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Abstract
Traditional particle identification methods face timeconsuming, experience-dependent, and poor repeatability challenges 
in heavy-ion collisions at low and intermediate energies. Researchers urgently need solutions to the dilemma of traditional 
particle identification methods. This study explores the possibility of applying intelligent learning algorithms to the particle 
identification of heavy-ion collisions at low and intermediate energies. Multiple intelligent algorithms, including XgBoost and 
TabNet, were selected to test datasets from the neutron ion multi-detector for reaction-oriented dynamics (NIMROD-ISiS) 
and Geant4 simulation. Tree-based machine learning algorithms and deep learning algorithms e.g. TabNet show excellent 
performance and generalization ability. Adding additional data features besides energy deposition can improve the algorithm’s 
performance when the data distribution is nonuniform. Intelligent learning algorithms can be applied to solve the particle 
identification problem in heavy-ion collisions at low and intermediate energies.

Keywords  Heavy-ion collisions at low and intermediate energies · Machine learning · Ensemble learning algorithm · 
Particle identification · Data imbalance

1  Introduction

Intelligent algorithms play crucial roles in nuclear physics. 
Challenges in nuclear physics experiments include high 
complexity, extensive data, time-consuming experiments, 
and intricate models. Taking particle collision experiments 

as an example, millions of terabytes of data are generated 
daily for heavy-ion collisions at high energies. Therefore, the 
extraction of useful information from complex experimental 
data has become an enormous challenge.

Large-scale experiments such as ATLAS, ALICE, and 
CMS have already applied machine learning and deep learn-
ing algorithms [1–4] to analyze and process experimental 
data. Typical examples include research on the particle track 
reconstruction problem [5–8] in high energy physics experi-
ments, data analysis, and pattern recognition of the Higgs 
boson [9–13]. The application of machine learning in parti-
cle physics can be accessed in a large-scale dynamic review 
[https://​iml-​wg.​github.​io/​HEPML-​Livin​gRevi​ew/] and the 
website created by the ML Physics Portal [14–17].

Currently, research on intelligent algorithms in nuclear 
physics experiments [18–21] focuses on data analysis, such 
as the masses of atomic nuclei  [22–26], nuclear charge 
radii [27–31], decay half-lives [32–37], critical reaction 
thresholds [38], and spallation reaction cross-sections [39], 
etc. In addition to using machine learning algorithms to 
investigate various physical issues  [40–42], research-
ers have used these algorithms to analyze experimental 
data [43–45]. This involves tasks, such as particle trajectory 
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reconstruction, vertex reconstruction [46], and particle iden-
tification in nuclear reactions. Advancements in experimen-
tal equipment and related technologies have facilitated the 
integration of machine learning and nuclear physics.

Current research on particle identification focuses on 
high energy particle physics. To date, research on particle 
identification has mainly focused on identifying particle 
types [47] and separating rare particles from background 
signals. The data and algorithms used for particle identifica-
tion depend on the type of detector. For example, the output 
data of a calorimeter detector can be processed and con-
verted into matrix data; therefore, image algorithms, such 
as CNN and GNN, can be used for processing. The research 
and applications of machine learning in particle identifica-
tion have mainly focused on LHC detectors, such as calo-
rimeters [48–50] and Cherenkov detectors [51]. Moreover, a 
new research focus in recent years on LHC experiments has 
been developing new detector software and hardware based 
on machine learning and deep learning algorithms [52].

Compared with other nuclear reactions, the particles 
generated in heavy-ion collisions at low and intermediate 
energies have various types and complex energy distribu-
tions. Numerous fragments have similar charges and masses. 
Experiments on heavy-ion collisions depend on the energy 
resolution of the detector and require a detection array with 
large solid-angle coverage. Therefore, the identification of 
dozens or even hundreds of reaction products from inde-
pendent detection units is challenging. Traditional particle 
identification methods include telescope  [53], time-of-
flight  [54], magnetic spectrometer, Bragg spectroscopy, 
and pulse shape discrimination methods. These methods are 
often combined to improve identification ability, especially 
for heavy fragments with minor differences in charge and 
mass numbers between adjacent fragments. 

