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Abstract This paper is aimed at detecting the neutron

spectrum of 241Am–Be, a widely used neutron source, with

the SP9 3He proportional counter, which is a multi-sphere

spectrometer system of eight thermal neutron detectors

embedded in eight polyethylene (PE) spheres of varying

diameters. The transport processes of a neutron in the

multi-sphere spectrometer are simulated using the Geant4

code. Two sets of response functions of the PE spheres are

obtained for calculating the 241Am–Be neutron spectrum.

Response Function 1 utilizes the thermal neutron scattering

model G4NeutronHPThermalScattering for neutron ener-

gies of B 4 eV, and Response Function 2 has no thermal

treatment. Neutron spectra of an 241Am–Be neutron source

are measured and compared to those calculated by using

the response functions. The results show that response

function with thermal treatment is more accurate and closer

to the real spectrum.
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1 Introduction

Neutron spectrum spans a vast energy region from 10-7

to 109 eV. The 241Am–Be neutron source is a widely used

neutron source [1]. The a particles emitted by 241Am react

with Be to generate neutrons. An 241Am–Be neutron source

is featured by its long life, simple protection, stable neutron

emission, moderate size, and low c-ray energy in the decay

of 241Am. It is of significance to detect the neutron spec-

trum of a 241Am–Be source [2, 3], using the Bonner sphere

made of polyethylene (PE) with copper or lead inlets [4–7].

Their responses to high-energy neutrons increase with the

cross sections of copper and lead, but low-energy neutrons

are absorbed after moderation. The pure PE spheres with

thermal neutron detectors can detect lower-energy

neutrons.

In this paper, we present a multi-sphere spectrometer

system to detect the neutron spectrum of 241Am–Be. This is

the SP9 3He proportional counter consisting of eight ther-

mal neutron detectors in eight pure PE spheres (PSs) of

varying diameters [8–11]. Response functions of the eight

PSs, as the key to calculating the 241Am–Be neutron

spectrum, are calculated by using Geant4 simulations with

thermal neutron scattering model G4NeutronHPTher-

malScattering enabled and disabled. The counting rate is

measured, and finally, the 241Am–Be neutron spectrum is

calculated.
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2 The simulation

2.1 Theory

Neutrons are slowed down to thermal neutron by elastic

collisions with hydrogen atoms of the PSs, as the cross

section for hydrogen is larger than those for carbon. The

reaction, 3He(n, p)T (Q = ? 764 keV), has a good cross

section to thermal neutrons. 3He proportional counter is

usually used for detecting the thermal neutrons because of

its total cross sections [12] and low sensitivity to c-rays.

For the eight PSs of different diameters, the response

function of the ith PS is Ri(E) and the fluence of the neutron

spectrum to be tested under different energy is U(E)

[13–16]. The count value Ni of the ith PS is

Ni ¼
Z

U Eð ÞRi Eð ÞdE; i ¼ 1; 2; . . .; 8: ð1Þ

So, Ni can be obtained by the experiment and the

response function Ri(E) is obtained by Geant4 simulation,

which is the key to calculating the 241Am–Be neutron

spectrum. The calculated response functions of the eight

PSs are only applicable for the multi-sphere spectrometer

in this paper.

2.2 Geant4 model

Geant4 [17–19] is a toolkit for simulating the passage of

particles through matter. Its areas of application include

high-energy, nuclear and accelerator physics, and studies in

medical and space science as well. The Geant4 version

Geant4.9.6 is used in this paper. The SP9 3He detector is

sensitive to thermal neutrons. The corresponding Geant4

models [20–22] of interaction between neutron and matter

are shown in Table 1. The G4NeutronHPThermalScatter-

ing model includes a thermal treatment below 4 eV. In all

Geant4 versions, the user must first download the high-

precision neutron data files from the Geant4 Web page to a

local directory (G4NDL/) when they want to use the high-

precision neutron models.

2.3 Simulation

The outside diameters of the eight PSs are 400, 500, 600, 700,
800, 900, 1000, and 1200. The SP9 3He proportional counter is

33 mm in diameter (the spherical part) and 134 mm in total

length. It is operated at 800–900 V with a neutron sensi-

tivity of 8 cps for 3.2 mrem/h. Figure 1 shows the

arrangement of PS and the SP9 3He proportional counter.

For smaller-diameter PSs, low-energy neutrons are slo-

wed down after elastic scattering, but they still have high

probabilities to reach the PS center and be detected, while

high-energy neutrons still have high energy after moder-

ating and tend to escape the PS. For larger-diameter PSs, a

large number of low-energy neutrons are absorbed after

moderation, while high-energy neutrons are slowed down

to thermal energies, which still have high probabilities to

reach the PS center and be detected. The degree of neutron

moderation depends on the PS diameter. The neutron

response of each PS is unique.

