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Abstract
The supercritical  CO2 Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its 
simple layout, compact structure, and high cycle efficiency. Mathematical models of four Brayton cycle layouts are devel-
oped in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power 
generation to promote the commercialization of nuclear energy. Parametric analysis, multi-objective optimizations, and 
four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes. 
Results show that for the same design thermal power scale of reactors, the higher the core’s exit temperature, the better the 
Brayton cycle’s thermo-economic performance. Among the four-cycle layouts, the recompression cycle (RC) has the best 
overall performance, followed by the simple recuperation cycle (SR) and the intercooling cycle (IC), and the worst is the 
reheating cycle (RH). However, RH has the lowest total cost of investment (Ctot) of $1619.85 million, and IC has the low-
est levelized cost of energy (LCOE) of 0.012 $/(kWh). The nuclear Brayton cycle system’s overall performance has been 
improved due to optimization. The performance of the molten salt reactor combined with the intercooling cycle (MSR-IC) 
scheme has the greatest improvement, with the net output power (Wnet), thermal efficiency ηt, and exergy efficiency (ηe) 
improved by 8.58%, 8.58%, and 11.21%, respectively. The performance of the lead-cooled fast reactor combined with the 
simple recuperation cycle scheme was optimized to increase Ctot by 27.78%. In comparison, the internal rate of return (IRR) 
increased by only 7.8%, which is not friendly to investors with limited funds. For the nuclear Brayton cycle, the molten salt 
reactor combined with the recompression cycle scheme should receive priority, and the gas-cooled fast reactor combined 
with the reheating cycle scheme should be considered carefully.

Keywords Supercritical  CO2 Brayton cycle · Nuclear power generation · Thermo-economic analysis · Multi-objective 
optimization · Decision-making methods

Abbreviations
GFR  Gas-cooled fast reactor
SFR  Sodium-cooled fast reactor
LFR  Lead-cooled fast reactor
MSR  Molten salt reactor
SR  Simple recuperation cycle
RC  Recompression cycle
RH  Re-heating cycle
IC  Intercooling cycle
SC  Specific cost
LCOE  Levelized cost of energy
IRR  Internal rate of return
PBP  Payback period
SP  Size parameters
APR  Area per net output power
HX  Heat exchanger
HTR  High-temperature recuperator
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LTR  Low-temperature recuperator
MC  Main compressor
DMM  Decision-making method
NSGA  Non-dominated sorting genetic algorithm
ORC  Organic Rankine cycle
PC  Pre-cooler
RC  Recompressor
Turb  Turbine
S-CO2BC  Supercritical carbon dioxide Brayton cycle

List of symbols
A  Area,  m2

c  Heat capacity, J/K
C  Cost, $
CF  Cash flow, $
d  Flow channel diameter, m
D  Hydraulic diameter, m
f  Friction coefficient
h  Specific enthalpy, kJ/kg
I  Exergy destruction, W
L  Channel length, m
m  Mass flow rate, kg/s
p  Pitch, mm
P  Pressure, kPa
PR  Pressure ratio
Q  Heat energy, W
s  Specific entropy, kJ/(kg K)
t  Thickness, mm
T  Temperature, K
V  Volume flow,  m2/s
W  Work, kJ

Subscripts
0  Ambient conditions
cold  Cold fluid
hot  Hot fluid
e  Exergy
f  Work fluid
net  Net
i  State point
in  Inlet
min  Minimum
max  Maximum
out  Outlet
tot  Total
rev  Revenues
xp  Expenses
c  Compressor
t  Turbine

Greek letters
ε  Surface roughness
η  Efficiency
μ  Kinematic viscosity

δ  Relative roughness
ρ  Density
α  Heat transfer coefficient

1 Introduction

The overuse of fossil energy is one of the major causes of 
global warming [1]. As one of the most efficient and clean 
energy sources, nuclear energy has been criticized for its 
high investment costs [2] and poor safety [3]. However, 
scholars have not given up their research on nuclear energy, 
and with the introduction of fourth-generation nuclear 
reactors, nuclear power generation has gradually become 
a research hotspot [4–6]. Most current power conversion 
systems in power plants use the steam Rankine cycle and 
gas turbine systems. However, the high reactor outlet tem-
peratures and pressures limit the efficiency of nuclear power 
conversion systems [7]. Compared with the steam Rankine 
cycle [8], the supercritical carbon dioxide (S-CO2) power 
cycle has the advantages of higher system thermal efficiency 
and a more compact power system equipment structure [9], 
which makes it well matched with nuclear power applica-
tions. However, compared to the advantages of supercriti-
cal helium power cycles in ultra-high temperature systems 
(above 1000 °C), S-CO2 power cycles are more suitable 
for medium-temperature operation (450–600 °C) in Gen-
eration IV reactors [10]. The advantages of a simple lay-
out and compact structure can save the investment cost of 
nuclear power generation systems, which is economically 
more advantageous than other energy types [11]. Simultane-
ously, the small footprint allows high-power-density nuclear 
power equipment to be assembled in the factory before being 
transported to the construction site by truck or train [12], 
facilitating the commercial use of nuclear power.

Currently, research on the supercritical carbon dioxide 
Brayton cycle (S-CO2BC) has focused on system perfor-
mance optimization [13], working fluid selection [14], 
techno-economic features, and their combinations with other 
thermal energy systems [15–17]. Ahn et al. [7] conducted 
a comparative analysis of S-CO2BC systems under vari-
ous cycle layouts and obtained that recompressed Brayton 
cycle systems have a higher thermal system efficiency and 
emergency efficiency than other cycle layouts. Kim et al. 
[18] analyzed the parameters, such as thermal system effi-
ciency and net system output power, as evaluation indices 
for an S-CO2 recompressed Brayton cycle system using the 
pinch-point temperature difference method, optimizing the 
operating parameters of the system to determine the opti-
mal operating conditions of the heat exchanger and other 
equipment. Song et al. [19] investigated the combined cycle 
system of the S-CO2 Brayton cycle and organic Rankine 
cycle (ORC), optimizing the system’s operating parameters 
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to improve the thermal performance of the combined cycle 
system significantly. Bian et al. [20] investigated and com-
pared the effects of different control valves on the dynamic 
performance of the  SCO2BC system in terms of both ther-
modynamic and safety performance. Wang et al. [21] inves-
tigated the dynamic response characteristics under S-CO2 
Brayton cycle failure conditions and proposed corresponding 
contingency measures.

All the above studies on the S-CO2 cycle system use a 
single objective function for evaluation. Since the single 
objective function cannot fully reflect the performance char-
acteristics of the S-CO2 cycle system, many scholars have 
also established multi-objective functions to research key 
evaluation parameters of the cycle system, such as thermal 
efficiency, net output power, and irreversible energy loss 
of the system. Wang et al. [22] established multi-objective 
functions, such as system thermal efficiency and net system 
output power, as evaluation parameters in the application of 
 SCO2BC in tower solar power systems to optimize various 
cycle systems, such as the simple recuperation, recompres-
sion, and pre-compression cycles. Battisti et al. [23] used 
the system thermal efficiency and heat transfer coefficient as 
objective functions in the S-CO2BC cycle to find the optimal 
performance of the system based on the variation in the heat 
source temperature, the mass flow rate of the working fluid 
on the heat source side, and the maximum temperature of 
the working fluid, respectively. Nami et al. [24] conducted 
an exergoeconomic analysis of a cogeneration system, a 
combined heat and power (CHP) system, including a gas 
turbine,  SCO2BC, and ORC. The average product unit cost 
of the system was reduced by 0.56 $/GJ after optimization, 
using the sum of investment cost, total endemic damage cost, 
and environmental impact cost as the objective function. 
Mohammad et al. [25] optimized the techno-economics of a 
simple recuperation Brayton cycle based on the genetic algo-
rithm (GA) so that the cycle produces 71% of the maximum 
power at the optimum point but at a cost rate of only 33% of 
the maximum power state. Li et al. [26] also considered the 
ecological performance of the system. They used the non-
dominated sorting genetic algorithm (NSGA-II) to optimize 
the net output power, thermal efficiency, and ecological per-
formance of the Brayton cycle system driven by a hybrid of 
fossil fuel and solar power.

