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Abstract
The extended kernel ridge regression (EKRR) method with odd–even effects was adopted to improve the description of 
the nuclear charge radius using five commonly used nuclear models. These are: (i) the isospin-dependent A1∕3 formula, (ii) 
relativistic continuum Hartree–Bogoliubov (RCHB) theory, (iii) Hartree–Fock–Bogoliubov (HFB) model HFB25, (iv) the 
Weizsäcker–Skyrme (WS) model WS

∗ , and (v) HFB25∗ model. In the last two models, the charge radii were calculated using 
a five-parameter formula with the nuclear shell corrections and deformations obtained from the WS and HFB25 models, 
respectively. For each model, the resultant root-mean-square deviation for the 1014 nuclei with proton number Z ≥ 8 can 
be significantly reduced to 0.009−0.013 fm after considering the modification with the EKRR method. The best among 
them was the RCHB model, with a root-mean-square deviation of 0.0092 fm. The extrapolation abilities of the KRR and 
EKRR methods for the neutron-rich region were examined, and it was found that after considering the odd–even effects, 
the extrapolation power was improved compared with that of the original KRR method. The strong odd–even staggering of 
nuclear charge radii of Ca and Cu isotopes and the abrupt kinks across the neutron N = 126 and 82 shell closures were also 
calculated and could be reproduced quite well by calculations using the EKRR method.
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1  Introduction

The nuclear charge radius, similar to other quantities such 
as the binding energy and half-life, is one of the most basic 
properties reflecting the important characteristics of atomic 
nuclei. Assuming a constant saturation density inside the 
nucleus, the nuclear charge radius is usually described by 
the A1∕3 law, where A is the mass number. By studying the 
charge radius, information on the nuclear shells and subshell 
structures [1, 2], shape transitions [3, 4], the neutron skin 
and halos [5–7], etc., can be obtained.

With improvements in the experimental techniques 
and measurement methods, various approaches have been 
adopted for measuring the nuclear charge radii [8, 9]. To 
date, more than 1000 nuclear charge radii have been meas-
ured [10, 11]. Recently, the charge radii of several very 
exotic nuclei have attracted interest, especially the strong 
odd–even staggering (OES) in some isotope chains and the 
abrupt kinks across neutron shell closures [2, 12–21], which 
provide a benchmark for nuclear models.

Theoretically, except for phenomenological formulae 
[22–29], various methods, including local-relationship-based 
models [30–35], macroscopic–microscopic models [36–39], 
nonrelativistic [40–43] and relativistic mean-field model 
[44–52], were used to systematically investigate nuclear 
charge radii. In addition, the ab initio no-core shell model 
was adopted for investigating this topic [53, 54]. Each model 
provides fairly good descriptions of the nuclear charge radii 
across the nuclear chart. However, with the exception of mod-
els based on local relationships, all of these methods have root-
mean-square (RMS) deviations larger than 0.02 fm. It should 
be noted that few of these models can reproduce strong OES 
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and abrupt kinks across the neutron shell closure. To under-
stand these nuclear phenomena, a more accurate description 
of nuclear charge radii is required.

Recently, due to the development of high-performance 
computing, machine learning methods have been widely 
adopted for investigating various aspects of nuclear physics 
[55–59]. Several machine learning methods have been used 
to improve the description of nuclear charge radii, such as 
artificial neural networks [60–63], Bayesian neural networks 
[64–68], the radial basis function approach [69], the kernel 
ridge regression (KRR) [70], etc. By training a machine 
learning network using radius residuals, that is, the devia-
tions between the experimental and calculated nuclear charge 
radii, machine learning methods can reduce the corresponding 
RMS deviations to 0.01−0.02 fm.

The KRR method is one of the most popular machine-
learning approaches, with the extension of ridge regression for 
nonlinearity [71, 72]. It was improved by including odd–even 
effects and gradient kernel functions and provided successful 
descriptions of various aspects of nuclear physics, such as the 
nuclear mass [73–77], nuclear energy density functionals [78], 
and neutron-capture reaction cross sections [79]. In the pre-
sent study, the extended KRR (EKRR) method with odd–even 
effects included through remodulation of the KRR kernel func-
tion [74] was used to improve the description of the nuclear 
charge radius. Compared with the KRR method, the number 
of weight parameters did not increase in the EKRR method.

