constants. 
Therefore, the MSSIM formula is as follows:

The root mean square error (RMSE) is used to measure 
the difference between two images; it is a measure of simi-
larity between two images obtained by calculating the dif-
ference between their corresponding pixel values.

Here, fn denotes a voxel in the measurement image, fn 
denotes a voxel in the sample, and N denotes the number 
of voxels.

The universal quality index (UQI) is an objective metric 
used to measure the quality of an image, and is calculated 
by comparing the differences in structure, brightness, and 
contrast between a reference image and measurement image.

(20)

CC =
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k=1
(�(y) −�)(�true(y) −� true)�∑M
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Brightness information ∶ l(�, �) =
2u�u� + C1

u2
�
+ u2
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Table 1   OS-SART-ADF algorithm

1. Initialization: f0 , et1
2. while ‖‖f k − f k−1‖‖22 ≥ et1

3. Step 1: OS-SART reconstruct the image
4. for n = 1 to NOS - SART do
5.
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6.  Step 2: ADF
7. while the stop criterion is not met
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9. end
10. end
11. obtain the final image
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In the above equation, cov denotes the pixel value covar-
iance of the reference and measurement images, � and � 
denote the mean pixel values of the reference and meas-
urement images, respectively, and �2 and �2 represent the 
standard deviation of the pixel values of the reference and 
measurement images, respectively.

3.2 � Neutron noise model

Photon statistical noise is a statistical fluctuation in the 
number of photons received per pixel by the detector owing 
to the limited number of rays. The photon statistical noise 
obeys a Poisson distribution and manifests itself as random 
variations in the image, particularly in low-dose scans. Elec-
tronic noise is generated by the detectors and electronics in 
the CT system and can affect the quality of the image. The 
electronic noise typically follows a Gaussian distribution. 
Additionally, a variety of noise is present in PET, MRI, and 
other imaging systems, and various algorithms and filters 
must be used in the reconstruction of images from these 
imaging systems to minimize the effects of noise and retain 
useful information [38, 39]. The following equation can be 
used in NCT imaging to represent the noise model of the 
system:

where L denotes noisy transmission data, L is the mean num-
ber of photons, mic and �2

ic
 are the mean and variance of the 

noise of the electronic device, respectively. The value mic 
is generally set to zero when commissioning the system. 
The variance �2

ic
 is assessed by dark current measurements 

[40]. In this study, three parameters, the photon incident 
flux 1 × 105, mic = 0 , and �2

ic
= 0.25 were set based on the 

characteristics of the NCT system.

3.3 � Digital 3D Shepp–Logan model experiment

By reconstructing the digital 3D Shepp–Logan model with 
dimensions of 256 × 256 × 256, we compare and assess the 
performance variances of four algorithms: filtered back-
projection (FBP), OS-SART-TV, OS-SART-SBTV, and OS-
SART-ADF, by reconstructing the digital 3D Shepp–Logan 
model of size 256 × 256 × 256. A slice image of the 3D 
Shepp–Logan mode at z = 128 is shown in Fig. 1. The three 
iterative algorithm parameters are specified as follows: OS-
SART-TV, �OS - SART = 2.2,NiterOS - SART = 50 , �TV = 200 , 
and NiterTV= 300 . As for the OS-SART-SBTV algorithm, 
�OS - SART = 2.2  ,  NiterOS - SART = 50  ,  �SBTV = 0.0032  , 
and NiterSBTV = 150 . As for the OS-SART-ADF algo-
rithm (Table  1), �OS - SART = 2.2 , NiterOS - SART = 50 , 
�ADF = 0.002 , and NiterADF = 300.

(24)L = Poisson(L) + Gaussian(mic + �2
ic
),

The images produced by the four algorithms for recon-
structing the different projection angles are shown in Fig. 2. 
The findings of all the algorithms show that an increase in the 
projected angle count significantly improves the smoothness 
of the reconstructed image and sharpness of the edge struc-
ture. When comparing the iterative reconstruction results, 
the reconstructed image of the FBP algorithm revealed sig-
nificant artifacts caused by the algorithm’s design defects. 
By comparison, the images reconstructed using the three 
iterative algorithms had clearer edge-structure information. 
From the region of interest in Fig. 2, it is clear that although 
OS-SART-TV can effectively reduce artifacts, the fine struc-
ture of the image is lost more significantly, resulting in the 
reconstructed image being too smooth. When the number 
of sparse views is 25, OS-SART-SBTV can also reconstruct 
clearer structural information of the image, but there is still 
ambiguity, in contrast to OS-SART-ADF. By comparing 
the reconstructed images from the different algorithms, it 
was observed that the OS-SART-ADF algorithm effectively 
eliminated image noise and clearly reconstructed the edge 
structure of the image.

