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Abstract Ab initio calculations of nuclei face the chal-

lenge of simultaneously describing the strong short-range

internucleon correlations and the long-range properties of

weakly bound halo nucleons. Natural orbitals, which

diagonalize the one-body density matrix, provide a basis

which is better matched to the physical structure of the

many-body wave function. We demonstrate that the use of

natural orbitals significantly improves convergence for

ab initio no-core configuration interaction calculations of

the neutron halo nucleus 6He, relative to the traditional

oscillator basis.

Keywords Neutron halo nucleus 6He � Nuclear structure �
Nuclear theory

1 Introduction

Ab initio calculations of nuclear structure [1–9] face the

challenge of describing a complex, multiscale quantum

many-body system. The goal is to directly solve the many-

body problem for a system of protons and neutrons, with

realistic internucleon interactions [10–13]. However, the

nucleus is governed by a strong, short-range interaction.

Short-range correlations, tightly bound a clusters [14], and

weakly bound halo nucleons [15, 16] introduce dynamics

over differing length scales and energy scales, within the

same nucleus, which must be simultaneously described

within the same many-body calculation.

Natural orbitals [17–22] provide a means of adapting the

single-particle basis to better match the physical structure

of the many-body wave function. Natural orbitals are

obtained by diagonalizing the one-body density matrix,

deduced from a preliminary many-body calculation using

an initial reference single-particle basis. The Laguerre

function basis [23, 24] has been used as the starting point

for natural orbitals in atomic electron-structure calculations

[18], while we start from the harmonic oscillator orbitals

[25] more familiar to the nuclear structure context [26].

The natural orbital basis builds in important contributions

from high-lying orbitals of the initial basis—for the present

application, high-lying oscillator shells—thereby acceler-

ating the convergence of wave functions, energies, and

other observables.

In this work, we present a framework for ab initio no-

core configuration interaction (NCCI) [8] calculations with

a natural orbital basis and demonstrate improved conver-

gence for the lightest neutron halo nucleus 6He [15]. When

used with recently proposed infrared (IR) basis-extrapola-

tion schemes [27, 28], we show that natural orbitals
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provide improved independence of basis parameters for

predictions of energy and radius observables.

2 Natural orbitals

In NCCI calculations, the nuclear many-body Schrö-

dinger equation is formulated as a matrix eigenproblem,

where the Hamiltonian is represented within a basis of

Slater determinants, i.e., antisymmetrized products of sin-

gle-particle states. Conventionally, harmonic oscillator

orbitals [25] are used, and the basis is truncated to a

maximum allowed number Nmax of oscillator excitations

[8]. The calculated wave functions, energies, and observ-

ables depend upon both the truncation Nmax and the

oscillator length b of the basis (or, equivalently, the

oscillator energy �hx / b�2). The solution of the full,

untruncated many-body problem could, in principle, be

obtained to any desired accuracy, by retaining a sufficiently

complete basis set. However, the dimension of the NCCI

problem increases rapidly with the number of nucleons and

included single-particle excitations, as shown in Fig. 1.

Currently available computational resources therefore limit

the convergence of calculated states and observables

[29–31].

We therefore seek a physically adapted basis, in which

the nuclear many-body wave function can be efficiently

and accurately described, subject to the constraint of

accessible problem dimensions. The natural orbital basis

minimizes the mean occupation of states above the Fermi

surface [21, 32], thus reducing the contribution of high-

lying orbitals in describing the many-body wave function.

Intuitively, the natural orbitals may be understood as rep-

resenting an attempt to recover the basis in which the

many-body wave function most resembles a single Slater

determinant. Although we cannot expect to reduce the

complex, highly-correlated nuclear wave function to a

single Slater determinant, as assumed in the Hartree–Fock

approximation, we may expect that transforming to a more

natural single-particle basis could enhance the role of a

comparatively small set of dominant Slater determinants

and thereby accelerate convergence within a Slater deter-

minant expansion.

An NCCI state of good total angular momentum can only,

in general, be obtained as a superposition of several Slater

determinants of nljm single-particle states (here, n is the

radial quantum number, l labels the orbital angular

momentum, j labels the resultant angular momentum after

coupling to the spin, and m labels its projection). Therefore,

we cannot, in general, expect the nuclear eigenfunctions to

resemble a single Slater determinant. Rather, we hope to

recover wave functions which most resemble a single con-

figuration of nucleons over nlj orbitals. For this purpose, we

consider the scalar densities qð0Þab � hWj½cyb~ca�00jWi, where cya
represents the creation operator for a nucleon in orbital a ¼
ðnalajaÞ and the brackets ½� � ��00 represent spherical tensor

coupling to zero angular momentum. For a single configu-

ration jWi, the scalar densities are diagonal, and the diagonal
entries give the occupations of the contributing orbitals

[hN ai ¼ ð2ja þ 1Þ1=2qð0Þaa ].
1 Otherwise, for the general case

of a many-body state jWi, natural orbitals are defined by

diagonalizing this scalar density matrix. The scalar density

matrix only connects orbitals of the same l and j, i.e., dif-

fering at most in their radial quantum number n, so the

transformation to natural orbitals induces a change of basis

on the radial functions separately within each lj space

[jn0lji ¼
P

n a
ðljÞ
n0;njnlji].