The remainder of this paper is organized as follows. A 
brief introduction to the EKRR method is presented in Sect. 2. 
The numerical details of the study are presented in Sect. 3. 
The results obtained using the KRR and EKRR methods are 
presented in Sect. 4. The extrapolation power of the EKRR 
method was discussed. The strong OES of the nuclear charge 
radii in Ca and Cu isotopes and abrupt kinks across the neu-
trons N = 126 and 82 shell closures were investigated. Finally, 
a summary is presented in Sect. 5.

2 � Theoretical framework

The KRR method was successfully applied to improve the 
descriptions of nuclear charge radii obtained using several 
widely used phenomenological formulae [70]. To include 
odd–even effects, the KRR function S(xj) =

∑m

i=1
K(xj, xi)�i 

is extended to be the EKRR function [74]

where xi are the locations of the nuclei in the nuclear chart, 
with xi = (Zi,Ni) . m is the number of training data, �i and 
�i are the weights, K(xj, xi) and Koe(xj, xi) are kernel func-
tions that characterize the similarity between the data. In this 

(1)S(xj) =

m∑

i=1

K(xj, xi)�i +

m∑

i=1

Koe(xj, xi)�i ,

study, the Gaussian kernel was adopted, which is expressed 
as

where ||xi − xj|| =
√

(Zi − Zj)
2 + (Ni − Nj)

2 is the distance 
between two nuclei. Koe(xj, xi) was introduced to enhance 
the correlations between nuclei with the same number parity 
of neutrons and protons, which can be written as:

�oe(xj, xi) = 1 (0) if the two nuclei have the same (differ-
ent) number parities of protons and neutrons. � and �oe are 
hyperparameters defining the range affected by the kernel.

The kernel weights �i and �i are determined by minimiz-
ing the following loss function:

The first term is the variance between the training data y(xi) 
and the EKRR prediction S(xi) . The second and third terms 
are regularizers, where the hyperparameters � and �oe deter-
mine the regularization strength and are adopted to reduce 
the risk of overfitting.

By minimizing the loss function [Eq. (4)], we obtain

According to Eq. (5), the EKRR function [Eq. (1)] can be 
written as a standard KRR function:

where K�(xj, xi) is the remodulation kernel.

According to Eq. (5), the number of weight parameters in 
the EKRR method is identical to that in the original KRR 
method.

3 � Numerical details

In this study, 1014 experimental data with Z ≥ 8 were con-
sidered, which were taken  from Refs. [10, 11]. The EKRR 
function (7) was trained to reconstruct the radius residu-
als, i.e., the deviations ΔR(N, Z) = Rexp(N, Z) − Rth(N, Z) 

(2)K(xj, xi) = exp(−||xi − xj||2∕2�2),

(3)Koe(xj, xi) = �oe(xj, xi)exp(−||xi − xj||2∕2�2
oe
).

(4)L(�, �) =

m∑

i=1

[
S(xi) − y(xi)

]2
+ ��TK� + �oe�

TKoe�.

(5)� =
�

�oe
�

(6)� =

(
K + Koe

�

�oe
+ �I

)−1

y.

(7)S(xj) =
∑

K�(xj, xi)�i ,

(8)K�(xj, xi) = K(xj, xi) +
�

�oe
Koe(xj, xi).
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between the experimental data Rexp(N, Z) and the predic-
tions Rth(N, Z) for the following five nuclear models. 

(i)	 The widely used phenomenological formula 
Rc = r

A

[
1 − b(N − Z)∕A

]
A
1∕3 [24] with the parame-

ters rA=1.282 fm and b = 0.342 fitted by experimental 
data (further denoted by A1∕3).

(ii)	 The relativistic continuum Hartree–Bogoliubov 
(RCHB) theory [47].

(iii)	 The Hartree–Fock–Bogoliubov (HFB) model HFB25 
[80].

(iv)	 The Weizsäcker–Skyrme (WS) model WS∗ [11].
(v)	 The HFB25∗ model [11].