In multi-objective optimization, due to the conflict 
between different objectives, optimizing one objective is 
at the cost of deteriorating other objectives, so obtaining 
a unique optimal solution is difficult. Instead, coordination 
and compromise are made among them so that the overall 
objective is as optimal as possible [27]. The general optimi-
zation algorithms all aim to obtain an optimal set of solu-
tions called the Pareto frontier [28]. Many methods have 
been proposed for obtaining compromise solutions from 
the Pareto frontier. Li et al. [29] used the NSGA-II method 

to optimize the proposed Brayton cycle model. In addition, 
multi-attribute decision-making methods (MADM), such 
as TOPSIS, LINMAP, and Shannon entropy, were used to 
select the optimal system parameters from the Pareto fron-
tier calculated by the NSGA-II method. Arora et al. [30] 
proposed a thermodynamic model of a simple recuperation 
Brayton system with irreversibility based on finite-element 
thermodynamic analysis. The proposed model was opti-
mized using NSGA-II and a multi-objective evolutionary 
algorithm based on decomposition (MOEAD), and the pro-
posed model was optimized by Shannon entropy, LINMAP, 
Fuzzy, Bellman–Zadeh, TOPSIS, and other MADM meth-
ods to find the optimal system parameters from the Pareto 
frontier. Rao et al. [31] proposed a new multi-objective 
optimization method, the Rao algorithm. A combined solar 
Brayton cycle–power system case study also investigated the 
proposed Rao algorithm. The MADM method was used to 
rank the Pareto optimal solutions based on the average rank. 
Kumar et al. [30] performed a multi-objective optimization 
of the Brayton cycle system model by NSGA-II, determin-
ing the optimal design parameters from the Pareto frontier 
using MADM methods such as Shannon entropy, LINMAP, 
Fuzzy, and TOPSIS.

Therefore, most of the research on multi-objective optimi-
zation of S-CO2BC based on nuclear power generation has 
been limited to thermodynamic performance. In contrast, 
some research has been conducted on its economics and 
safety. Also, there are few effective methods for determining 
the unique optimal solution for multi-objective optimization. 
This study develops a mathematical model of the Brayton 
cycle for four different cycle layouts and four Generation IV 
nuclear reactors. NSGA-II is used to optimize two objec-
tives, ηt and LCOE, simultaneously. The results of the four 
decision methods are evaluated using Taylor diagrams to 
obtain the unique optimal solution. Finally, the comprehen-
sive evaluation results of the multi-index are provided. The 
main contribution of this study is as follows:

• A sensitivity analysis of seven key parameters for four 
different layouts of the Brayton cycle was carried out 
to determine the decision variables and their range of 
values. The influence of the design parameters on the 
thermodynamics and economics of the system was ana-
lyzed.

• Taylor diagrams were used to evaluate the Pareto com-
promise solutions determined by the four MADM meth-
ods and to determine the unique optimal solution.

• The G1 + TOPSIS method was used to comprehen-
sively evaluate the optimization results by comparing 
16 schemes comprising four nuclear reactors and four 
layouts in terms of safety, compactness, thermal, and 
economic performances. The characteristics and final 
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ranking of each scheme are also given. Decision-makers 
can make scheme choices based on demand.

2  System layouts and assumptions

This study uses four different layouts of the Brayton cycle 
for optimization. One of the most basic cycle layouts is 
the simple recuperation cycle (SR). It consists of a turbine 
(Turb), a heat exchanger (HX), a recuperator (RC), a pre-
cooler (PC), a compressor, and a generator, as shown in 
Fig. 1. The working fluid is heated in the recuperator (state 
points 2–3) after being compressed near the critical point 
(state points 1–2) and then reheated by the cooling medium 
of reactor coolant in the heat exchanger (state points 3–4). 
At this point, the working fluid, which has a high enthalpy 

at the heat exchanger outlet, will expand in the turbine to do 
work and drive the generator to produce electricity (state 
points 4–5). The expanded working fluid is then cooled on 
the low-pressure side of the recuperator (state points 5–6) 
and further cooled by exchanging heat with cooling water in 
the pre-cooler before being compressed again (state points 
6–1).

Figure 2 shows the recompression cycle (RC), which has 
one more recompressor and recuperator than the simple 
recuperation cycle. In the recompression cycle, the working 
fluid is split at the outlet of the low-temperature recuperator 
(LTR) (state point 8), part of the fluid enters the pre-cooler 
(state points 2–3), and the rest enters the recompressor (state 
points 8–3b), finally converging at the high-pressure inlet 
side of the high-temperature recuperator (state point 3b). 
As the specific heat capacity of the fluid on the low-pressure 

Fig. 1  (Color online) a Schematic and b T–S diagram of a simple recuperation cycle (SR)

Fig. 2  (Color online) a Schematic and b T–S diagram of the recompression cycle (RC)
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side of the recuperator is less than that on the high-pressure 
side, increasing the mass flow rate of the fluid on the low-
pressure side can balance the specific heat capacity on both 
sides of the recuperator, enhancing heat recovery and avoid-
ing the pinch point.

The other two-cycle layouts are the reheating cycle 
and the intercooling cycle. As shown in Figs. 3 and 4, the 
working fluid is heated and expanded twice in the reheat-
ing cycle (state points 4–5 and 6–7), which means that 
more expansion work (Wtur1 and Wtur2) can be produced 
for the same compression work input (Wc), resulting in 
a higher net output work and cycle efficiency. The inter-
cooling cycle regulates the minimum pressure (P1) and 
intermediate pressure (P8) of the cycle using secondary 

compression and intercooling, thus reducing the required 
compression work (Wc1 and Wc2) to increase the cycle 
efficiency.

Several general assumptions are made to simplify the 
simulation, as follows:

(1) The S-CO2BC operates in the steady state.
(2) The heat losses are neglected during each part of the 

experiment.
(3) The cooling water used in the cooler is in the environ-

mental state.
(4) The resistance loss of the pipeline is ignored.

Fig. 3  (Color online) a Schematic and b T–S diagram of the reheating cycle (RH)

Fig. 4  (Color online) a Schematic and b T–S diagram of the intercooling cycle (IC)
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3  Methodology description

A comprehensive multi-index evaluation and optimization 
method based on designing power conversion systems for 
nuclear power plants can guide decision-makers. As shown 
in Fig. 5, the method is based on the hierarchical analysis 
method, which consists of the scheme hierarchy (four nuclear 
reactors and four-cycle layouts), the index hierarchy (consist-
ing of 11 indices at four levels), and the target hierarchy. (The 
best scheme can be evaluated based on the actual needs of 
decision-makers.) The data in the index hierarchy are obtained 
from the model layer. Before the final evaluation, it is neces-
sary to optimize each scheme to ensure the accuracy of the 
evaluation. The optimization process mainly uses the NSGA-
II algorithm to obtain the Pareto optimal frontier. Then, four 
multi-attribute decision methods are used to obtain the com-
promise schemes. Finally, the optimal results of each scheme 
were obtained by comparing the four compromise schemes 
through Taylor diagrams. The optimal results are evaluated to 
obtain the optimal scheme.

3.1  Fundamental model

This section presents the thermodynamic model, the heat 
exchanger thermal–hydraulic model, and the techno-economic 
model for the nuclear Brayton cycle system. The models are 
mainly constructed by calling the NIST REFPROP database 
through the simulation program.

3.1.1  Thermodynamic model

A thermodynamic model was constructed based on the first 
and second principles of thermodynamics. The energy calcula-
tions for the main components for all cycle layouts are given 
in Table 1. In Table 1, Q represents the heat transfer flow rate, 
W represents output/input power, and h represents enthalpy.