A general 241Am–Be neutron source is used. The

response functions can be obtained in the simulation by

using a number of different concrete neutron energies. The

response function simulation of Geant4 is shown

schematically in Fig. 2. Eight SP9 3He proportional

counters are arranged around the neutron source, with a

distance of 40 cm between SP9 3He proportional counter

and neutron source. In the Geant4 simulation, ten million

neutrons are simulated for each energy point.

Eight sets of counts of PS at different energies are

obtained by simulating the response function of the PSs.

The response functions with and without thermal treatment

Table 1 Geant4 physics models including various models for high-energy physics processes

Process Geant4 model Energy (GeV) Cross section data

Minimum Maximum

Elastic G4NeutronHPThermalScattering 0 4 eV G4ThermalScatteringDataset

G4NeutronHPElastic 0 0.02 G4HadronElasticDataSet

G4hElasticCHIPS 0.0195 100,000 G4CHIPSElasticXS

Inelastic G4NeutronHPInelastic 0 0.02 G4NeutronHPInelasticData G4HadronInelasticDataSet

G4LENeutronInelastic 9.5 25 G4NeutronHPInelasticData G4HadronInelasticDataSet

Capture G4NeutronHPCapture 0 0.02 G4HadronCaptureDataSet G4NeutronHPCaptureData

G4LCapture 0.0199 20,000 G4HadronCaptureDataSet G4NeutronHPCaptureData

Fission G4NeutronHPFission 0 0.02 G4HadronFissionDataSet G4NeutronHPFissionData

G4LFission 0.0199 20,000 G4HadronFissionDataSet G4NeutronHPFissionData
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are shown in Fig. 3. The response functions of smaller-

diameter PSs have a peak in the low-energy region, and the

peak position moves toward high-energy region as the PS

diameter increases.

Also, the response functions with thermal treatment

have far higher counts than those without thermal treat-

ment. The use of the G4NeutronHPThermalScattering

thermal mode in Geant4 simulation slows down the neu-

trons in PS more effectively, which is critical for the

neutron capture interaction that leads to different count

measurements, hence the higher counts with the thermal

treatment.

3 The measurement

The simulated response functions are usually validated

by measuring an 241Am–Be neutron source [23–26]. The
241Am–Be neutron source we used was produced by

Institute of Atomic Energy of China in 1978, numbered as

0078AB473395, with an activity of 2.0 9 108 Bq. The

neutron spectra specified by International Standard ISO

8529-1 were used (from thermal to 20 MeV) [27–29] for

the 241Am–Be simulation and measurement. Figure 4

shows the eight PSs surrounding the neutron source.

The SP9 3He detector had been tested with 137Cs or 60Co

c-ray sources by amplitude discrimination. No waveforms

were viewed on an oscilloscope, indicating that the energy

deposition of a c-photon in the SP9 3He detector was much

smaller than that of a neutron. So, we discriminated c from

neutrons only with the amplitude in the main electronics

system.

Neutron counts of the eight PSs were measured at 662,

1959, 2367, 1768, 1717, 1161, 1077, and 534 for 1200, 1000,
900, 800, 700, 600, 500, and 400 PSs, respectively.

With the simulated response functions, the 241Am–Be

neutron source spectra were calculated by Eq. (1). Two

spectra calculated by the two sets of response functions are

shown in Fig. 5. (The inset shows the neutron spectra of

2–11 MeV).

The RMS difference is 0.666 between the spectra cal-

culated with thermal treatment and evaluated with

ISO8529-1, and the RMS difference is 1.323 between

spectra calculated without thermal treatment and evaluated

with ISO8529-1. In Fig. 5, the spectrum calculated with

thermal treatment is more accurate in high-energy region.

Fig. 1 Schematic of PS and SP9 3He proportional counter part

Fig. 2 (Color online) Schematic diagram of the Geant4 simulation

Fig. 3 (Color online) Response function without (a) and with (b) thermal neutron scattering model G4NeutronHPThermalScattering
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The results indicate that neutron scattering model

G4NeutronHPThermalScattering below 4 eV is indispens-

able for the response function simulation.

4 Conclusion

Two sets of response functions for an eight-PE-sphere

spectrometer to detect neutron spectrum of 241Am–Be are

simulated, by using the scattering model of G4Neu-

tronHPThermalScattering with and without thermal treat-

ment (\ 4 eV). From the neutron spectra of 241Am–Be

measured with the eight PSs, the response function with

thermal treatment is closer to the spectrum evaluated by

ISO 8529-1. Therefore, the thermal model of G4Neu-

tronHPThermalScattering is more appropriate within the

limits of this particular response function in this paper.
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