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Short-term nitisinone discontinuation of
hereditary tyrosinemia type 1 mice causes
metabolic alterations in glutathione
metabolism/biosynthesis and multiple
amino acid degradation pathways
Hereditary tyrosinemia type 1 (HT1) is a life-threatening
disease caused by the patient’s inability to break down
tyrosine due to loss-of-function mutations in the fumar-
ylacetoacetate hydrolase (FAH) enzyme (Fig. S1).
Currently, the only available life-saving treatment is niti-
sinone (NTBC). However, nitisinone therapy comes with
debilitating side effects and requires a strict drug regime
combined with a tyrosine- and phenylalanine-restricted
diet. Consequently, therapy adherence is often experi-
enced as an additional burden. In this study, transcriptional
profiling was conducted parallel to high-resolution metab-
olomics on, respectively, liver tissue and serum samples of
Fah-deficient mice. The experimental workflow of our
study is shown in Figure 1A. Canonical pathway analyses
showed manifest activation of the NRF2-stress response,
associated with hepatocellular damage and mainly driven
by a markedly increased oxidative burden. Other altered
canonical pathways were primarily a downstream conse-
quence of the latter. Furthermore, we observed an overall
aminoacidemia and changes related to aminoacyl-tRNA
biosynthesis, which postulates that short-term nitisinone
discontinuation can already put the patient at risk for he-
patocellular carcinoma development. Finally, we did not
only identify changes in numerous pathways, directly and
indirectly, related to the metabolism of tyrosine and
glutathione but also the presence of “side-chain” metabo-
lites, such as y-glutamyl- and N-acetyl-coupled amino
acids, indicating that non-directly related pathways like
phase II biotransformation reactions are also affected.
Peer review under responsibility of Chongqing Medical
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First, in-depth microarray analyses were performed on
whole livers using Affymetrix mouse gene 2.0 arrays. The
transcriptional response upon seven days of nitisinone
deprivation revealed alterations in numerous genes
responsible for hepatic diseases, liver damage, liver
regeneration, and liver cancer (Fig. 1B), which corresponds
with our previous findings in the FRG mouse
model.1 Canonical pathway analysis using the Ingenuity
Pathway Analysis (IPA) software showed manifest activation
of the NRF2-stress response, associated with hepatocellular
damage and mainly driven by a markedly increased oxida-
tive burden. Most other observed transcriptional changes in
canonical pathways can be considered as a downstream
effect of this oxidative stress response, i.e., inhibition of
inflammation and acute phase response, depletion of
reduced glutathione, and attempted activation of thio-
redoxin/glutathione peroxidase functions (Fig. S2).

Although transcriptome analysis revealed perturbated
pathways, it remains unclear if this translates into meta-
bolic changes. Therefore, to study the association between
transcriptome and metabolome, comparative metabolic
profiling was conducted by LC-QTOF-MS on mouse serum in
the negative (ESI-) and positive (ESIþ) polarity. The total
data processing flow with all applied cleaning and filter
steps and their corresponding results are summarized in
Table S1. Data revealed a complex set of changes, but
generally highly concordant with the altered gene
expression. Most significant changes were observed in
metabolites (histidine, glutamine, glycine, methionine,
valine, lysine, isoleucine, threonine, tryptophan) that
were found to be enriched in “Aminoacyl-tRNA biosyn-
thesis” (Fig. S3 and Table S2). Aminoacyl-tRNA synthases (i)
are responsible for the first step of protein synthesis by
behalf of KeAi Communications Co., Ltd. This is an open access
censes/by-nc-nd/4.0/).
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linking amino acids to their cognate transfer RNAs (tRNAs),
(ii) function as regulators in cellular processes to maintain
homeostasis, and (iii) are generally regarded as house-
keeping molecules without additional functions. However,
recent studies suggest that these enzymes are involved in
various physiological and pathological processes and that
mutations, functional alterations, or dysregulation of
these enzymes might be pathologically associated with,
among others, tumorigenesis.

When focussing on altered metabolites directly relevant
to the clinical manifestations observed in HT1 patients, we
found that in the phenylalanine and tyrosine degradation
pathway, only phenylpyruvate and 4-hydroxyphenyllactate
were significantly decreased in serum samples seven days
post nitisinone discontinuation. Remarkably, tyrosine and
4-hydroxyphenylpyruvate, both metabolites proximal to
the site of action of nitisinone, were not found to be
significantly decreased after seven days of withdrawal
compared to continuously treated mice. Instead, a
decrease of 4-hydroxyphenyllactate was observed. This
indicates that 4-hydroxyphenylpyruvate has been degraded
or has been shifted to 4-hydroxyphenyllactate, as there is
an equilibrium between both metabolites (Fig. 1C). In
addition, the increase of thyroid stimulating hormone could
be a consequence of hypertyrosinemia as tyrosine is the
precursor for thyroid hormones, melanin, and catechol-
amines. Both results were also reported in alkaptonuria
patients after nitisinone treatment, where tyrosine
decrease was much greater compared to our results and
where the prevalence of hyperthyroidism was significantly
higher (16.0%) than the 3.7% prevalence in the general
population.2,3