For the recompression cycle, the total input power of the 
main compressor and recompressor can be expressed as:

(1)WMC = mf

(
hMC,out − hMC,out

)
SR

(2)WRC = mf

(
hRC,out − hRC,out

)
(1 − SR)

where SR is the system circulation diversion ratio.
In the reheating cycle, as shown in Fig. 3, the reactor cool-

ing fluid is divided equally into two parts, which are heated 
in turn to the working fluid and then converge and enter the 
reactor, and the heat transfer flow rate between the two times 
is expressed as:

where cp is the specific heat capacity of the reactor cooling 
fluid and ΔTcf is the confluence temperature difference of 
the reactor cooling fluid.

The net output work of the S-CO2BC system:

The thermal efficiency of the S-CO2BC system:

Exergy is the part of the energy that can do work, and the 
exergy destruction is inevitable in the actual process. Exergy 
efficiency is an effective method to evaluate the supercritical 
Brayton cycle. The exergy of each state point can be calculated 
by:

where m denotes the working fluid mass flow rate, hi and si 
are the specific enthalpy and entropy at each point, and 0 
refers to the environment state. TR is the temperature of the 
coolant that enters HX to provide heat for the cycle (Fig. 5).

The cycle exergy efficiency is defined as:

(3)QHX1 = mf

(
h4 − h3

)
= 0.5mRcP

(
TR , in − TR , out,1

)

(4)QHX2 = mf

(
h6 − h5

)
= 0.5mRcP

(
TR , in − TR , out,2

)

(5)ΔTcf = (TR , out,2 − TR, out,1)∕2

(6)Wnet = WTur −WC

(7)�t = Wnet∕QHX × 100%

(8)Ei = m
[(
hi − h0

)
− T0

(
si − s0

)]

(9)Ein = QHX(1 − T0∕TR)

(10)�e = Wnet

/
E
in

Table 1  Calculation of energy 
of main components

Components Energy

Heat exchanger QHX = mf

(
hHX , out − hHX , in

)
= mRcP

(
TR , in − TR , out

)
Recuperator QRecup = mf,H

(
hH,in − hH.out

)
= mf,L

(
hL,out − hL,in

)
Turbine hTur,out =

(
hTur , out , is − hTur,in

)
�T + hTur, in

WTur = hTur, out − hTur,in

Compressor hC, out =
(
hC, out , is − hC, in

)
∕�C + hC, in

WC = hC, out − hC, in
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3.1.2  Heat exchangers’ thermal–hydraulic model

PCHEs were chosen for the heat exchange thermal–hydrau-
lic model because they have been adopted in many stud-
ies on  SCO2-based power cycles due to their compact size 
and ability to withstand high pressures. A model similar to 
that proposed in Dostal’s Thesis [32] is used in this work. 
According to the assumptions established in Ref. [32], it is 
sufficient to model a pair of hot and cold channels rather than 
the entire core of the PCHE. PCHEs adopt a semi-circular 
straight channel model [33]. Figure 6 shows the structural 
diagram of a heat exchange unit.

The logarithmic mean temperature difference (LMTD) 
method was used to calculate the heat transfer area, as 

indicated in Eq. (11). The total heat transfer coefficient was 
calculated using the contributions of the thermal resistances 
by conduction and convection [Eq. (12)], and the convec-
tive heat transfer coefficient was calculated using Eq. (13), 
where D is the hydraulic diameter. The calculation formula 
is shown in Eq. (14), and the Reynolds number is calculated 
using Eq. (15).

(11)Q = UAΔTlmtd

(12)
1

U
=

1

�hot
+

t

�
+

1

�cold

Fig. 5  Description of comprehensive multi-index evaluation and optimization method
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For the hydraulic model, only pressure drops due to 
friction were considered. The well-known Darcy–Weis-
bach equation [Eq. (16)] was applied in each segment. The 
total pressure drop for each channel is given by Eq. (27).

In Appendix, the equations used to calculate the Nusselt 
number (Nu) and the friction factor (f) are presented. It is 
worth noting that in PCHE, the relative roughness δ of the 
pipe is the ratio of the surface roughness ε (ε =  10–3 is used 
in this study) [32] to the pipe diameter d.

3.1.3  Model validation

This study intends to establish and verify the model 
through simulation software based on the data of the 
advanced burner test reactor preconceptual design report 
provided by Argonne National Laboratory in the United 
States [33]. This experiment is a performance study of 
the sodium-cooled fast reactor coupled with the S-CO2 
recompression Brayton cycle (RC); the reactor cooling 
medium is metallic sodium. The initial parameters for 
cycle simulation are given in Table 2 and 3 for validation. 
The comparison between the model established in this 
study and the experimental parameters in the references 
is shown in Fig. 7 and Table 4. The errors of entropy and 
temperature at each point of the cycle are guaranteed to be 
within 3%, which verifies the model’s accuracy. Therefore, 
the model can be used for further parameter analysis and 
optimization.

(13)� =
Nuk

D

(14)D =
4�d2

8
(

1

2
�d + d

)

(15)Re =
GD

�

(16)ΔP = f
L

D
�
V2

2
+ C�

V2

2

3.1.4  Techno‑economic model

Four economic indices and two compactness indices have been 
adopted in this study to holistically assess the techno-econom-
ics of the nuclear Brayton cycle holistically. Specifically, these 
include the heat transfer area per net output power (APR) and 
the turbine characteristic size parameter (SP), which represents 
compactness, and Ctot, SC, LCOE, and IRR, which represent 
economy.

The heat transfer area per net output power (APR), which is 
the ratio of heat exchange area to net output work, is used as an 
evaluation criterion for the compactness of the heat exchanger. 
APR is defined as:

(17)APR = (AHX + ARC + AC)∕Wnet

Fig. 6  Structure diagram of 
PCHE

Table 2  Setting parameters in the experiment [33]

Term Value

Turbine inlet temperature, Tmax (K) 744.95
Main compressor inlet temperature, Tmin (K) 304.4
Main compressor inlet pressure, Pmin (MPa) 31.25
Main compressor outlet pressure, Pmax (MPa) 7.4
Turbine isentropic efficiency, ηT 0.934
Main compressor isentropic efficiency, ηMC 0.891
Recompressor isentropic efficiency, ηRC 0.875
Environment temperature, T0 (K) 303.15
Environment pressure P0 (MPa) 0.1
Shunt ratio, SR 0.71
Reactor power, Qr (MWt) 250
Sodium mass flow,  mr (Kg/s) 1259
Sodium inlet temperature,  Tr,in (K) 761.15
Sodium outlet temperature, Tr,out (K) 606.15

Table 3  Geometric parameters of PCHE [33]

T (mm) d (mm) p (mm) L (m)

Heat exchanger 2.0 2 2.4 1
Recuperator 2 1.5 2.3 0.6
Cooler 1.66 2.0 2.4 0.593
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The turbine characteristic size parameter (SP) is an index 
used to evaluate the ease and compactness of turbine manu-
facturing. The smaller the SP, the more compact the turbine 
structure. It is defined as:

where VTur denotes the volume flow rate of the working fluid 
in the turbine, Δhisen denotes the isentropic enthalpy drop at 
the inlet and outlet of the working fluid of the turbine.

The specific cost (SC) represents the average investment 
cost of the unit power output of the power plant and is defined 
as:

(18)SP =
√
VTur

�
Δh0.25

isen

(19)SC =
Ctot

Wnet

where Ctot is the total investment cost, considering the equip-
ment cost (including reactor, PCHE, compressor, and tur-
bine) and the auxiliary equipment and installation cost. Cinst 
is the auxiliary installation cost index.

The cost of PCHE is calculated by referring to the cal-
culation method in Dr Dostal and the quotation of Heatric 
(30 $/kg for stainless steel units) [32], calculating the weight 
of PCHE to estimate its cost. The formula for calculating the 
weight of the PCHE is given in Eqs. (21) and (22).