The performance of the traditional methods for heavier 
particles is hindered by their dependence on experience, 
poor repeatability, and time consumption. The precise iden-
tification of charge and mass numbers is fundamental to 
all research related to heavy-ion collisions, and is a very 
powerful method for studying exotic nuclear configura-
tions [55–60]. Compared with particle identification in par-
ticle physics, the wide variety and slight differences in the 
charge and mass numbers of charged particles produced in 
heavy-ion reactions pose significant challenges for existing 
particle identification methods. Therefore, the development 
of a universal, efficient, and high-precision particle identi-
fication method based on machine learning techniques will 
significantly boost the study of heavy-ion collisions.

 P. Adamson et al. [61] devised a 5-layer neural network 
and evaluated its performance on the 22nd and 23rd detec-
tors of a neutron ion multi-detector for reaction-oriented 
dynamics (NIMROD-ISiS). A dataset from NIMROD-ISiS 
detector array has also been used in this paper. This study 

aimed to identify the particle charge and mass numbers 
in heavy-ion collisions at low and intermediate energies. 
Supervised learning algorithms were used to train particle 
identification models based on ΔE − E energy deposits from 
telescope (or super-telescope) detectors in heavy-ion colli-
sions. Machine learning and deep learning algorithms were 
applied to identify the particles’ charge and mass numbers, 
and their performance were compared.

2 � Dataset and methods

Real world data (RWD) come from experiments on heavy-
ion collisions at low and intermediate energies carried out at 
the Cyclotron Institute of Texas A &M University. It consists 
of reaction products detected by the NIMROD-ISiS array 
[62, 63]. The NIMROD-ISiS detector array comprised 14 
rings. Experimental data were obtained from 143 detectors, 
including 124 telescope detectors and 19 super telescope 
detectors with ring numbers ranging from 2 to 15. The detec-
tion system included Si detectors and CsI (Tl) scintillators 
with angles ranging from 3.6◦ to 167.0◦ . The back half of the 
NIMROD ( 90.0◦ – 167.0◦ ) consists of half the Indiana Sili-
con Sphere. Si detectors were combined with the CsI detec-
tors as ’telescopes,’ while some were equipped with two Si 
detectors in tandem, known as ’super telescopes’ ( 3.6◦–45◦ ), 
enhancing the ability to identify mass numbers of heavier 
fragments. The capacity to include ionization chambers in 
front of Si detectors is also available. Figure 1 shows the 
structure of the NIMROD-ISIS.

In addition to the dataset from Texas A &M University, 
Geant4 [64] was used to simulate heavy-ion collisions at 
intermediate energies. QMD model with G4IonQMDPhysics 
was used as an event generator to simulate the reaction pro-
cess of a beam incident on a target. The detection processes 
in Geant4 include electromagnetic interactions (G4Em-
StandardPhysics), energy transfer and loss (G4EmExtraP-
hysics and G4StoppingPhysics), decay processes (G4Decay-
Physics and G4RadioactiveDecayPhysics), and elastic and 
inelastic scattering (G4HadronHElasticPhysics, G4Hadron-
PhysicsINCLXX, and G4IonElasticPhysics). The simula-
tions involved collisions of 28 Si with an energy of 50 MeV/u 
and 12 C particles in vacuum. The detector system consisted 
of four supertelescope detectors. The simulation generated a 
dataset with more than four million particles. Figure 2 shows 
the structure of the detector system and the ΔE − E two-
dimensional histogram.

This study covers serval common machine learning algo-
rithms, such as Support Vector Machines (SVM), Logis-
tic Regression (LR), and Bayesian classifiers. Tree-based 
ensemble learning algorithms and TabNet, a deep-learning 
algorithm, were also used. Part of the algorithms used in this 
study are briefly described below.
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(a) MLP
Multi-layer perceptron (MLP) is a feed-forward neural 

network composed of multiple neurons, which is the basis 
and prototype of many artificial and deep learning neural 
networks.

(b) Random Forest
Random forest is an early tree-based ensemble learn-

ing algorithm with multiple decision trees [65]. This 
offers advantages of both decision trees and ensemble 
learning. Strong robustness and predictive ability are also 
advantageous.