We compared and analyzed the error images recon-
structed using the five algorithms. The difference in pixel 
values between the original and reconstructed images at the 
same locations is reflected in the error image; the smaller 
the difference, the more structural information is included in 
the reconstructed image. From the error images in Fig. 3, the 
error image of FBP has the largest difference, indicating that 
the algorithm reconstructs the image with a large amount 
of structural feature information lost. In comparison with 
the analytical FBP algorithm, all these iterative algorithms 
performed well in removing artifacts and reconstructing the 

Fig. 1   3D Shepp–Logan slice image at z = 128
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detailed structural information of the image. However, OS-
SART-ADF had the least error in the image pixel values, 
indicating that it reconstructed the most detailed image.

The reconstructed image contours of all algorithms are 
shown in Fig. 4 to provide an in-depth analysis of their 
reconstruction performance. From left to right, the pro-
jected views are 25, 35, and 35 +, where 35 + denotes the 
image reconstructed with the added neutron noise model. 
The profile lines of the FBP-rebuilt image differ significantly 
from those of the reconstructed image, as shown in Fig. 4. 
Although OS-SART-TV and OS-SART-SBTV are superior 
to FBP, their reconstructed image profiles deviate slightly 
from the profiles of the reference image. In comparison, 
OS-SART-ADF reconstructs images whose profiles are most 
similar to the reference image. These results further demon-
strate that OS-SART-ADF is highly appropriate for NCT.

The image quality of each algorithm was quantitatively 
evaluated using four image assessment indices, as shown in 
Fig. 5. We first analyzed all algorithms that reconstructed the 
image obtained with noiseless projection data. The image 
evaluation indices gradually decreased with the reduction in 
the projection angle according to the three image evaluation 
metrics CC, MSSIM, and UQI; the change trends of these 
metrics were identical. From the RMSE metric in Fig. 5, it 
can be seen that the OS-SART-ADF-reconstructed images 
had the minimum RMSE values under the same conditions. 
For instance, the RMSE of the OS-SART-ADF-recon-
structed image is 0.0292 when the reconstructed projection 
view is 25, which demonstrates that the algorithm recon-
structs the image with pixel values closest to the original 
values, and that the reconstructed image has the best quality. 
From the UQI metric in Fig. 5d, it can be seen that the UQI 

Fig. 2   Sliced reconstructed images at z = 128 for the four algorithms
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of all algorithms progressively increases with the number 
of projection views, which is opposite to the trend of the 
RMSE. OS-SART-ADF has the highest UQI for reconstruct-
ing images under identical conditions compared to all other 
reconstruction methods, indicating its superior performance. 
When OS-SART-ADF reconstructed the 25 projection views, 
the UQI, MSSIM, and CC of the reconstructed image were 
0.9877, 0.9878, and 0.9887, respectively. These evaluation 
metrics of the OS-SART-ADF-reconstructed image were the 
highest among the three iterative algorithms. Subsequently, 
we analyzed the reconstructed images containing noisy 
projection data. It can be observed from the CC, MSSIM, 
and UQI in Fig. 5 that these metrics are maximized for the 
OS-SART-ADF algorithm-reconstructed images when the 
reconstructed projection views are the same, with values 
of 0.991, 0.9903, and 0.9901, respectively. The RMSE of 
the OS-SART-ADF-reconstructed images was minimized 

according to the RMSE in Fig. 5. As a result, when the 
reconstructed projection angles are the same, OS-SART-
ADF has the best quality of reconstructed images, based on 
an examination of the reconstructed images.

3.4 � 3D Industrial phantom

To further verify the performance of the OS-SART-ADF 
in real-world situations, we compared the reconstructed 
images of a 3D industrial model with dimensions of 
256 × 256 × 256. A sliced image of the 3D industrial model 
at z = 128 is shown in Fig. 6. By reconstructing the 3D 
industrial model, we evaluated the ability of each algo-
rithm to retain structural information at the edges of the 
image.