An initial NCCI calculation is carried out in the oscil-

lator basis. This provides a scalar density matrix for the

ground-state wave function, which is then diagonalized to

yield the natural orbitals. The eigenvalue associated with a

natural orbital represents its mean occupation in the many-

body wave function. We order the natural orbitals by

decreasing eigenvalue of the density matrix [21], i.e.,

starting with n ¼ 0 for the natural orbital with highest

eigenvalue [hN 0lji� hN 1lji� � � �], thereby providing an n

quantum number for an Nmax-type truncation scheme (see

Ref. [33]).

Fig. 1 Growth of the NCCI problem dimension as a function of the

number of oscillator excitations Nmax included in the basis, for

selected nuclides, including 6He (red curve). The dimensions shown

are for spaces with zero angular momentum projection (M ¼ 0) and

positive parity. (Color figure online)

1 That is, the total occupation number operator for an orbital is

N a �
P

ma
cya;ma

ca;ma
¼ �ð2ja þ 1Þ1=2½cya~ca�00, where the sign is to be

taken according to the choice of conjugation phase convention

~ca;ma
� ð�Þja�maca;�ma

.
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The lowest p3=2 natural orbital obtained from the 6He

ground-state one-body densities is illustrated in Fig. 2,

taking an example from the NCCI calculations presented

below. In a traditional shell-model description, 6He con-

sists of two protons and two neutrons in a filled s shell

(N � 2nþ l ¼ 0) plus two neutrons in the valence p shell

(N ¼ 1). In the oscillator basis NCCI calculations, this

general structure is reflected in a nearly filled s shell. The

next most heavily occupied orbital is then the neutron

0p3=2. We observe that the corresponding natural orbital

(Fig. 2) receives extended contributions from high-lying

oscillator shells and thus acquires a substantial large-r tail

compared to the oscillator orbital, as may be expected for a

weakly bound halo nucleon.

The NCCI calculation using the natural orbital basis is

no more computationally difficult than the original oscil-

lator basis calculation. It is simply necessary, in prepara-

tion, to carry out a similarity transformation of the input

Hamiltonian, as described in Refs. [33–35].

3 Results

Several experimental properties of the ground state of
6He support the interpretation that it consists of a weakly

bound two-neutron halo surrounding a tightly bound a core

[15, 16]. The two-neutron separation energy for 6He is only

0:97MeV, out of a total binding energy of 29:27MeV [36].

Experimentally, the onset of halo structure along the He

isotopic chain is indicated by a jump in the measured

charge and matter radii, from 4He to 6He. The root mean

square (RMS) point-proton distribution radius rp, which

may be deduced [37] from the measured charge radius,

increases by � 32% from 4He [rp ¼ 1:462ð6Þ fm] to 6He

[rp ¼ 1:934ð9Þ fm] [38–40]. This increase may be under-

stood as a consequence of halo structure, arising from the

recoil of the charged a core against the halo neutrons (as

well as possible contributions from swelling of the a core

[40]).

The initial oscillator basis NCCI calculations from

which we derive natural orbitals for 6He cover a range of

oscillator basis parameters �hx ¼ 10MeV to 40MeV with

truncations Nmax 	 16, as considered in Ref. [35]. The

NCCI calculations are carried out using the code MFDn

[41, 42], with the JISP16 two-body internucleon interaction

[12] plus Coulomb interaction.

The ground-state energy eigenvalues obtained for 6He

using the harmonic oscillator (dashed lines) and natural

orbital (solid lines) bases are compared in Fig. 3a. The

energies from the natural orbital calculations are lower

(thus, by the variational principle, closer to the true value)

than those from the harmonic oscillator calculations and

are also less dependent upon �hx. The improvement in

convergence afforded by the natural orbitals ranges from

approximately one step in Nmax in the vicinity of the

variational minimum (�hx 
 15–20 MeV) to several steps

in Nmax toward the ends of the calculated �hx range.2

For the 6He proton radius, shown in Fig. 3b, the natural

orbital basis NCCI calculations lead the harmonic oscillator

basis calculations in convergence by more than one step in

Nmax at �hx 
 20MeVand by several steps inNmax at the high

end of the �hx range. These radii obtained from the natural

orbital calculations are also less dependent upon �hx than

those obtained from the harmonic oscillator calculations.