(c) XgBoost
XgBoost is a tree-based ensemble learning algorithm 

proposed in 2016 [66] that is widely used in data mining, 
natural language processing, image recognition, and other 
fields. In general, XgBoost is a machine-learning algorithm 
with high efficiency, accuracy, flexibility, explainability, and 
scalability.

(d) LightGBM
LightGBM, a tree-based gradient boosting framework 

for ensemble learning, has been widely used in various 

applications [67]. Built on the gradient-boosting decision 
tree (GBDT) algorithm, LightGBM incorporates advanced 
techniques such as gradient-based one-sided sampling 
(GOSS) and histogram-based acceleration. These optimi-
zations enabled faster training and lower memory consump-
tion, making LightGBM an efficient and practical choice for 
machine learning tasks.

(e) CatBoost
CatBoost is a tree-based ensemble-learning algorithm 

proposed by Yandex [68]. In terms of building a decision 
tree, compared with XgBoost and LightGBM, CatBoost can 
automatically process the category features of the data and 
automatically process the scaling of the data features without 
additional data processing. CatBoost adopts the same gradi-
ent-based splitting and feature selection strategies based on 
a greedy algorithm as XgBoost. CatBoost also automatically 
handles missing values in the data without additional data 
padding and has a robustness to noise and outliers.

Boosting-based ensemble learning algorithms such 
as XgBoost, LightGBM, and CatBoost are widely used 
in various fields. The basic process of these algorithms 
involves training multiple weak learners, assigning 
weights to training samples, and iteratively adjusting these 

Fig. 1   Schematic diagram of the NIMROD-ISiS detector array layout, from Texas A &M NIMROD-ISiS official website (https://​cyclo​tron.​tamu.​
edu/​nimrod/)

Fig. 2   (Color online) The structure of the super telescope detector used in the Geant4 simulation and the ΔE − E two-dimensional histogram 
from Geant4 simulation

https://cyclotron.tamu.edu/nimrod/
https://cyclotron.tamu.edu/nimrod/
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weights based on the learner’s performance. This itera-
tive process aims to create an ensemble model with high 
accuracy. Figure 3 depicts the basic structure of ensemble 
learning algorithms of boosting method.

(f) TabNet
TabNet, which was introduced by Google in 2019, is a 

neural network structure explicitly designed for classifi-
cation, prediction, and regression tasks involving tabular 
data [69]. Unlike traditional tree-based machine learning 
algorithms, TabNet minimizes the need for preprocessing 
input data and can automatically learn the interdepend-
encies among input features. It incorporates an attention 
transformer that uses an attention mechanism to select 
relevant feature vectors dynamically. Since its inception, 
TabNet has been widely adopted in various applications 
involving tabular data [70, 71].

Figure 4 illustrates the procedure for applying the intel-
ligent algorithms in this study. Training a classification 
model typically involves several steps.

(a)	 Data acquisition: Obtaining a dataset containing infor-
mation about particle charge and mass, which can be 
from experimental or simulated data.

(b)	 Data preprocessing: Ensuring the quality of the data 
through removing noise, addressing missing data, and 
feature  normalization.

(c)	 Data splitting: Dividing the dataset into training and 
testing sets. A training set was used to train the model 
and a test set was employed to evaluate the trained 
model. Random and stratified sampling are the com-
monly used methods.

(d)	 Feature engineering: Raw data is transformed, 
extracted, and selected to create informative and 
expressive feature sets.

(e)	 Algorithm selection: Suitable algorithms are chosen 
based on specific task requirements. The main task of 
the algorithm is mult-classification.

(f)	 Training and tuning of parameters: The algorithm’s 
parameters can be tuned to improve the performance 
of the model further. Generally, each algorithm has a 
unique set of parameters that can be adjusted.

(g)	 Algorithm evaluation: The performance of the trained 
model is assessed using the testing dataset and appro-
priate evaluation metrics.

Based on the structure of NIMROD-ISiS, the dataset was 
initially split based on the ring number determined by the 
forward angle of the detector. Subsequently, the data were 
divided into two categories: telescope and supertelescope 

Fig. 3   (Color online) The structure of ensemble learning and boosting method
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detectors. The Geant4 dataset was used for training and test-
ing with machine learning and deep learning algorithms. 
After identifying the optimal algorithms, a subset of the 
detector data was used to evaluate the generalization ability 
of the algorithms.