Figure 7 shows the reconstructed images for each algo-
rithm when reconstructing the 3D industrial model at 

Fig. 3   The slice of the error images at z = 128
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Fig. 4   Profiles of reconstructed images using different algorithms: a horizontal profile and b vertical profile
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different projection angles. Depending on the reconstructed 
results of the algorithm, the larger the projection angle, the 
clearer the edge structure of the reconstructed image. In 
contrast to the other algorithms, the reconstructed image 
of the FBP algorithm is blurred, and the information of the 
image edge structure is significantly lost. By analyzing the 
reconstruction results of each algorithm, the OS-SART-TV 
algorithm reconstructed a more delicate image structure that 
was excessively smooth. Among these iterative algorithms, 
OS-SART-ADF reconstructs the image with the clearest 
edge structure and least noise effect.

As shown in Fig.  8, we performed a quantitative 
analysis of the rebuilt results using the three iterative 
algorithms. Initially, the reconstructed images for each 
algorithm were analyzed using noiseless projection data. 
Figure 8 shows that the CC, MSSIM, and UQI metrics 
of all the algorithms progressively increased as the pro-
jection angle increased. The three indicators exhibited 
similar trends. Based on the RMSE metric presented in 

(a) (b)

(c) (d)

Fig. 5   (Color online) Metrics of 3D Shepp–Logan model reconstructed images

Fig. 6   The 3D industrial phantom slice image at z = 128
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Fig. 8, the OS-SART-ADF-reconstructed image had the 
lowest RMSE. For instance, when 25 projection views 
were reconstructed, the RMSE of OS-SART-ADF was 
0.0079, indicating that the reconstructed image from this 
algorithm was the closest to the real image. As shown in 
Fig. 8d, the UQI of all algorithms progressively increases 
with an increase in the number of projected views, which 
is opposite to the trend of the RMSE. Among all recon-
struction algorithms, the OS-SART-ADF-reconstructed 
images have the highest UQI, which indicates superior 
performance. For example, the UQI of OS-SART-ADF 
was 0.9978 when the number of reconstruction angles 
was 25. Subsequently, we performed a quantitative analy-
sis of the reconstructed images containing noise. The 
CC, MSSIM, and UQI metrics in Fig. 8 show that the 

OS-SART-ADF algorithm reconstructed images with the 
highest metrics when reconstructing the same amount of 
projection data containing noise. Furthermore, the RMSE 
metric in Fig. 8 indicates that the reconstructed images 
of the OS-SART-ADF algorithm had the smallest RMSE 
value. Thus, a quantitative and intuitive analysis of each 
algorithm indicates that OS-SART-ADF reconstructs the 
best images among all tested algorithms with the same 
number of reconstruction.

3.5 � Real neutron projection experiment

We compared the reconstruction capabilities of all algo-
rithms using a clock model (Fig. 9) with projection data 
provided by Schillinger [41]. Figure 10 shows a slice image 

Fig. 7   Sliced images of the 3D industrial phantom at z = 128 for the four algorithms
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of the clock model at z = 201. The following three-step pro-
cess was applied to the neutron photographs to obtain valid 
neutron projection data: First, for the dark- and bright-field 
images, white noise in the image was removed using a 5 × 5 
median filter. For the neutron photographic image, 3 × 3 
median filtering was applied, which not only protected the 
detailed information of the neutron photographic image, but 
also removed white noise from the image. Second, the pixel 
values of the dark-field and bright-field images provided are 
averaged separately, and the averaged dark-field background 
image data are subtracted from the averaged bright-field 
image data so that the corrected bright-field image data can 
be obtained. Finally, the entire neutron photographic image 
data were subtracted from the averaged dark-field image 
data, normalized, and negatively notated. The non-negative 
data were then corrected to obtain the neutron projection 
data for the applied image reconstruction.

As shown in Fig. 11, the image recreated using the FBP 
algorithm contained significant artifacts. The three itera-
tive reconstruction algorithms eliminated artifacts better 
and reconstructed more image information than the FBP 
algorithm. Compared with the FBP algorithm, the recon-
structed images from OS-SART-TV have fewer artifacts; 
however, because of the excessively smooth image edges 
of OS-SART-TV, a significant amount of the structural 
information of the images is lost. While the reconstructed 
image of OS-SART-SBTV is sharper than that of OS-
SART-TV, it is still fuzzy compared to that from OS-
SART-ADF. Therefore, OS-SART-ADF exhibits good per-
formance in artifact suppression and noise reduction based 
on the visual observation of the reconstructed images.