Interestingly, besides increased levels of amino acids in
serum, we observed the presence of “side-chain” metabo-
lites, such as y-glutamyl- and N-acetyl- coupled amino acids
(Fig. 1C and Table S3). These metabolites are related to
glutathione metabolism, indicating that non-directly
related pathways like phase II metabolic biotransformation
reactions are also affected. Phase II metabolism involves
conjugation reactions with sulphate, glucuronide, gluta-
thione, mercapturic acid, amino acid, methyl, and acetyl.
Especially y-glutamyl, glucuronide, and acetyl conjugates
were observed as alternative metabolites in the analyzed
serum samples. Moreover, gene expression analyses of liver
tissue support this observation, where activation of gluta-
thione metabolism and the y-glutamyl-cycle was identified
Figure 1 Transcriptional (by microarray) and metabolic (by LC-Q
none treatment discontinuation compared to continuously treated
mouse gender, genotype and age, treatment groups, sample collect
of transcriptional data using liver tissue and metabolic data using
ranked by their -log (BeH P-value), the lower x-axis and bar char
ecules, and the black dashed line represents the BeH corrected
metabolic pathways in serum samples, identified by high-resolutio
pathway database (http://www.genome.jp/kegg/pathway.html).
down-regulated are colored in red and blue, respectively, and the m
Metabolites with an asterisk (*) are duplicates in this diagram to
indicate respectively the single and multiple steps involved betwe
(Fig. S2). Together, this indicates that, besides the con-
ventional pathways, the body eliminates or detoxifies the
excess of amino acids by an altered route of metabolism by
making conjugated and thus more water-soluble products.
These results are consistent with literature where gener-
alized hyperaminoaciduria and small amounts of phase II
metabolites are reported in urine.4 Contrary, phase I con-
jugates of hydroxylation, oxidation, reduction, and hydro-
lysis were less present.

Associated with the glutathione metabolism, increased
levels of 2-aminoisobutyrate, noropthalmate, methionine,
and pyroglutamate were observed. These latter two are
intermediates of the biosynthesis of glutathione and were
reported to be elevated in various experimental models
with cardio- and hepatotoxicity due to oxidative
stress.5 Together with the observed inhibited ferroptosis
signaling pathway and activated vitamin C transport in liver
tissue, and a decrease of ascorbate (a compound with anti-
oxidative capacities) in serum (Fig. S2), these aberrations
could be a secondary response to reverse cell death,
oxidative stress, and DNA damage induced by the accu-
mulation of toxic tyrosine-derivates. Thereby, alteration of
the ferroptosis signaling pathway was previously described
in the literature by Wen-Dai Boa et al who reported that
iron overload in HT1 induces liver injury through the Sp1/
Tfr2/hepcidin axis.

Other noteworthy changes were associated with the
tryptophan pathway (Fig. 1C). Tryptophan, 5-hydroxy-
tryptophan, 2-oxoadipate, kynurenine, N-acetyl-
tryptophan, and y-glutamyl-tryptophan were significantly
increased, while 5-hydroxyindoleacetate, anthranilate,
indole-3-acetate, and indole-3-ethanol were significantly
decreased upon nitisinone deprivation. Also, indoxylsulfate
(a metabolite of the indolepyruvate pathway from trypto-
phan) and 5-hydroxyondoleacetate (an intermediate of the
serotonin catabolism) were decreased. Interestingly,
indole-derivatives are tryptophan-derived metabolites
produced by intestinal microorganisms. Studies suggest
that indole and its derivatives play an important role in the
pathogenesis of several gastrointestinal disorders, liver
diseases, and neurological disorders.

Finally, we observed a decrease in metabolites involved
in liver-specific anabolic functions (mevalonic acid and
hydroxybutyric) and a depletion of key nucleotides (AMP
and GMP), further supporting the oxidative stress response
observation at the metabolic level. The remaining
TOF-MS) profiling of Fah-deficient mice upon seven-day nitisi-
controls. (A) Summary of the experimental workflow including
ion, and data analyses. (B) Ingenuity toxicological classification
serum. The top x-axis and red line charts represent categories
ts represent the total number of differentially expressed mol-
P-value �0.05 threshold. (C) Summary of potentially affected
n metabolomics. Pathways were visualized based on the KEGG
Identified metabolites that were more than 1.5-fold up- or
etabolites in black were not identified or altered in this study.
avoid the complexity of pathways. Solid and dashed arrows

en two metabolites or pathways.
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unmapped metabolites (Fig. S4E, F and Table S3) did not
follow a clear theme and will require further investigation
to unravel the reasons behind their alteration.
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