Two classification strategies are adopted in this study.

(a)	 Using the algorithm to train and test charge and mass 
numbers, independently.

(b)	 In classifying particle mass numbers, the particle’s 
charge number was included as a part of the data fea-
tures. From a logical perspective, this strategy is similar 
to traditional particle identification methods.

In a practical study, the experimental data exhibited a 
highly unbalanced distribution. Randomly extracting data 
can lead to disparate data category distributions among the 
training, validation, and test sets. This can cause critical 
code errors and poor performance. Therefore, to address this 
problem, stratified sampling was employed as an alternative 
to random sampling.

3 � Results and discussion

As the core task of particle identification involves multi-
ple classifications, the use of suitable evaluation metrics for 
multiple classification algorithms is important. Common 
evaluation metrics include the accuracy, recall, precision, 
and f1-score [72–76]. These metrics help assess the perfor-
mance of the algorithm from different aspects. The results of 
the classification task can be categorized into the following 
four types: 

(a)	 Predict positive samples as positive. (TP)
(b)	 Predict negative samples as negative. (TN)
(c)	 Predict negative samples as positive. (FP)
(d)	 Predict positive samples as negative. (FN)

When evaluating the algorithm, the corresponding evalu-
ation metrics were calculated using the classification 
results. The equations are as follows:

Accuracy is defined as a measure of correctness. The preci-
sion measures the correctness of a model in predicting posi-
tive examples. The recall represents the coverage of positive 
samples that are correctly predicted. The f1-score is a com-
pound evaluation metric consisting of precision and recall.

Because the problem of positive and negative samples 
is extended to multiple categories in multi-classification 
tasks, methods for computing comprehensively evaluated 
metrics are essential. Commonly used strategies are the 
micro average, macro average, and weighted average.

The macro average calculates the average precision and 
recall of each class.

The micro average ignores category differences and cal-
culates the overall TP, FP, TN, and FN.

(1)Accuracy =(TP + TN)∕(TP + TN + FP + FN)

(2)Precision =(TP)∕(TP + FP)

(3)Recall =(TP)∕(TP + FN)

(4)
F1 − score =2 × Precision × Recall∕(Precision + Recall)

Fig. 4   (Color online) The procedure of applying intelligent algorithms in this paper. The process is divided into three parts: datasets and algo-
rithms, model training and testing, and evaluation of test results. Model training and testing is the most important part
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The weighted average is similar to the macro average, 
but uses category proportions as weights to calculate per-
formance metrics.

In particle identification, all generated particles have 
equal significance. Therefore, the macro average was cho-
sen as the calculation method for the evaluation metrics. 
The macro average provides a balanced assessment across 
all classes and facilitates a comprehensive understanding 
of model performance. Because the mass and charge deter-
mined the particle category, the charge and mass numbers 
were merged into a binary data format to calculate the evalu-
ation metric.

The particles detected by the NIMROD-ISiS detector 
array can be categorized as light ions (with proton numbers 
ranging from 1 to 4) or heavy ions. Most heavy ions cannot 
penetrate the Si detector, whereas most light particles pass 
through it. The disparity in the production yield between 
light particles and heavy ions during the reaction process 
leads to imbalances in data distribution. The dataset was 
split based on whether the particles hit the CsI detector. This 
approach solves the data imbalance problem in particle anal-
ysis and improves the algorithm performance. The XgBoost 
ensemble learning algorithm was selected for testing. The 
input data features were the total energy, energy deposition 
in the Si and CsI detectors, and the detector position. The 
charge and mass numbers of the particles were used as data 
labels. Figure 5 shows the results of XgBoost on the tel-
escope data. Table 1 shows the results of XgBoost on the 
super telescope data.