The goal we set out to achieve is to find the true results

for observables as they would be obtained in the full,

infinite-dimensional space. Although full convergence is

not achieved, even with the natural orbitals, the improved

convergence motivates us to attempt to obtain estimates of

the converged results via basis-extrapolation methods

[27, 29, 43, 44]. Infrared extrapolation schemes

[27, 28, 45–47] are based on the premise that the solution

of the many-body problem in a truncated space effectively

imposes infrared (long-range) and ultraviolet (short-range)

cutoffs. For bases with high enough �hx (and Nmax), ultra-

violet convergence is assumed, and any remaining

incomplete convergence is attributed to the failure of the

Fig. 2 Radial wave function for the neutron 0p3=2 natural orbital

(heavy curve) derived from the 6He ground-state calculation in the

harmonic oscillator basis, along with the contributions from individ-

ual oscillator basis functions (gray curves). The squared amplitudes

P(N) of these contributions are shown in the inset. The initial

oscillator basis for this calculation has Nmax ¼ 16 and �hx ¼ 20MeV

2 We consider steps of 2 in the number of oscillator quanta, since we

restrict our attention to the positive parity sector for the present

calculations.
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basis to reproduce the long-range tail of the many-body

wave function.

A basis consisting of harmonic oscillator orbitals with no

more than N quanta cannot fully resolve long-range physics

beyond the classical turning point LðN; �hxÞ ¼ ½2ðN þ
3=2Þ�1=2 bð�hxÞ [27],3 where bð�hxÞ ¼ ð�hcÞ=½ðmNc

2Þð�hxÞ�1=2
is again the oscillator length, withmN the nucleon mass. The

calculated energy and observables are expected to depend

only on this cutoff L, approaching the true converged values

as L ! 1. For energy eigenvalues, it is expected that

[45, 46]

EðLÞ ¼ E1 þ a0e
�2k1L; ð1Þ

where E1, a0, and k1 are to be deduced as fitting

parameters from the results of calculations in truncated

spaces. Taking L ! 1, we extract E1 as an estimate for

the true energy. For mean square radii, it is expected that,

letting b � 2k1L,

r2ðLÞ ¼ r21½1� ðc0 þ c1b
�2Þb3e�b�; ð2Þ

for b � 1, where r1, c0, and c1 are similarly deduced from

calculations in truncated spaces, and r1 provides an esti-

mate of the true RMS radius.

The extrapolated values for the 6He ground-state energy

and proton radius are shown in Fig. 4. We restrict ourselves

to a straightforward application of (1) and (2), based on

three-point extrapolation in Nmax at fixed �hx. Calculations
at low �hx may not provide the assumed ultraviolet con-

vergence, while poor infrared convergence at high �hx leads

to an excessively large correction and thus poor

extrapolation.

The extrapolated 6He ground-state energies from the

natural orbital NCCI calculations (Fig. 4b) are consider-

ably less �hx-dependent than the extrapolated energies from

the harmonic oscillator NCCI calculations (Fig. 4a). The

extrapolations obtained for different Nmax are also consid-

erably more consistent (in the figure, Nmax refers to the

highest Nmax in the three-point extrapolation). The

extrapolated ground-state energies obtained with the har-

monic oscillator and natural orbital bases at �hx ¼ 20MeV

(chosen close to the variational energy minimum) and

Nmax ¼ 16 are consistent with each other to within their

respective variations, giving E 
 �28:79MeV and

E 
 �28:80MeV, respectively.

Once the many-body calculation is under control, any

remaining deviation of calculated values from nature may

be attributed to deficiencies in the internucleon interaction.

Comparing to the experimental binding energy of

29:27MeV thus indicates that the JISP16 interaction

underbinds 6He by � 0:5MeV.4 (For comparison, the

binding of 4He obtained with JISP16 matches experiment

to within � 0:003MeV [29].)

The extrapolated proton radii extracted from the NCCI

calculations with the natural orbital basis (Fig. 4d) simi-

larly demonstrate a reduced �hx dependence and Nmax

dependence, as compared to the extrapolations from the

oscillator basis calculations (Fig. 4c). At the highest cal-

culated Nmax (Nmax ¼ 16), the extrapolated rp varies only

by � 0:02 fm across the range of �hx values shown

(�hx 
 14–40MeV), and the Nmax dependence is compa-

rable. We must emphasize that the variations in extrapo-

lated values at best provide a rough guide to how well we

can trust these extrapolated values as reflecting the true

(a)

(b)

Fig. 3 Comparison of 6He ground-state properties calculated using

harmonic oscillator (HO, dashed lines) and natural orbital (NO, solid

lines) bases: a energy and b ground-state proton radii. These are

shown as functions of the oscillator basis �hx, for Nmax ¼ 10 to 16 (as

labeled)

3 Specifically, we adopt the cutoff L2ðN; �hxÞ ¼ ½2ðN þ 2þ
3=2Þ�1=2 bð�hxÞ from Ref. [27] and take N ¼ Nmax þ 1, since this is

the highest number of oscillator quanta accessible to the neutrons in
6He. The single-particle space spanned by the natural orbitals is

identical to that of the underlying harmonic oscillator orbitals, so the

estimated length cutoff remains unchanged.