(20)Ctot =

(
CR +

N∑
j=1

CPCHE,j +

N∑
j=1

CTur,j +

N∑
j=1

CC,j

)
Cinst

(21)MPCHE = VPCHE ⋅ fm ⋅ �

Fig. 7  (Color online) Validation of the constructed S-CO2BC model

Table 4  Comparison between 
the results calculated using the 
established model and the data 
from Ref. [33]

Parameters Reference Calculated Error (%)

Working fluid  (CO2) mass flow rate, mf (kg/s) 1377 1371.4 0.4
Compressor input power, WC (KW) 53,151 56,114 5.57
Turbine output power, WTur (KW) 157,530 159,570 1.29
Cooler outlet water temperature, TWater, out (°C) 35.8 36.5 1.95
Thermal efficiency, ηt (%) 41.6 41.41 0.46

Table 5  Method of calculating the cost of system components

Components Capital investment cost function data sources

Reactor ZR = CinQr, Cin = 283 $∕kWth [34]
Turbine CT = 479.34mT

(
1

0.93−�T

)
ln
(
�T
)(
1 + exp

(
0.036TT − 54.4

)) [35]

Compressors Cc = 71.1min

(
1∕0.92 − �c

)
PRc ⋅ ln(PRc) [35]
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where VPCHE denotes the volume of the PCHE and fm 
represents the actual volume per cubic meter of the heat 
exchanger. The cost calculation method for other parts is 
shown in Table 5. Notably, among the costs calculated by 
these formulas, the heat exchangers and reactors cost the 
equivalent of 2003 dollar values, while the remaining com-
ponents cost the equivalent of 1994 dollar values [32]. This 
study converts the calculated cost multiplied by the inflation 
factor to the cost at the end of 2022. Inflation data for the US 
power sector show that the inflation rates for 1994 and 2003 
to 2022 are 78.29% and 60.78%, respectively.

The levelized cost of electricity (LCOE) is the cost of 
generating electricity over the full life cycle of the power 
plant, defined as:

The internal rate of return (IRR) is defined as:

The data required to calculate the economic indices are 
shown in Table 6.

(22)fm = 1 −
�d2

8Pt

(23)LCOE =
PVE

8760u ⋅ NY ⋅Wnet

(24)PVE = Ctot +

NY∑
k=1

CFxp,k

(1 + r)k

(25)CFxp,k = Wnet

(
OM(1 + er)k

)

(26)−Ctot +

NY∑
k=1

CFrev,k − CFxp,k

(1 + IRR)k
= 0

(27)CFrev,k = Wnet

(
8760 ⋅ u ⋅ Ce(1 − dr)k

)

3.2  Multi‑objective optimization model

Compared to single-objective optimization, multi-objec-
tive optimization can optimize two or more mutually 
constrained objectives simultaneously. This study used 
the non-dominant sorting genetic algorithm NSGA-II to 
optimize two contradictory objectives: ηt (thermodynamic 
performance) and LCOE (economic performance). The 
turbine inlet temperature Tmax, main compressor outlet 
pressure Pmax, turbine efficiency, compressor efficiency ηC, 
split ratio SR (only for recompression cycle), confluence 
temperature difference ΔTcf (only for reheating cycle) and 
primary compression pressure Ppr (only for intercooling 
cycle) were selected as the decision variables for optimi-
zation. Therefore, the multi-objective optimization model 
can be expressed as:

The NSGA-II method is based on a genetic algorithm 
and the Pareto optimal concept. It is a commonly used 
multi-objective optimization algorithm whose basic idea is 
to generate different sets of decision variables (also called 
individuals) within a certain range and to use these sets of 
variables to calculate thermodynamic and techno-economic 
metrics. By evaluating and ranking the objective functions, 
NSGA-II can analyze each optimal solution and the subopti-
mal solutions adjacent to them according to the value of the 
objective function and plot these solutions on a Pareto fron-
tal map to help decision-makers find an equilibrium point to 
achieve multi-objective optimization. The main parameters 
of the NSGA-II are listed in Table 7. These parameters are 
used to control the execution of the algorithm and influence 
the quality and computational efficiency of the solution.

3.3  Decision‑making methods (DMM)

After NSGA-II optimization, only an optimal solution set 
can be obtained. Further, Pareto compromise solutions 

(28)
{

max
(
�t
)
= f1

(
Pmax, Tmax, �T, �C, SR,ΔTcf,Ppr

)
min (LCOE) = f2

(
Pmax, Tmax, �T, �C, SR,ΔTcf,Ppr

)

Table 6  Assumptions in the economic calculation [36]

Plant Data

Plant installation cost, Cinst 1.3
O&M operations, OM ($/kWe) 30
Escalation rate, er (%) 3
Plant degradation rate, dr (%) 1
Electricity market price, Ce ($/kWh) 0.06
Plant lifetime, NY (years) 20
Plant utilization factor, u (%) 85
Discount rate, r (%) 5

Table 7  Input parameters of NSGA-II

Parameters Value

Population size 100
Maximum generation 120
Crossover probability 0.8
Mutation probability 0.2
Selection function Binary tournament
Objective functions LCOE(min), ·ηt(max)
Decision variables Pmax, Tmax, ηC, ηT, SR, ΔTcf, Ppr
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must be obtained to obtain a unique solution. Previous 
studies have shown a large variation in the Pareto com-
promise solution obtained by different decision methods, 
making it impossible for decision-makers to judge which 
method obtains the desired results. Therefore, this study 
uses various decision methods, including Shannon entropy, 
a modified technique for order preference by similarity to 
ideal solution (TOPSIS), linear programming techniques, 
multidimensional analysis preference (LINMAP), and the 
analytic hierarchy process (AHP) to determine four Pareto 
compromise solutions. Finally, Taylor diagrams are used 
to evaluate the priority of these compromise solutions to 
obtain the final Pareto optimal compromise solution.

3.3.1  DMM1: Shannon entropy model

The basic idea of the Shannon entropy method is to deter-
mine the optimal solution by calculating the information 
entropy value of each solution to measure its stochastic-
ity and uncertainty. A smaller information entropy value 
indicates a more deterministic and reliable solution and, 
conversely, a more uncertain and stochastic solution.

Normalization of the decision-making matrix:

where Eij is the objective value, i and j represent the quanti-
ties of the scheme and objective function.

The Shannon entropy is defined as:

Equation (31) evaluates the weight of the objective. 
Equation (32) calculates the matrix of solutions sorted in 
descending order after decision-making. Shannon entropy 
point is searched from the Wi, which ranked first.

3.3.2  DMM2 and DMM3: modified TOPSIS and LINMAP 
model

The shortest Euclidean distance between the Pareto 
optimal solution and the longest distance with the nadir 
point identifies the traditional (TOPSIS) points. The limi-
tation of this method is that there may be two TOPSIS 

(29)Eij =
Fij∑n

i=1
Fij

, i = 1, 2,… , n, j = 1, 2,… ,m

(30)Hj = −
1

ln(n)

n∑
i=1

Eij lnEij

(31)wj =
(
1 − Hj

)/ m∑
j=1

(
1 − Hj

)

(32)Wi = Eij ⋅ wj

decision-making points at different locations. For this rea-
son, relative entropy is introduced in this study to correct 
it.

Positive Z+ = (z + 1, z + 2,  ..., z + n) and negative 
Z− = (z − 1, z − 2, ..., z − n) ideal solutions are explained 
as below:

Relative entropy distance is calculated as:

The modified TOPSIS point is selected according to the 
maximum coefficient Ti:

Based on the relative entropy, the modified LINMAP 
point is defined as:

3.3.3  DMM4: AHP model

Compared to the previous methods, AHP (analytic hierar-
chy process) is a subjective weighting method. It allows for 
defining the weight of the objective values in decision-mak-
ing according to the decision-maker's preference. The judg-
ment matrix constructed for the Pareto frontier is defined as:

where i and j represent the importance of the corresponding 
indices, and the importance of the thermodynamic, tech-
economic, and compactness indices are 3, 2, and 1, respec-
tively, for this study. The weight matrix of the AHP method 
is defined as:
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The normalization matrix constructed by the AHP 
method is the same as that of the Shannon entropy model, 
with specific reference to Eq. (29). The final decision matrix, 
Eq. (41), is obtained by multiplying the two. The AHP point 
is searched based on the Ai, which ranked first.