Note that by considering the nuclear shell corrections and 
deformations obtained from the WS and HFB25 models, a 
five-parameter nuclear charge radii formula was proposed 
in Ref. [11]. In this study, these two models are denoted 
as WS∗ and HFB25∗ , respectively. The parameters in the 
formulae of these two models were obtained from Refs. 
[11]. The RMS deviations between the experimental data 
and the five models ( Δrms ) are listed in Table 1. Once the 
weights �i were obtained, the EKRR function S(N, Z) was 
obtained for each nucleus. Therefore, the predicted charge 
radius for a nucleus with neutron number N and the proton 
number Z is given by REKRR = Rth(N, Z) + S(N, Z) . In this 
study, the KRR method was also adopted for predicting 
charge radii for comparison with the EKRR method.

Leave-one-out cross-validation was adopted to deter-
mine the two hyperparameters ( � and � ) in the KRR 
method and the four hyperparameters ( � , � , �oe and �oe ) 
in the EKRR method. The predicted radius for each of 
the 1014 nuclei can be given by the KRR/EKRR method 

trained on all other 1013 nuclei with a given set of hyper-
parameters. The optimized hyperparameters (see Table 1) 
are obtained when the RMS deviation between the experi-
mental and calculated radii reaches a minimum value.

4 � Results and discussion

Table 1 lists the hyperparameters ( � , � ) in the KRR method 
and ( � , � , �oe and �oe ) using the EKRR method as well as 
the RMS deviations between the experimental data and the 
predictions of the five models. The RMS deviations with 
(without) KRR and EKRR are denoted by ΔKRR

rms
 and ΔEKRR

rms
 

( Δrms ). With the exception of the phenomenological A1∕3

-formula all other models provided a good global descrip-
tion of the nuclear charge radii, especially for the WS∗ . It 
should be noted that the spherical shape is considered in the 
RCHB theory when investigating the entire nuclear land-
scape [47]. Therefore, its RMS deviation is slightly larger 
than that for the nonrelativistic model HFB25. To date, only 
even–even nuclei have been calculated in the deformed rela-
tivistic Hartree–Bogoliubov theory in continuum (DRHBc) 
[48, 51]. The description of the nuclear charge radii can be 
further improved when all nuclei in the nuclear chart are 
calculated using this model. It can also be observed that 
HFB25 and HFB25∗ yield similar RMS deviations when 
describing the nuclear charge radii. After the KRR method 
had been considered, all RMS deviations for these five mod-
els could be significantly reduced to approximately 0.015−
0.018 fm, particularly for the A1∕3 formula. Interestingly, 
the RMS deviations of the HFB25 and HFB25∗ models 
were smaller than those of the A1∕3 formula and the RCHB 
model without the KRR method. However, after the KRR 

Table 1   The hyperparameters 
( � , � , �oe and �oe ) in the KRR 
and EKRR method, and the 
RMS deviations between the 
experimental data and the 
predictions by five different 
models

The RMS deviations with (without) KRR and EKRR methods are denoted by ΔKRR

rms
 and ΔEKRR

rms
 ( Δrms)

Model � � �oe �oe Δrms (fm) ΔKRR

rms
 (fm) ΔEKRR

rms
 (fm)

A
1∕3 – – – – 0.0672 – –

2.84 0.01 – – – 0.0158 –
2.32 0.01 2.88 0.02 – – 0.0100

RCHB – – – – 0.0350 [47] – –
2.68 0.02 – – – 0.0157 –
1.83 0.01 2.73 0.02 – – 0.0092

HFB25 – – – – 0.0256 [80] – –
1.77 0.34 – – – 0.0177 –
1.48 0.08 2.20 0.22 – - 0.0130

WS∗ – – – – 0.0210 [11] – –
0.70 0.01 – – – 0.0155 –
1.54 0.02 2.46 0.03 – – 0.0096

HFB25∗ – – – – 0.0254 [11] – –
0.68 0.01 – – – 0.0182 –
1.35 0.05 2.21 0.08 – – 0.0120
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method was considered, the situation was reversed. After 
considering the odd–even effects, the predictive powers of 
the five models were further improved by the EKRR method 
compared with the KRR method. The RMS deviation was 
further reduced by approximately 0.006 fm for the five mod-
els, with the exception of the HFB25 model, for which it 
was reduced to less than 0.005 fm. The RMS deviations 
of the three models ( A1∕3 formula, RCHB and WS∗ ) were 
less than 0.01 fm, whereby the smallest was for the RCHB 
model with an RMS deviation equals to 0.0092 fm. This is 
the best result for nuclear charge radii predictions using the 
machine learning approach, as far as we are aware. Here, we 
show the typical RMS deviations of some popular machine 
learning approaches. 

