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Abstract The high risk of postoperative mortality in lung adenocarcinoma (LUAD) patients is
principally driven by cancer recurrence and low response rates to adjuvant treatment. Here, A
combined cohort containing 1,026 stage IeIII patients was divided into the learning (n Z 678)
and validation datasets (n Z 348). The former was used to establish a 16-mRNA risk signature
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for recurrence prediction with multiple statistical algorithms, which was verified in the valida-
tion set. Univariate and multivariate analyses confirmed it as an independent indicator for
both recurrence-free survival (RFS) and overall survival (OS). Distinct molecular characteristics
between the two groups including genomic alterations, and hallmark pathways were compre-
hensively analyzed. Remarkably, the classifier was tightly linked to immune infiltrations, high-
lighting the critical role of immune surveillance in prolonging survival for LUAD. Moreover, the
classifier was a valuable predictor for therapeutic responses in patients, and the low-risk group
was more likely to yield clinical benefits from immunotherapy. A transcription factor regulato-
ry proteineprotein interaction network (TF-PPI-network) was constructed via weighted gene
co-expression network analysis (WGCNA) concerning the hub genes of the signature. The con-
structed multidimensional nomogram dramatically increased the predictive accuracy. There-
fore, our signature provides a forceful basis for individualized LUAD management with
promising potential implications.
ª 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co.,
Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
Introduction

Lung cancer is still one of the most frequently diagnosed
malignancies worldwide, with the second-highest incidence
of all kinds of cancers (more than 2.2 million new cases in
2020), and it ranks the leading cause of cancer mortality in
most countries.1 Lung adenocarcinoma (LUAD) is the pre-
dominant histological subtype of lung cancer, accounting
for approximately 40% of all cases.2 Despite the substantial
progress in therapeutic strategies such as radiation,
chemotherapy, molecularly targeted agents, and immuno-
therapy in recent years, curative resection is still the
standard and main approach in LUAD treatment. However,
due to local recurrence or distant metastasis, the post-
operative 5-year survival rate of LUAD remains disap-
pointing. Currently, the American Joint Committee on
Cancer (AJCC) tumor node metastasis (TNM) cancer staging
system is widely used to assess the recurrence risk of LUAD,
and provides valuable information for patient prognosis
after surgical resection. Nevertheless, due to the tumor
heterogeneity on both histological and molecular levels,3e5

conflict clinical outcomes are frequently appeared even in
patients of same LUAD stage. Thus, new prognostic bio-
markers are urgently needed for risk stratification to pre-
dict the recurrence of LUAD.

Progressions in molecular oncology have facilitated the
investigations of candidate predictors to distinguish
different risk groups, especially at the mRNA level.
Numbers of gene expression signatures have been previ-
ously identified to classify cancer patients into distinct risk
groups, including breast cancer,6e8 liver cancer,9e13 colon
cancer,14,15 and lung cancer.16e21 Interestingly, previously
proposed gene signatures may also predict therapeutic
resistance in cancer. For instance, a TP53-associated gene
signature in lung squamous cell carcinoma was linked to
different sensitivities to chemotherapy and targeted ther-
apy, as well as immune checkpoint blockade (ICB) (target-
ing CTLA4 and PD-1).22 Similar conclusions were reached for
an m6A-related gene signature in LUAD.23 However, very
few studies have focused on the recurrence outcome rather
than overall survival (OS) as the endpoint.17,18,24 Besides,
most of these efforts used differentially expressed genes of
tumor samples (in comparison with normal samples) or
limited gene sets (such as immune-related genes) as targets
in prognostic signatures screening. As a result, significant
genes would be neglected if they were beyond these
criteria. Gene set enrichment analysis (GSEA) is a powerful
computational approach to determine statistically signifi-
cant gene sets between two different disease statuses25