4 The present extrapolations for the 6He ground-state energy are

consistent with the estimate E ¼ �28:8ð1ÞMeV [30] obtained from

the ad hoc exponential basis extrapolation-scheme for the oscillator

basis [29, 43].
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radius which would be obtained in an untruncated many-

body calculation. Nonetheless, the �hx independence and

Nmax independence of the calculations at the � 0:02 fm

level is reassuring.

Taking the extrapolated proton radius at �hx ¼ 20MeV

and Nmax ¼ 16 as representative gives rp 
 1:82 fm.5 Thus,

it would appear that the ab initio NCCI calculations with

the JISP16 interaction, while qualitatively reproducing the

increase in proton radius with the onset of halo structure in
6He, do yield a quantitative shortfall of � 0:12 fm (or

� 6%) for the proton radius of 6He.

4 Conclusion

Describing the nuclear many-body wave function within

truncated spaces is challenging due to the need to describe,

simultaneously, long-range asymptotics and short-range

correlations. Natural orbitals, obtained here by diagonal-

izing one-body density matrices from initial NCCI calcu-

lations using the harmonic oscillator basis, build in

contributions from high-lying oscillator shells, thereby

accelerating convergence.

In the present application to the halo nucleus 6He,

improvement is by about one step in Nmax near the varia-

tional minimum in �hx and significantly more for other �hx
values (Fig. 3). To put these gains in perspective, we note

that an increment in Nmax results in an increase in matrix

dimension of about a factor of 3–5, as seen in Fig. 1, with

much larger increase in the computational costs [48].

Although full convergence is still not achieved, the cal-

culations using natural orbitals provide improved basis

parameter independence for extrapolations with respect to

the infrared cutoff of the basis (Fig. 4).

The successful application of natural orbitals to ab initio

nuclear NCCI calculations presented here provides a

starting point for exploring ideas (some taken from elec-

tron-structure theory) which may more fully realize the

potential of the natural orbital approach:

1. NCCI calculations based on natural orbitals yield

improved one-body densities which can, in turn, be

diagonalized to yield new natural orbitals. Natural

orbitals constructed through such an iterative method

can rapidly build in additional contributions from high-

lying shells, thereby potentially further accelerating

convergence [20, 49].

2. An improved reference basis for the initial NCCI

calculation may also boost the convergence of the

subsequent natural orbital calculations. For instance,

the Laguerre functions, commonly used as the starting

point for natural orbitals in electron-structure calcula-

tions, also have the correct exponential asymptotics for

nucleons bound by a finite-range potential.

3. The structure of nuclear excited states can vary

markedly from that of the ground state. Natural

orbitals constructed by diagonalizing the density

matrices from excited states, rather than from the

ground state, may more effectively accelerate conver-

gence of those excited states [20].

4. Finally, natural orbitals are conducive to a more

efficient many-body truncation scheme than the con-

ventional oscillator Nmax scheme. The eigenvalues

associated with the natural orbitals, by providing an

estimate of the mean occupation of each orbital in the

many-body wave function, also suggest a means of

estimating the relative importance of Slater determi-

nants involving these orbitals.

Acknowledgements We thank G. Hupin for valuable discussions on

the formulation of the nuclear natural orbital problem and

M. A. McNanna for carrying out informative preliminary studies in

one dimension.

(a) (b)

(c) (d)

Fig. 4 Infrared basis extrapolations for the 6He ground-state

energy (top) and point-proton radius (bottom), based on calculations

in the harmonic oscillator basis (left) and natural orbital basis (right).

The extrapolations (diamonds) are shown along with the underlying

calculated results (plain lines) as functions of �hx at fixed Nmax (as

indicated). Experimental values (circles) are shown with uncertain-

ties. The shaded bands reflect the mean values and standard deviations

of the extrapolated results, at the highest Nmax, over the �hx range

considered

5 The present extrapolated result for the 6He proton radius is

consistent with previous estimates [35] based on the ‘‘crossover

point’’ [43] of successive Nmax curves in a plot such as Fig. 3b.
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17. P.-O. Löwdin, Quantum theory of many-particle systems.

I. Physical interpretations by means of density matrices, natural

spin-orbitals, and convergence problems in the method of con-

figurational interaction. Phys. Rev. 97, 1474 (1955). https://doi.

org/10.1103/PhysRev.97.1474
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