	 (i)	 Artificial neural network: 0.028 fm [61];
	 (ii)	 Bayesian neural network: 0.014 fm [68];
	 (iii)	 radial basis function approach: 0.017 fm [69].

Note that if the full nuclear landscape is calculated using the 
DRHBc theory, the description of the nuclear charge radii 
can still be improved using the EKRR method. To show 
Table 1 in a more visual manner, a comparison of these five 
models is also shown in Fig. 1.

Figure 2 shows the radius differences between the experi-
mental data and the calculations of the RCHB model (grey 
solid circles), KRR method (red triangles) and the EKRR 
methods (blue crosses). Because the improvements achieved 
by the KRR and EKRR methods for the five models men-
tioned above were similar, we consider only the RCHB 
model as an example. In order to study the odd–even effects 
included in the EKRR method, the data were divided into 
four groups characterized by even or odd proton numbers 
Z and neutron numbers N, that is, even–even, even–odd, 
odd–even, and odd–odd. Clearly, the predictive power of 
the RCHB model could be further improved by using the 
EKRR method compared with the original KRR method. 

The significant improvement of the EKRR method is mainly 
due to the consideration of the odd–even effects, which 
eliminates the staggering behavior of radius deviations 
owing to the odd and even numbers of nucleons using the 
KRR method. It can be seen that when the mass number is 
A ∼ 150 , the predictions of the KRR method exhibit sig-
nificant deviations from the data, which can be significantly 
improved using the EKRR method. This is clear evidence 
of the importance of considering the odd–even effects in 
predictions of the nuclear charge radius.

To investigate the extrapolation abilities of the KRR and 
EKRR methods for neutron-rich regions, the 1014 nuclei 
with known charge radii were redivided into one training 
set and six test sets as follows: For each isotopic chain with 
more than nine nuclei, the six most neutron-rich nuclei were 
selected and classified into six test sets based on the distance 
from the previous nucleus. Test set 1 (6) had the shortest 
(longest) extrapolation distance. This type of classification 
is the same as that used in our previous study [70]. The 
hyperparameters obtained by leave-one-out cross-validation 
in the KRR/RKRR method remained the same in the follow-
ing calculations.

RMS deviations of the KRR and EKRR methods for 
different extrapolation steps for the five models are shown 
in Fig. 3a–e. A clearer comparison of the RMS deviations 
scaled to the corresponding RMS deviations of the five mod-
els without KRR/EKRR corrections is shown in Fig. 3f–j. 
Regardless of whether the KRR or EKRR method is con-
sidered, the RMS deviation increased with the extrapolation 
distance. For the A1∕3 formula and the RCHB model, the 
KRR/EKRR method could improve the radius description 
for all extrapolation distances. For the other three models, 
the KRR method only improved the radius description for an 
extrapolation distance of one or two, which could be further 

Fig. 1   (Color online) The RMS deviations between the experimental 
data and the predictions of five different models with and without the 
KRR/EKRR method