The model performed well when tested on particles that 
were not registered on a CsI detector. The evaluation metrics 
for each ring generally exceeded 0.85. The model performs 
better in identifying charge numbers than mass numbers. It 
also achieves high accuracy for particles registered on CsI 
detector. However, their precision, recall, and f1-score were 
low. This discrepancy is attributed to extreme data imbal-
ance. Figure 6 shows the mass distribution of ring 2. The 
mass distribution of the particles registered on CsI detector 
was highly non-uniform. There was a significant difference 
between the categories with the highest and lowest counts. 
The precise identification of rare categories is difficult for 
this model. As the evaluation strategy uses the macro aver-
age, the evaluation metrics of the classifier are calculated as 
average values across all categories. Thus, the performance 
of categories with small percentages significantly affected 
the overall evaluation metrics. The training strategies for 
charge and mass numbers did not show any significant dif-
ferences. Including the charge number as an additional data 
feature did not effectively improve the identification abil-
ity of the model for particles in deficient quantities. If the 
model fails to precisely predict the charge number of the 
particles, the accuracy of the mass number identification is 
also affected.

To address this problem, the following methods have been 
proposed: 

(a)	 Algorithm parameter optimization: Refining algorithm 
parameters (reducing the learning rate, increasing itera-

Fig. 5   (Color online) Test results of XgBoost on NIMROD–ISiS telescope data, where charge and mass numbers are trained independently. Fig-
ure a and b show the results of XgBoost on particles w/o registrations on CsI detector. The latter results are better than the former
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tion numbers, expanding tree depth, etc.) to improve 
accuracy, precision, and recall. However, adjusting the 
parameters alone had a limited impact on the categories 
with limited samples, even when distinct weights were 
assigned to each category.

(b)	 Data category adjustment: The imbalance ratio can be 
reduced by eliminating data categories that comprise 
only a few or a few dozen samples.

(c)	 Exploration of data preprocessing methods: Trying out 
different approaches, including normalization, stand-
ardization, or no data pre-processing.

The most effective solution to the severe shortage of sam-
ples in specific categories is to include additional data. This 
reduces the imbalance ratio and thus improves the accuracy. 
For instance, in ring 10, each category had over 20,000 
samples and the imbalance ratio was only 5:1. XgBoost 
performed well, with the evaluation metrics for each type 
exceeding 0.9.

Other factors, such as detector position and hardware con-
ditions, such as temperature and electronic signal drift, can 
cause scaling issues, thus affecting algorithm accuracy. To 
address this issue, Geant4 was used to simulate the experi-
ment and detector performance, enabling a focused research 
to address the imbalance issue.

In Geant4, the total particle energy, time of flight (ToF), 
kinetic energy before entering the detector, detector position, 
and particle energy deposition ( Eabs ) were selected as input 
data features. Testing with XgBoost demonstrated that the 
additional data features alleviated the data imbalance prob-
lem, resulting in excellent performance.

To confirm that this is not limited to XgBoost alone, a 
comparison test was conducted with other machine learn-
ing and deep learning algorithms. The test results (Fig. 7) 
confirmed the earlier findings. Tree-based machine learning 
algorithms such as XgBoost, and deep learning algorithm 
TabNet demonstrated excellent performance, whereas tradi-
tional machine learning algorithms, such as LR, SVM, and 
Bayesian classifiers, exhibited poor performance.

This result validates the effectiveness of the proposed 
approach in mitigating data imbalances. It also highlights the 
superiority of tree-based machine learning and deep learning 
algorithms in addressing this challenge.

Subsequently, the algorithms were evaluated using only 
the energy deposition as the data feature. XgBoost, Light-
GBM, CatBoost, and TabNet, which exhibited excellent 
performances in prior tests, were selected for this assess-
ment. The results demonstrated that each algorithm showed 
decreased accuracy in predicting the particle mass number.