3.3.4  Taylor diagram evaluation model

Taylor diagrams [37] are a graphical technique for compar-
ing performance differences between multi-objective opti-
mization solutions. Taylor diagrams allow the performance 
metrics of multiple solutions to be plotted in the same coor-
dinate system to visualize the differences between them. The 
performance metrics include root-mean-square difference 
(Rrmsd), correlation coefficient (Ccoef), and standard devia-
tion (Sstd). The specific formulas are expressed as:

3.4  Final evaluation model: G1 + TOPSIS

The optimal result for each solution can be obtained after 
performing multi-objective optimization. In order to com-
prehensively compare the advantages and disadvantages 
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of each scheme, in this study, the G1 [38] (ordinal rela-
tion analysis method) + TOPSIS comprehensive evalu-
ation model is established. The four reactors and four-
cycle layouts are compared in all aspects, including safety, 
thermodynamics, economics, and compactness. The safety 
problems of nuclear reactors are related to aspects that 
this study has not discussed deeply. This study refers to 
Bertrand et al. [4] for the safety assessment of Genera-
tion IV nuclear reactors. The safety of different nuclear 
reactors is scored in terms of Natural prevention capabil-
ity for each concept and Natural mitigation capability for 
each concept. Notably, Ref. [4] does not assess the safety 
of lead-cooled fast reactors, and this study combines the 
evaluation of the safety of Gen IV reactors by Kelly [39] 
and Tuček et al. [6] to finalize the values of indexes C1 and 
C2. The concept scores for prevention and mitigation are 
shown in Table 8. Table 9 shows all the indexes used for 
the evaluation. The evaluation process is shown in Fig. 8.

The TOPSIS model is described in Sect. 3.3.2. The 
ordinal relation analysis method (G1) uses the weight-
ing between each criterion layer. The following briefly 
describes the steps in the G1 method when determining 
weights.

Table 8  Reactor concept scores 
for prevention and mitigation (x 
and + means multiplying and 
adding indicators of the same 
box) [4]

Prevention indicators/concept GFR SFR LFR MSR

Loss of heat sink 31 31 31 33
(Unprotected) loss of flow accident/loss of coolant accident 21 21 21 11
TOP margin to prompt-criticality x power increase dynamics 11 32 32 11
Passive cooling conduction 11 13 11 33
Prevention total score 1.9 3.9 3.9 5.6
Cladding loading in sub-assembly thermomechanical + chemical 33 22 22 13
Primary boundary thermal loading 13 13 13 21
Containment loading mechanical (static) + mechanical (dynamic) 23 33 23 11
Fission product release inventory x confinement/retention 12 32 32 22
Mitigation total score 6.3 7.4 6.8 4.8

Table 9  Comprehensive evaluation indices

Criterion Indexes

Security (B1) Natural prevention capability (C1)
Natural mitigation capability (C2)

Thermodynamic (B2) Wnet (C3)
ηt (C4)
ηe (C5)

Economy (B3) Ctot(C6)
SC (C7)
LCOE (C8)
IRR (C9)

Compactness (B4) PBP (C10)
APR (C11)



Multi‑objective optimization and evaluation of supercritical  CO2 Brayton cycle for nuclear… Page 13 of 27 22

Step 1 Determine the ranking relationship of each index 
according to the importance of each evaluation index in 
the research object. The ranking determined in this study 
is B1 > B2 > B3 > B4. Their relative importance was 1.6, 
1.2, and 1.4, respectively.

Step 2 Give a comparative judgment of the relative 
importance between adjacent indexes and assign a value:

where, n is the total number of evaluation indexes.
Step 3 Calculate the index weights wk , and give the 

Rational assignment wk subjectively.

The set of weights derived by the G1 method is (
w1,w2,⋯ ,wn

)T.
The final score for each scheme is the sum of the index 

score for each criterion level multiplied by the weights.

(45)rk =
wk−1

wk

(k = n, n − 1,⋯ , 2)

(46)
wn =

(
1 +

n∑
k=2

n∏
i=k

ri

)−1

wk−1 =rkwk (k = n, n − 1,⋯ , 2)

4  Results and discussion

This section focuses on the effect of seven key param-
eters on the thermal economy of a Brayton cycle system. 
The feasibility of four decision methods to obtain Pareto 
compromise solutions is analyzed. The differences in the 
thermo-economic indexes of each scheme before and after 
optimization are compared. Finally, the characteristics of 
each scheme are given by comprehensive evaluation. The 

Fig. 8  G1 + TOPSIS comprehensive evaluation process

Table 10  Main parameters of 
the reactor

GFR [40] SFR [41] LFR [42] MSR [42]

Power rating (MWt) 2400 2400 2400 2400
Coolant S-CO2 Sodium Lead NaCl–

KCl–
MgCl2 
salt

Primary system pressure (MPa) 20 0.1 0.1 0.1
Core inlet temperature (℃) 485.5 371 479 496
Core outlet temperature (℃) 650 510 573 581
Core flow rate (Kg/s) 11,708 13,580 173,600 29,000
Power conversion system S-CO2 S-CO2 S-CO2 S-CO2

Table 11  Conditions of the simulation

Input parameters Value

Compressor inlet temperature, Tmin (K) 304.4
Compressor inlet pressure, Pmin (MPa) 31.25
Compressor outlet pressure, Pmax (MPa) 7.4
Turbine isentropic efficiency, ηT [43] 0.9
Compressor isentropic efficiency, ηC [43] 0.85
Environment temperature, T0 (K) 303.15
Environment pressure, P0 (MPa)[33] 0.1
Shunt ratio, SR 0.71
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main parameters used for the system simulation analysis are 
given in Tables 10 and 11. The specific parameters of PCHE 
can be obtained from.

4.1  Parametric analysis

Firstly, a single-objective parametric analysis was performed 
to determine the direction of the multi-objective optimiza-
tion. The parameters on the heat source side of this sec-
tion are analyzed using sodium-cooled fast reactors (SFR). 
Figure 9 shows the variation in the four indices represent-
ing thermodynamics and economy with compressor outlet 
pressure. As Pmax increases, the total cost of the system and 
the exergy efficiency both show an increasing trend. For RC 
and RH, the system’s thermal efficiency increases and then 
reduces as Pmax increases. The levelized electricity cost in 
the system reduces and then increases as Pmax increases. The 
reason for this trend is that as the pressure increases, the 
enthalpy of the turbine inlet working fluid increases, leading 
to an increase in output power. However, simultaneously, the 
pressure-bearing requirements of the components increase, 

the system’s total cost increases, and the cost increases 
faster than the system’s power output, meaning that there is 
an intermediate Pmax at which ηt or LCOE of the system is 
optimized. Figure 10 shows that as Pmax increases, the ther-
modynamic performance of the system increases, and the 
LCOE decreases. However, the initial investment cost (Ctot) 
also increases, meaning that the higher the system tempera-
ture within a certain range, the better the obtainable thermal 
and economic performances, but with a higher initial invest-
ment. Both the cycle efficiency and the cost of the system are 
influenced by the efficiency of the turbine (ηT) and the com-
pressor (ηC), so this study analyzes their thermo-economic 
impact. Figures 11 and 12 show the effect of ηC and ηT on 
the thermo-economic performance of the system, and they 
have a similar impact on other system indices. Both system 
ηt and ηe increase as they increase, and the system’s thermo-
dynamic performance is enhanced. The system’s total cost 
increases rapidly after ηT and ηC around 0.85. LCOE shows 
a decreasing trend and then increases, reaching a minimum 
at ηT and ηC around 0.85. Not the higher the ηT and ηC, the 
better it is. Decision-makers should consider this carefully.

Fig. 9  Effect of main compressor outlet pressure (Pmax) on system thermo-economic performance

Fig. 10  Effect of turbine inlet temperature (Tmax) on system thermo-economic performance
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This study investigates specific RC, RH, and IC cycle 
parameters. Among them, the shunt ratio (SR) is an impor-
tant parameter in the recompression cycle, and its influ-
ence on the thermo-economic of the cycle is shown in 

Fig. 13. The effect of SR on the thermo-economic of the 
system is monotonic. As the thermodynamic performance 
of the system decreases with increasing SR, the system’s 
total cost decreases. Nevertheless, the LCOE increases 

Fig. 11  Effect of compressor efficiency (ηC) on system thermo-economic performance

Fig. 12  Effect of turbine efficiency (ηT) on system thermo-economic performance

Fig. 13  Effect of shunt ratio 
(SR) on system thermo-eco-
nomic performance
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with it, meaning that the smaller the SR within a certain 
range, the better, without considering investment costs. 
The ΔTcf in the reheat cycle affects the operating tem-
perature of the system. Therefore, it is necessary to study 
the ΔTcf effect on the thermal properties of the system. 
As shown in Fig. 14, the thermodynamic performance 
and the system’s economy increase with increasing ΔTcf. 