Fig. 2   (Color online) Radius differences ΔR between the experi-
mental data and the calculations of the RCHB model (grey solid cir-
cles), the KRR method (red triangles), and the EKRR method (blue 
crosses) for a even–even, b even–odd, c odd–even, and d odd–odd 
nuclei
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improved after considering the odd–even effects with the 
EKRR method. This indicates that the KRR/EKRR method 
loses its extrapolation power at extrapolation distances 
larger than 3 for these three models. It is because the cal-
culated charge radii in these models were quite good and 
their RMS deviations were already sufficiently small. The 
KRR/EKRR method automatically identifies the extrapola-
tion distance limit owing to the hyperparameters � and �oe 
being optimized using the training data. References [73, 74] 
demonstrated that the KRR and EKRR methods lose their 
predictive power at larger extrapolation distances (approx-
imately six), when predicting the nuclear mass using the 
mass model WS4 [81]. This may be due to much more mass 
data existed than the charge radii, and the KRR/EKRR net-
works can be trained better with more data. In general, the 
EKRR method has a better predictive power than the KRR 
method for an extrapolation distance of less than 3. For an 
extrapolation distance greater than 3, the results of the KRR 
and EKRR methods were similar in most cases. Almost none 
of these extrapolations exhibited overfitting, except for WS∗ 
at an extrapolation distance of 3, and this overfitting was 
quite small. This indicates that both the KRR and EKRR 
methods have good extrapolation powers and can avoid the 
risk of overfitting to a large extent.

The observation of the strong OES of the charge radii 
throughout the nuclear landscape provides a particularly 
stringent test for nuclear theory. To examine the predictive 
power of the EKRR method, which is improved by consider-
ing the odd–even effects compared with the original KRR 
method, in the following we will investigate the recently 
observed OES of the radii in calcium and copper isotopes 
[14–16]. Similar to the gap parameter, the OES parameter 
for the charge radii is defined as:

where r(Z, N) is the RMS charge radius of a nucleus with 
proton number Z and neutron number N.

Figure 4 compares the experimental and calculated OES 
for radii ( Δ(3)

r  ) of the calcium (left panels) and copper (right 
panels) isotopes. The experimental data show that for the 
calcium isotopes (Fig. 4a–e) strong OES exists between 
N = 20 and 28 and that a reduction in the OES appears for 
N ≥ 28 . Only RCHB theory could reproduce the trend of the 
experimental OES without KRR/EKRR corrections. How-
ever, the amplitude of the calculated OES was significantly 
less pronounced than that of the experimental data. Interest-
ingly, after considering the KRR corrections, the calculated 
OES worsened for N < 28 , particularly the phase of the OES 
became opposite to that of the data. The A1∕3-formula had no 
OES over the entire isotopic chain and the WS∗ model has a 
weak OES except at the N = 20 and 28 shell closures. The 
OES in the HFB25 and HFB25∗ models were slightly higher. 
However, they were still weak compared with the data. Note 
that although OES can be obtained in the WS∗ , HFB25 and 
HFB25∗ models, the phases of the calculated OES are oppo-
site to those of the experimental data. Considering the KRR 
method, the OES in these four models increased, particularly 
for the WS∗ and HFB25∗ models for which the calculated 
OES were stronger than those of the data. However, the 
OES in these models were still opposite to those in the data. 
Therefore, although the KRR method improves the descrip-
tion of the charge radius to a large extent, it was difficult to 
reproduce the observed OES. After considering the EKRR 
method, the experimental OES values could be reproduced 
quite well, especially for the A1∕3 formula and RCHB theory. 

(9)Δ(3)
r
(Z,N) =

1

2
[r(Z,N − 1) − 2r(Z,N) + r(Z,N + 1)] ,

Fig. 3   (Color online) Comparison of the extrapolation ability of the 
KRR and EKRR methods for the neutron-rich region by considering 
six test sets with different extrapolation distances. The upper panels 
a–e show the RMS deviations of the KRR and EKRR methods. The 

lower panels f–j show the RMS deviations scaled to the correspond-
ing RMS deviations for these five models without KRR/EKRR cor-
rections
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For copper isotopes (Fig. 4f–j), this situation is similar to 
that of the calcium isotopes. However, the description of 
Cu isotopes is not as accurate as that of Ca isotopes when 
considering the EKRR corrections. The OES is overesti-
mated in all these calculations for N < 33 and N > 46 . In 
addition, the phases of the OES between N = 38–40 were 
not well reproduced. However, the EKRR approach can 
improve the description of OES to a large extent compared 
with the original theory. This indicates that after considering 
the odd–even effects, shell structures and many-body cor-
relations, which are important for OES, can be learned well 
using an EKRR network.