Table 1   The  test results of 
XgBoost on NIMROD–ISiS 
super telescope data

CsIE Accuracy Precision Recall F1-score Label Strategy

Zero 0.996 0.996 0.957 0.969 Z Independence
Zero 0.934 0.874 0.844 0.856 A Independence
Zero 0.932 0.893 0.877 0.883 Z+A Independence
Zero 0.997 0.997 0.958 0.969 Z FirstZ,SecondA
Zero 0.966 0.908 0.893 0.9 A FirstZ,SecondA
Zero 0.964 0.924 0.916 0.919 Z+A FirstZ,SecondA
Non-Zero 0.974 0.473 0.402 0.425 Z Independence
Non-Zero 0.892 0.3 0.244 0.261 A Independence
Non-Zero 0.87 0.316 0.247 0.266 Z+A Independence
Non-Zero 0.974 0.468 0.401 0.425 Z FirstZ,SecondA
Non-Zero 0.903 0.326 0.274 0.289 A FirstZ,SecondA
Non-Zero 0.881 0.335 0.272 0.295 Z+A FirstZ,SecondA

Fig. 6   Mass number distribution for events w/o registration on CsI 
detectors in ring 2. The mass number distribution of particles with-
out registration on CsI detector is well balanced, with sample sizes 
exceeding 1000 in most categories. Among particles with registration 
on CsI detector, most heavy ions count around 100 occurrences
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Based on these observations, a series of additional data 
features were selected for comparative analysis. Numerous 
tests have shown that particle flight time is important for 
improving the accuracy of the algorithm. Although this fea-
ture alone proved insufficient for charge and mass number 
identification, its combination with the energy deposition 
feature enhanced the identification capabilities of the algo-
rithm. Detailed descriptions of the corresponding test results 
are presented in Tables 2 and 3.

The final phase of the study involved a comprehensive 
investigation of the generalization ability of the algorithms. 

Unlike previous tests involving data from all detectors, this 
phase focuses on training models using a specific subset 
of detectors, reserving the remaining data for testing. The 
data features include the time-of-flight (ToF) and energy 
deposition. The charge and mass numbers are trained inde-
pendently. Various data preprocessing techniques, including 
normalization and standardization, were explored during the 
testing phase. Before model training, datasets from specific 
detectors were normalized or standardized using the Min-
MaxScaler and StandardScaler methods from the sklearn.
preprocessing package in Python. These methods were also 

Fig. 7   (Color online) Test results of machine learning and deep learn-
ing algorithms on the Geant4 dataset, where charge and mass num-
bers are trained  independently. SVM, MNB, GNB, and LR perform 

poorly. MLP has relatively low precision and recall. Ensemble learn-
ing algorithms such as XgBoost and deep learning algorithm TabNet 
perform well

Table 2   Classification results from Geant4 simulation data, where 
charge and mass numbers are trained independently

Algorithm Accuracy Precision Recall F1-score Feature

XgBoost 0.127 0.045 0.079 0.05 ToF
XgBoost 0.862 0.863 0.827 0.839 E

abs

LightGBM 0.828 0.821 0.795 0.804 E
abs

CatBoost 0.836 0.804 0.765 0.771 E
abs

TabNet 0.813 0.837 0.762 0.791 E
abs

XgBoost 0.97 0.986 0.963 0.971 E
abs

,ToF
LightGBM 0.947 0.95 0.936 0.943 E

abs
,ToF

CatBoost 0.948 0.948 0.914 0.926 E
abs

,ToF
TabNet 0.971 0.99 0.976 0.983 E

abs
,ToF

Table 3   Classification results from Geant4 simulation data, where 
charge number is one of the data features of mass number

Algorithm Accuracy Precision Recall F1-score Feature

XgBoost 0.127 0.056 0.079 0.051 ToF
XgBoost 0.87 0.878 0.839 0.852 E

abs

LightGBM 0.85 0.848 0.812 0.82 E
abs

CatBoost 0.83 0.798 0.752 0.757 E
abs

TabNet 0.828 0.854 0.794 0.821 E
abs

XgBoost 0.971 0.987 0.965 0.972 E
abs

,ToF
LightGBM 0.952 0.949 0.943 0.945 E

abs
,ToF

CatBoost 0.948 0.947 0.906 0.918 E
abs

,ToF
TabNet 0.952 0.985 0.948 0.963 E

abs
,ToF
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used to test data from other detectors before evaluating the 
trained model. However, these methods have a significantly 
negative impact on generalization ability. Therefore, no 
data preprocessing was performed. The results are shown 
in Fig. 8.

The performance of the algorithms was excellent. The 
evaluation metrics of TabNet and XgBoost are mostly over 
0.9 for all detector data (Fig. 9). These findings establish the 
efficacy of training models with robust generalization abili-
ties even in situations with limited data availability. Overall, 
these results highlight the advantages of machine learning 

and deep learning algorithms, and demonstrate their poten-
tial for practical applications.