However, the system’s total cost also increases. A proper 
primary compression pressure (Ppr) can bring lower input 
power to the system. The ηt and ηe junctions of the system 
decrease Ppr increases, which indicates that an increase in 
Ppr is not beneficial to the thermodynamic performance of 
the system. Also, LCOE tends to be unfavorable under the 
influence of Ppr (Fig. 15).

Fig. 14  Effect of confluence 
temperature difference (ΔTcf) 
on system thermo-economic 
performance

Fig. 15  Effect of primary 
compression pressure (Ppr) 
on system thermo-economic 
performance

Table 12  Bounds of the decision variables

Parameters GFR SFR LFR MSR Layouts

Compressor outlet pressure, Pmax (MPa) 17–30 17–30 17–30 17–30 All
Turbine inlet temperature, Tmax (K) 803.15–903.15 663.15–763.15 726.15–826.15 734.15–834.15
Compressor efficiency, ηC 0.6–0.9 0.6–0.9 0.6–0.9 0.6–0.9
Turbine efficiency, ηT 0.65–0.9 0.65–0.9 0.65–0.9 0.65–0.9
Shunt ratio, SR 0.5–0.9 0.5–0.9 0.5–0.9 0.5–0.9 RC
Confluence temperature difference, ΔTcf (K) 0–10 0–10 0–10 0–10 RH
Primary compression pressure, Ppr (MPa) 8–12 8–12 8–12 8–12 IC
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4.2  Multi‑objective optimization results

From the analysis in Sect. 4.1, the cycle parameters Pmax 
and Tmax affect the system’s thermodynamics and economy 
greatly, and the trends of the effects conflict with each 
other. This section conducts a multi-objective optimization 
study with these parameters as decision variables. The con-
straint conditions of the decision parameters of the cycle 
with multi-objective optimization are shown in Table 12, 
respectively. Figure 16 depicts the Pareto optimal frontier 
of a supercritical  CO2 Brayton cycle system using NSGA-II 
optimization for four nuclear reactors combined with four-
cycle layouts. The optimization objectives are the net cycle 
efficiency (ηt) and the plant’s levelized cost of electricity 
(LCOE). The LCOE increases moderately and then rapidly 
with the increase of ηt because the system-levelized cost of 
electricity increases faster than the net cycle efficiency at 
higher evaporation pressure and turbine inlet temperature. 
Similar results have been found in previous studies, where 
thermodynamic and techno-economic performance is mutu-
ally constrained, with higher thermodynamic performance 
leading to decreased techno-economic performance. Com-
paring the optimization results of different nuclear reactors, 
the highest ηt is for gas-cooled fast reactors, where the high-
est is for recompression cycles (RC), up to 54.67%, due to 
the higher core exit temperature of the GFR for the same 
thermal power of the reactor, resulting in a higher cycle effi-
ciency. The LCOE of the intercooling cycle is the lowest at 
0.1207$/KWh, meaning that no single reactor type and cycle 
layout can achieve the techno-economic and thermodynamic 
performance optimum. The choice can be made according 
to different needs.

The ideal point of the Pareto frontier diagram is in the 
lower right corner outside the rectangular frontier, repre-
senting the theoretical goal of simultaneously obtaining the 
maximum ηt and the minimum LCOE. To determine the 
Pareto compromise solution, four decision methods, Shan-
non entropy, modified TOPSIS, LINMAP, and AHP, are 
applied in this study and compared on the Taylor diagram. 
Using Taylor diagrams, the final Pareto optimal solution is 
determined from these four decision points by measuring 
the root-mean-square difference, correlation coefficient, 
and standard deviation. Figure 16 shows the positions of the 
optimal solutions determined by different decision methods 
in the Pareto frontier. For the decision points, the Shannon 
entropy point is located at the maximum ηt point at the top 
of the frontier, while the LINMAP point is in the middle of 
the frontier. The TOPSIS and AHP points are close to the 
minimum LCOE points, respectively. The Taylor diagram of 
the decision process is shown in Fig. 17.

Figure 17 shows the scatter distribution of the four deci-
sion points in the Taylor diagram. In the figure, the correla-
tion coefficient (Ccoef), root-mean-squared deviation (Rrmsd), Fig. 16  (Color online) Pareto optimal frontier and four decision-making points
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and standard deviation (Sstd) are represented by blue dashed 
lines, green dashed lines, and black arcs, respectively. For 
example, the Ccoef, Rrmsd, and Ssrd of the TOPSIS point of 

RC in the SFR system are 0.9596, 0.0093, and 0.0094, 
respectively. The values of the ideal point are 1, 0, and 
0.0179, respectively. The ideal point in the Taylor diagram 

Fig. 17  Taylor diagram for measuring four decision-making points
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Fig. 17  (continued)
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has maximum Wnet, ηt, ηe, and IRR, and minimum LCOE, 
Ctot, SC, APR, and SP, which differs from the interpreta-
tion of the Pareto optimal frontier. These decision points 
are judged according to the principle that the smaller the 
Rrmsd is, the closer the absolute value of Ccoef is to 1, and 
the decision point closer to the ideal point is selected. The 
Shannon point is noticeably always far away from the ideal 
point, which indicates that the single-objective optimal 
result (maximum ηt) should not be chosen as the optimized 
working condition. From Fig. 17, the Rrmsd of ideal, Shannon 
entropy, LINMAP, TOPSIS and AHP points in the SFR-RC 
system are 0, 0.0386, 0.0117, 0.0093 and 0.0054, the Ccoef 
are 1, − 0.9648, 0.9682, 0.9596 and 0.9529, and the Sstd are 
0.0178, 0.0210, 0.0065, 0.0094, and 0.00170, respectively. 
Therefore, the AHP is determined as the final optimal Pareto 
solution closest to the ideal point. Similarly, the Rrmsd of the 
four decision points in the GFR-SR system are 0.01376 and 
0.00417, 0.00512 and 0.0041, and the Ccoef are –0.6512, 
0.8969, 0.5718 and 0.8245. The Rrmsd of Shannon entropy 
and TOPSIS points are larger, and the Rrmsd of LINMAP 
and AHP are close, but the Ccoef of LINMAP is closer to 
1. Therefore, the LINMAP point is chosen as the optimal 
point. Figure 18 summarizes the specific values in the Taylor 
diagram for all scenarios.

Table 13 shows the specific values of the multi-objective 
optimization results. Notably, the shunt ratio (SR) and the 
primary compression pressure (Pz) are concentrated around 
50% and 8.0 MPa, which are the minimum values of their 
iteration ranges. The smaller cycle shunt ratio improves the 
narrow point temperature difference of the cycle, increas-
ing the heat transfer efficiency of the cycle, which in turn 
improves the net cycle efficiency and reduces the power 
generation cost. Smaller primary compression pressure can 
reduce the primary compression energy consumption and 
thus improve the cycle efficiency. The cycle maximum tem-
perature is close to the maximum of their iterations, indicat-
ing that within a certain range, the higher the turbine inlet 
temperature is, the higher the net cycle efficiency is and the 
lower the LCOE is. The optimal value of the cycle maximum 
pressure (Pmax) is around 20 MPa or 30 MPa near the upper 
limit of the iterative range. A higher pressure does not imply 
better thermodynamic efficiency of the system and the cost 
of power generation. RC and RH cycles can achieve bet-
ter thermodynamic and techno-economic performance with 
a lower cycle pressure. The ηC and ηT are in the range of 
84–89%, which indicates that although the efficiency of the 
cycle is higher with larger ηC and ηT, the cost of the system 
also increases. An appropriate value can make the thermo-
dynamic and economic performance of the system reach the 
optimal value. Most of the final decision points fall under 

the AHP, TOPSIS, and LINMAP schemes, and the Shannon 
entropy method does not apply in the optimization decision.