Similar to OES, abrupt kinks across the neutron shell 
closures provide a particularly stringent test for nuclear 
theory. In the present study, Pb and Sn isotopes were con-
sidered as examples for investigating the kinks across neu-
tron  N = 126 and 82 shell closures. Figure 5 compares 
the experimental and calculated differential mean-square 
charge radii �⟨r2⟩N�,N = ⟨r2⟩N − ⟨r2⟩N� for some even-
even Pb (Fig. 5a–e) (relative to 208Pb, N� = 126 ) and Sn 

(Fig. 5f–j) (relative to 132Sn, N� = 82) isotopes. It can be 
observed that for Pb isotopes the RCHB theory can repro-
duce the kink at N = 126 perfectly (Fig. 5b). In the A1∕3 
formula and HFB25 model, there is no kink (Fig. 5a, c). 
The kink could be reproduced using the WS∗ and HFB25∗ 
models, but with a slight overestimation (Fig. 5d, e). The 
results obtained by considering the KRR and EKRR meth-
ods were similar. There are several interpretations of kinks 
[50, 82–85]. Our results indicate that kinks may not be 
connected to odd–even effects, such as pairing correla-
tions. The well-reproduced kinks also provide a test of the 
proposed KRR/EKRR method. The kinks at N = 126 in all 
five models could be reproduced quite well, but the cal-
culated differential mean-square charge radius at N = 132 
was too large compared with the data. For the Sn isotopes, 
only the WS∗ and HFB25∗ models reproduced the kink at 
N = 82 . However, the absolute values of the calculated 
�⟨r2⟩ from N = 74-78 are small compared with the data, 
especially for the WS∗ model. After applying the KRR/
EKRR method, the results reproduced the data quite well. 

Fig. 4   (Color online) Comparison of experimental and calculated 
OES of the charge radii ( Δ(3)

r  ) of the calcium (left panels) and cop-
per (right panels) isotopes. The experimental data are shown as black 
squares. The calculation results of these five models are shown as 
grey solid circles, and the calculation results of the KRR and EKRR 
models are shown as red triangles and blue crosses, respectively

Fig. 5   (Color online) Comparison of experimental and calculated 
differential mean-square charge radius �⟨r2⟩N�

,N = ⟨r2⟩N − ⟨r2⟩N� 
for some even–even a–e Pb (relative to 208Pb, N� = 126 ) and f–j Sn 
(relative to 132Sn, N� = 82 ) isotopes. The experimental data are shown 
as black squares. The results of these five models are shown as grey 
solid circles, and the calculation results of the KRR and EKRR mod-
els are shown as red triangles and blue crosses, respectively



Nuclear charge radius predictions by kernel ridge regression with odd–even effects﻿	 Page 7 of 9  19

It also can be seen that the KRR/EKRR corrections to 
the A1∕3 formula and HFB25 model are inconspicuous. 
Therefore, the kink at N = 82 cannot be reproduced using 
the KRR/EKRR method. For the RCHB model, the dif-
ferential mean-square charge radii calculated from N = 74 
to 80 were improved, and a kink appeared, but was still 
slightly weaker compared with the data.

5 � Summary

In summary, the extended kernel ridge regression method 
with odd–even effects was adopted to improve the descrip-
tion of the nuclear charge radius by using five commonly 
used nuclear models. The hyperparameters of the KRR 
and EKRR methods for each model were determined 
using leave-one-out cross-validation. For each model, the 
resultant root-mean-square deviations of the 1014 nuclei 
with proton number Z ≥ 8 could be significantly reduced 
to 0.009−0.013 fm after considering a modification with 
the EKRR method. The best among them was the RCHB 
model, with a root-mean-square deviation of 0.0092 fm, 
which is the best result for nuclear charge radii predic-
tions using the machine learning approach as far as we 
know. The extrapolation abilities of the KRR and EKRR 
methods for the neutron-rich region were examined and 
it was found that after considering odd–even effects, the 
extrapolation power could be improved compared with 
that of the original KRR method. Strong odd–even stag-
gering of nuclear charge radii in Ca and Cu isotopes was 
investigated and reproduced quite well using the EKRR 
method. This indicates that after considering the odd–even 
effects, shell structures and many-body correlations can be 
learned quite well using the EKRR network. Abrupt kinks 
across the neutron N = 126 and 82 shell closures were also 
investigated.
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