Inspired by these findings, a similar study of data similar-
ity was conducted on specific rings of NIMROD-ISiS. The 
input data features included total energy, energy deposition, 
and detector position. Through testing, it was discovered 
that, depending on the similarity of the data, the detectors 
of NIMROD-ISiS can be divided into groups. Taking the 
data (particles registered on CsI detector) from ring 9 as an 
example, ring 9 can be further divided into two groups of 
detectors (Fig. 10a, b). The results depicted in Fig. 10 pro-
vide valuable information on the patterns and characteristics 
of the NIMROD-ISiS detector. Moreover, they contribute to 
the optimization of algorithms and the improvement of data-
processing methods. These findings also have significant 
implications for the study and enhancement of the detector 
array design and performance. Overall, the findings have 
practical implications.

4 � Conclusion

Particle identification in machine learning (ML) is an inte-
grated problem. Researchers must consider various factors 
including data selection, partitioning, feature engineering, 
preprocessing, algorithm selection, and parameter tuning. 
Traditional particle identification methods require significant 
manual effort and are limited by researchers’ experience and 
available time. Our study aims to develop a universal and 

Fig. 8   (Color online) The results of generalization ability test of the 
XgBoost algorithm on the Geant4 dataset using different data pre-
processing methods. It can be noticed that both normalization and 
standardization severely reduce the model’s generalization ability

Fig. 9   (Color online) The results of generalizability ability test of 
XgBoost, CatBoost, LightGBM, and TabNet. Figure a–d respectively 
show the accuracy, precision, recall, and f1-score curves. The evalu-

ation metrics of all algorithms exceed 0.8. The evaluation metrics of 
XgBoost and TabNet are mostly over 0.9. TabNet shows better gener-
alization ability than ensemble learning algorithms
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adaptable particle identification model that assists in manual 
processes. Although achieving 100% accuracy may not be 
possible, ensemble learning algorithms have meaningful 
results, especially XgBoost. The conclusions are as follows:

First, intelligent algorithms, particularly tree-based 
ensemble learning algorithms, can effectively identify par-
ticles in heavy-ion collisions at low and intermediate ener-
gies. This offers a viable alternative to traditional methods.

Secondly, addressing data imbalances is crucial for par-
ticle identification. Severe data imbalances significantly 
affected the results. The solutions include ensuring suffi-
cient data for a balanced distribution, adding additional data 
features beyond particle energy deposition, and construct-
ing different identification models based on the detector 
structure.

Third, training a specialized particle identification model 
using the existing data reduces the time and resources 
required for traditional particle identification. Laboratories 
conducting long-term, large-scale heavy-ion collision exper-
iments can be beneficial. This paves the way for the develop-
ment of a professional particle identification software.

Finally, machine learning algorithms can be used to study 
detector similarity, particularly in large-scale detector arrays 
with complex structures.

Combinations of supervised and unsupervised learn-
ing approaches should be explored in future studies. Other 
physics software such as NpTool [77] will also be used to 
simulate the experiments. NpTool is known for its efficient 

project management and simulation of various sophisticated 
detector arrays.

Because Geant4 simulations are time-consuming and 
resource-intensive, there is a need to explore alternative 
approaches for generating particle data. Generative Adver-
sarial Networks (GAN) [78] and Variational Autoencoders 
(VAE) [79] have shown promise in generating simulated 
data for detectors in the field of high energy physics [80–83]. 
The application of GAN and VAE can reduce the time and 
resources required for massive amounts of simulated data, 
thereby making the process more efficient and accessible.

Building on the excellent performance of TabNet, further 
investigations will include exploring additional deep learn-
ing algorithms, such as DeepGBM [84] and GrowNet [85]. 
Moreover, we attempted to change the existing ensemble 
learning algorithm into a multi-output algorithm to classify 
the mass and charge numbers simultaneously. Our research 
aims to enhance the understanding of the detector system 
in sophisticated experiments, which can be used to explore 
interesting clustering phenomena in nuclei [86–89].
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