As shown in Fig. 12, we quantitatively analyzed the 
clock model images reconstructed using the three iterative 
algorithms. From the RMSE metric shown in Fig. 12, it 
can be seen that OS-SART-ADF has the minimum RMSE, 

(a) (b)

(c) (d)

Fig. 8   (Color online) Evaluation metrics for the 3D industrial phantom reconstructed images
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which means that the reconstructed image of OS-SART-
ADF is the closest to the reference image. Moreover, the 
CC, MSSIM, and UQI of OS-SART-ADF were the largest 
among all algorithms. In conclusion, the OS-SART-ADF 
applied to neutron CT 3D reconstruction performed excel-
lently in fine-structure reconstruction, noise removal, and 

artifact suppression, which shows that the OS-SART-ADF 
algorithm is appropriate for neutron CT 3D reconstruction 
of sparse views.

4 � Discussion

In this study, a high-performance sparse-view neutron 
CT 3D reconstruction algorithm was proposed. We used 
an iterative reconstruction algorithm in an NCT system 
to overcome the inherent shortcomings of the analytical 
algorithm (FBP), which prevents it from being applied to 
sparse-view reconstruction. Regular terms are introduced 
into the iterative algorithm to adjust the reconstructed 
image and make it more effective for use in NCT systems. 
Owing to the photon statistical noise and electronic device 
noise, the neutron projection data acquired by the NCT 
system contained a large amount of noise, resulting in 
poor-quality reconstructed images. As a result, to enhance 
the imaging performance of NCT systems, it is necessary 
to enhance the processing of neutron images. This requires 
the algorithms used in NCT systems not only to remove 
noise efficiently, but also to retain more information about 
the image edge structure. The PDE-based anisotropic dif-
fusion model can reduce noise by enhancing the diffusion 
of the flat areas of the image. At the same time, this model 
can also be used to reduce the diffusion of image edges and 
preserve edge detail information. This is because the PDE-
based image-processing method only smooths the parallel 
edges of the projected data and not the vertical edges, thus 
preserving the main features of the image while reducing 
noise and smoothing the image. The anisotropic diffusion 
filtering algorithm can effectively suppress the noise in 
the projection data and preserve the image edge structure 
information by reducing the diffusion of the image edges. 
The algorithm presented in this study performed well for 
the reconstruction of NCT projection data as confirmed 
from the results of the reconstructed images. Compared 
with FBP, the TV-based regularization algorithm can 
remove image noise to some extent; however, the recon-
structed image is so smooth that some information about 
the image appears to be lost. This is because denoising an 
image using the variational method produces an interme-
diate value, which may result in an overly smooth image. 
Therefore, we present OS-SART-ADF, which is based on 
an anisotropic diffusion model. The reconstructed results 
of the 3D Shepp–Logan model, 3D industrial, and clock 
models demonstrate the exceptional performance of OS-
SART-ADF in both quantitative and visual analyses. For 
example, the RMSE of the OS-SART-ADF-reconstructed 
image when reconstructing a 3D Shepp–Logan model with 
25 projection views is 0.0292. The reconstructed image 
also had the highest UQI, MSSIM, and CC among all the 

Fig. 9   (Color online) Clock model

Fig. 10   The clock model slices the image at z = 201
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Fig. 11   Slice image of the reconstructed image of the four algorithms at z = 201
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algorithms, measuring 0.9877, 0.9878, and 0.9887, respec-
tively. This illustrates that OS-SART-ADF produced the 
best reconstructed images.

5 � Conclusion

NCT is a nondestructive testing technique that can quickly 
and accurately detect the internal structure of a sample, 
and is extensively used in nuclear engineering, aerospace 
technology, and military applications. Owing to the long 
scanning time and complex application environment of 
NCT, the quality of the obtained neutron projection data 
is relatively poor. Therefore, an NCT system must use 
efficient image reconstruction algorithms to reconstruct 
high-quality images. To meet this requirement, we propose 
the OS-SART-ADF algorithm to be used for NCT-sparse 

reconstruction. The OS-SART-ADF algorithm comprises 
two processes: OS-SART is used to reconstruct the image, 
and ADF is used for image filtering, denoising, and preserv-
ing the image edge structure information. As confirmed from 
quantitative and visual analyses of digital 3D Shepp–Logan, 
3D industrial phantom, and clock model reconstructed 
images, OS-SART-PDTV exhibited superior performance 
in suppressing artifacts, reconstructing fine structures, and 
removing noise compared to other algorithms. From the 
RMSE metric in Fig. 5, it was seen that the OS-SART-ADF-
reconstructed images had the minimum RMSE values under 
the same conditions.
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Fig. 12   Metrics for quantitative analysis of reconstructed clock model images
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