The specific data for schemes before and after optimiza-
tion are given in Tables 14 and 15. Figure 19 shows the per-
centage change of each index before and after optimization. 
Comparing the data before and after optimization shows 
that the entire system performance improved significantly 
after NSGA-II optimization. The positive change indicates 
an increase, while the negative change represents a decrease. 
The net output power (Wnet), net efficiency (ηt), and exergy 
efficiency (ηe) all show an increasing trend, which indi-
cates that the thermodynamic performance of the system 
has a great improvement after the optimization of operat-
ing parameters. The MSR-IC scheme has the most obvious 
improvement, with the three indices increasing by 8.58%, 
8.58%, and 11.21%, respectively.

The SC and LCOE show a decreasing trend, and the IRR 
shows an increasing trend, which means that the overall 
economy of the system is improved. However, the Ctot of the 
system also increases. This is because the ηt and the LCOE 
as the optimization objectives do not consider the Ctot simul-
taneously, and they are mutually constrained. The LFR-SR 
scheme has the largest increase in Ctot, by 27.78%, while its 
IRR increases by only 7.8%. This optimization improves 
the thermodynamic efficiency of the system and the later 
revenue of the plant, but the optimization results are not 
friendly to investors with limited funds. For different cycle 
arrangements, the change in SP is not the same, where the 
compactness of the turbine for IC and SR has, respectively, 
improved by 10–15%, while the compactness of RC and RH 
has decreased, the compactness of SFR-RC has decreased 
by 3.79%, and the rest is not significant.

4.3  Comprehensive multi‑index evaluation results

After processing the indexes of the optimized scheme using 
the G1 + TOPSIS method, we obtained the strengths and 
weaknesses of each index at each level for each scheme, as 
shown in Fig. 20. Each color line in the diagram represents 
a combination of reactor and cycle arrangement, and the 
area enclosed by the diagram lines represents the degree 
of superiority or inferiority of this option. From the figure, 
the area enclosed by RC is the largest, which indicates that 
RC has the best overall performance among the four-cycle 
layouts, followed by SR and IC, and the worst is RH. The 
C10 index of SR is more prominent, and the C10 index of 
RC is more depressed, which indicates that the heat transfer 
area required for RC to obtain unit net output power is larger, 
and the system is less compact. Although all the indexes 
of RH are poor, its C6 index is the most prominent among 
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Fig. 18  Ccoef, Rrmsd, and Sstd of 
the Taylor diagram
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all cycle arrangements, which indicates that RH requires 
the lowest initial investment cost. The C8 index for IC is 
more prominent, indicating that it has the lowest LCOE. 
Each scheme has different characteristics that decision-mak-
ers can choose according to their needs. All indexes were 
assembled to finally obtain the comprehensive evaluation 
results for each scheme, as shown in Fig. 21. The results of 
the weights calculated in this study using the G1 method 
are B1 (0.3972), B2 (0.2482), B3 (0.2069), B4 (0.1478). 

From the evaluation results, the final reactor ranking is 
MSR > LFR > SFR > GFR, and the ranking for the cycle 
layouts is RC > SR > IC > RH. For the nuclear Brayton 
cycle, MSR-RC is the best scheme, followed by MSR–SR 
and GFR–RC, and the worst evaluation results are GFR–SR 
and GFR–RH. The results analysis is because safety is con-
sidered more important, and MSR has the best safety. The 
results of the cycle layouts ranking are consistent with the 
previous single-objective analysis.

Table 13  Pareto optimal 
working conditions and decision 
solutions

Schemes Pmax (MPa) Tmax (K) ηC (%) ηT (%) SR (%) ΔTcf (K) Pz (MPa) Solutions

GFR-RC 20.7331 903.1488 84.54 84.98 50.34 – – AHP
SFR-RC 18.1709 763.1468 85.19 85.19 50.01 – – AHP
LFR-RC 19.8486 826.1500 86.14 87.06 50.11 – – TOPSIS
MSR-RC 20.0013 834.1500 85.22 85.76 50.00 – – AHP
GFR-SR 29.9826 903.1500 84.49 87.27 – – – TOPSIS
SFR-SR 29.3426 763.1499 85.44 88.03 – – – AHP
LFR-SR 29.9884 826.1500 86.39 88.06 – – – LINMAP
MSR-SR 29.9921 834.1255 85.1 87.43 – – – TOPSIS
GFR-RH 20.1769 903.1485 83.78 86.19 – 7.4083 – AHP
SFR-RH 18.8858 763.1500 87.19 88.75 – 9.7056 – LINMAP
LFR-RH 20.6056 826.1500 87.07 87.88 – 9.9534 – TOPSIS
MSR-RH 20.6007 834.1500 86.75 88.65 – 9.9981 – LINMAP
GFR-IC 29.9999 903.1497 84.35 87.56 – – 8.0000 AHP
SFR-IC 29.9960 763.1494 84.25 87.6 – – 8.0083 AHP
LFR-IC 29.8960 826.1494 84.44 87.08 – – 8.0060 TOPSIS
MSR-IC 30.0000 834.1500 84.33 87.97 – – 8.0126 AHP

Table 14  Results for schemes 
before optimization

Schemes Wnet (kW) ηt (%) ηe (%) Ctot  (106$) SC ($/W) LCOE 
($/
(KW·h))

IRR (%) APR  (m2/W) SP

GFR-RC 1135.50 47.40 56.48 1518.84 1738.86 0.014 24 0.513 0.039
SFR-RC 971.80 40.41 51.81 1574.80 2106.66 0.016 19.3 0.522 0.038
LFR-RC 1048.80 43.81 54.05 1546.38 1916.76 0.015 21.5 0.467 0.038
MSR-RC 1052.67 44.21 54.32 1540.87 1902.91 0.015 21.7 0.459 0.039
GFR-SR 953.05 39.78 45.86 1399.38 1908.80 0.014 24.1 0.223 0.040
SFR-SR 817.71 34.00 41.23 1428.22 2270.59 0.016 19.9 0.215 0.038
LFR-SR 880.19 36.76 43.43 1413.58 2087.78 0.015 21.8 0.199 0.039
MSR-SR 883.33 37.09 43.69 1410.29 2075.53 0.015 22 0.196 0.039
GFR-RH 702.84 29.34 34.94 1336.55 2472.11 0.017 18 0.459 0.057
SFR-RH 663.68 27.60 34.39 1384.00 2710.96 0.018 16.1 0.335 0.055
LFR-RH 716.05 29.91 36.22 1370.82 2488.75 0.017 17.8 0.255 0.056
MSR-RH 718.97 30.19 36.44 1367.98 2473.50 0.017 18 0.247 0.056
GFR-IC 957.81 39.98 44.10 1371.33 1861.26 0.013 24.8 0.494 0.040
SFR-IC 833.75 34.67 39.52 1395.37 2175.70 0.015 20.9 0.549 0.038
LFR-IC 890.58 37.20 41.69 1383.15 2019.01 0.014 22.7 0.505 0.039
MSR-IC 893.03 37.50 41.96 1380.29 2009.33 0.014 22.8 0.498 0.039
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Table 15  Results for schemes 
after optimization

Schemes Wnet (kW) ηt (%) ηe (%) Ctot  (106$) SC ($/W) LCOE 
($/
(KW·h))

IRR (%) APR  (m2/W) SP

GFR-RC 1208.81 50.46 62.81 1797.04 1486.62 0.012 28.5 0.263 0.040
SFR-RC 1012.70 42.11 56.71 1840.04 1816.96 0.014 22.9 0.196 0.039
LFR-RC 1138.21 47.54 60.59 1905.22 1673.88 0.014 25 0.277 0.039
MSR-RC 1123.27 47.17 60.56 1841.93 1639.79 0.013 25.6 0.290 0.039
GFR-SR 990.18 41.33 49.08 1727.39 1744.53 0.013 26.6 0.153 0.035
SFR-SR 846.09 35.18 44.31 1801.34 2129.00 0.015 21.4 0.156 0.034
LFR-SR 922.60 38.53 46.85 1806.26 1957.79 0.014 23.5 0.140 0.035
MSR-SR 916.01 38.47 46.89 1753.89 1914.71 0.014 24.1 0.140 0.035
GFR-RH 757.27 31.61 37.73 1619.85 2139.06 0.015 21.3 0.279 0.057
SFR-RH 666.85 27.73 34.59 1734.03 2600.31 0.018 16.9 0.227 0.055
LFR-RH 718.78 30.02 36.31 1694.69 2357.73 0.016 19 0.254 0.056
MSR-RH 726.96 30.53 36.73 1714.08 2357.88 0.016 19 0.242 0.056
GFR-IC 1038.81 43.36 48.81 1713.79 1649.76 0.012 28.3 0.337 0.036
SFR-IC 897.88 37.33 43.94 1744.44 1942.84 0.014 23.7 0.389 0.034
LFR-IC 959.08 40.06 46.10 1713.28 1786.38 0.013 25.9 0.356 0.035
MSR-IC 969.69 40.72 46.66 1740.60 1795.00 0.013 25.8 0.346 0.035

GFR-RC SFR-RC LFR-RC MSR-RC

P
er

ce
n
ta

g
e 

ch
an

g
e 

o
f 

d
ec

is
io

n
 c

ri
te

ri
a 

v
al

u
e(

%
)

(a)

Wnet

ηt

ηE

Ctot

SC

LCOE

IRR

APR

SP

Recompression cycle

GFR-SR SFR-SR LFR-SR MSR-SR

P
er

ce
n

ta
g

e 
ch

an
g

e 
o

f 
d

ec
is

io
n

 c
ri

te
ri

a 
v

al
u

e(
%

)

(b)

Wnet

ηt

ηE

Ctot

SC

LCOE

IRR

APR

SP

Simple recuperation cycle 

GFR-RH SFR-RH LFR-RH MSR-RH

P
er

ce
n

ta
g

e 
ch

an
g

e 
o

f 
d

ec
is

io
n

 c
ri

te
ri

a 
v

al
u

e(
%

)

(c)

Wnet

ηt

ηE

Ctot

SC

LCOE

IRR

APR

SP

Re-heating cycle 

GFR-IC SFR-IC LFR-IC MSR-IC

P
er

ce
n
ta

g
e 

ch
an

g
e 

o
f 

d
ec

is
io

n
 c

ri
te

ri
a 

v
al

u
e(

%
)

(d)

Wnet

ηt

ηE

Ctot

SC

LCOE

IRR

APR

SP

Intercooling cycle 

Fig. 19  Percentage change of each index before and after optimization
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5  Conclusion

In this study, a mathematical model of the Brayton cycle 
was developed for four different cycle layouts. Paramet-
ric analysis was conducted to investigate seven crucial 

parameters that affect the thermo-economic performance 
of the Brayton cycle. The NSGA-II method was used to 
simultaneously optimize maximizing ηt and minimizing 
LCOE. Four decision methods obtained the compromise 
scheme from the Pareto optimal frontiers. Taylor diagrams 
are used to evaluate the four compromise solutions to find 
the optimal scheme. The changes in the indexes of each 
scheme before and after optimization are analyzed and 
discussed. Finally, the characteristics of each index after 
optimization for all schemes are given. The main conclu-
sions are summarized as follows:

(1) Higher pressure does not lead to better thermodynamic 
efficiency of the system and power generation costs. 
RC and RH cycles can achieve better thermodynamic 
and techno-economic performance with a lower cycle 
pressure.

(2) The overall performance of the nuclear Brayton cycle 
system has been improved due to optimization. The 
MSR-IC scheme has the most noticeable improvement, 
with the net output power Wnet, thermodynamic effi-

Fig. 20  (Color online) Com-
parison of all indexes of each 
optimal scheme

Fig. 21  (Color online) Comprehensive evaluation results
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ciency ηt, and exergy efficiency ηe improved by 8.58%, 
8.58%, and 11.21%, respectively.

(3) The LFR-SR scheme was optimized to increase Ctot 
by 27.78%, while the internal rate of return (IRR) 
increased by only 7.8%. This is not friendly to inves-
tors with limited funds.

(4) Among the four layouts, RC has the best overall per-
formance, followed by SR and IC, and the worst is RH. 
However, RH has the lowest Ctot, and IC has the lowest 
LCOE.

(5) Considering all indices of the four levels, the final reac-
tor ranking is MSR > LFR > SFR > GFR, and the cycle 
layouts ranking is RC > SR > IC > RH. For the nuclear 
Brayton cycle, MSR-RC should be given priority, while 
GFR-RH should be considered carefully.

Supercritical fluid power cycles have great potential for 
application. In this study, the application of the supercriti-
cal  CO2 Brayton cycle in nuclear power plants is consid-
ered. The constructed mathematical models and optimi-
zation decision methods can guide the design of nuclear 
power plants and wider energy fields with potential heat 
resources.

Appendix: Nusselt number and friction 
factor calculation

For the semi-circular straight channel PCHE, the Nussle 
number is calculated by the Gnielinski correlation [44]. 
The Nussle number in Eq.  (13) is calculated by Eqs. 
(A1)–(A3).

The friction factor (f) used for the Darcy–Weisbach 
equation [Eq. (16)] depends on the relative roughness of 
the channels [Eq. (A5)] and the Reynolds number. The 
Reynolds number from laminar to turbulent flow is calcu-
lated by Eqs. (A6)–(A9).

(A1)Nu = 4.089 (Re < 2300)

(A2)
Nu = 4.089 +

NuRe=5000 − 4.089

5000 − 2300
(Re − 2300) (2300 ⩽ Re < 5000)

(A3)Nu =

�
fd∕8

�
(Re − 1000)Pr

1 + 12.7
�
Pr2∕3 − 1

�√
fd∕8

(Re ⩾ 5000)

(A4)fd =

(
1

1.8 log10 (Re) − 1.5

)2

The friction factor (f) in Eq.  (16) is calculated by 
Eq. (35) [45].

When Re1 > Re > Re2, the f is obtained from Eq. (A12), 
where f1 is obtained from the formula given by Idelchik 
[46], as shown in Eq. (A13). The Colebrook–White cor-
relation [44] is used to calculate fi, and fn is calculated 
by iteration. When the error between fi and fn is less than 
0.01, it can be assumed that fi = fn. Eqs. (A16)–(A19) use 
the same calculation method.

When Re2 < Re < Re3

(A5)� =
�

d

(A6)Re0 =

{
2000, 𝛿 < 0.007

754 exp (0.0065∕𝛿), 𝛿 ≥ 0.007

(A7)Re1 =

{
2000, 𝛿 < 0.007

1160(1∕𝛿)0.11, 𝛿 ≥ 0.007

(A8)Re2 = 2090(1∕�)0.0635

(A9)Re3 = 441.19�−1.1772

(A10)f =
64

Re
(Re < Re0)

(A11)

f =

{
0.032 + 3.895 × 10−7(Re − 2000), 𝛿rel < 0.007

4.4Re−0.595 exp
(
−0.00275∕𝛿rel

)
, 𝛿rel ≥ 0.007

(
Re0 < Re < Re1

)

(A12)f =
(
f2 − f1

)
exp

{
−
[
0.0017

(
Re2 − Re

)]2}
+ f1

(A13)f1 =

{
0.032, 𝛿 < 0.007

0.075 −
(

0.0109

𝛿 0.286

)
, 𝛿 ≥ 0.007

(A14)fi = 0.11
(
� + 68∕Re2

)0.25

(A15)fn =

⎡⎢⎢⎢⎣
1

2 log10

�
2.51

Re2
√
fi
+

�

3.7

�
⎤⎥⎥⎥⎦

2

(A16)fi = 0.11
(
� + 68∕Re2

)0.25
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When Re > Re3

For more information on the above equations, it is recom-
mended to refer to the references cited in Appendix.
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