and thus may provide novel insight for the development of
new prognostic biomarkers. Here we focused on assessing
the usefulness of hallmark guided GSEA for the identifica-
tion of transcriptomic signature predicting cancer recur-
rence with multiple statistical approaches. At first, a
hallmark guided gene prognostic signature (HGGPS)
composed of 16 mRNA was developed and validated based
on a combined cohort of 1026 LUAD patients, followed by
the comprehensive analysis to screen out the differences of
genome alterations, hallmark pathways, immune check-
points, the composition of infiltrating immune cells, and
drug responses regarding the high- and low-risk groups. We
also identified a transcription factor regulatory
proteineprotein interaction-network (TF-PPI-network) to
better elucidate the potential mechanisms leading to
different clinical outcomes. Finally, a predictive nomogram
was built for better discrimination of recurrence risk.
Materials and methods

Data source

We reviewed carefully the retrospective mRNA expression
datasets deposited in public databases and conducted the
strict inclusion/exclusion criteria: large sample size
(n > 50); complete information for TNM stage, recurrent
status, and recurrence-free survival time. Four eligible
datasets from Gene Expression Omnibus (GEO) containing
576 stage IeIII LUAD patients were selected, including
GSE3121026 (n Z 226), GSE5008127 (n Z 125), GSE4127128

(n Z 173), and GSE3774529 (n Z 52). Gene expression
profilings were obtained from two high-throughput micro-
array platforms: Affymetrix Human Genome U133 Plus 2.0
Array (GPL570) and Illumina HumanWG-6 v3.0 expression
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beadchip (GPL6884). We also achieved the Cancer Genome
Atlas (TCGA)-LUAD expression dataset with 450 stage IeIII
patients from the UCSC XENA project (https://xena.ucsc.
edu), as well as the corresponding clinicopathological in-
formation. The corresponding clinicopathologic character-
istics were shown in Table S1.

All of the 1026 subjects were merged into one single
cohort and subsequently randomly divided into the learning
dataset (nZ 678) and the validation dataset (nZ 348) with
the approximate ratio of 2:1. Considering the non-recurrent
patients (n Z 659) were predominant versus recurrent pa-
tients (n Z 367), we verified that both states were well
balanced in the learning set (1.94:1) and the validation set
(1.96:1). The learning setwas used to screen recurrence-free
survival (RFS) -related genes and to train the RFS prognostic
signature, and the validation set was applied to validate the
robustness of the signature. The baseline clinical features in
each dataset were described in Table S2.

The mutation annotation format (MAF) data including
the somatic mutation (single nucleotide polymorphisms and
small insertion-deletion polymorphisms) from 443 of 450
cases were acquired from the TCGA data portal (http://
tcga-data.nci.nih.gov/tcga/) and analyzed with R package
“maftools”. Tumor mutation burden (TMB) was computed
and compared between distinct groups. GISTIC 2.0 was used
to detect the significant deletions or amplifications with
copy number variation (CNV) profiles. Among the 450 TCGA
LUAD patients, 399 included the paired DNA methylation
data generated by the Infinium HumanMethylation450
beadchip platform, and the methylation value ranging from
0 to 1 for each probe was downloaded from the UCSC XENA.

Gene expression data preprocessing

All gene expression data were preprocessed with R software
(version 3.6.0, https://www.r-project.org/), except for the
exact matches of probes to gene symbols for microarray
expression sets, which was determined by using a Perl
script. Briefly, for microarray datasets, the processed
format of expression profiles was obtained from the GEO
database and then log 2 transformed. Next, all probes for
each dataset were annotated with gene symbols according
to its platform, using a Perl script. If multiple probes were
mapped to one unique gene, the average value of all probes
was calculated and retained. For the TCGA LUAD dataset,
level three expression profile was derived from the UCSC
XENA browser with normalized RSEM format (log 2 trans-
formed). Subsequently, we conducted a z-score trans-
formation to normalize each gene value across all samples,
and the batch effects were removed with ComBat function
of the sva package.30

Establishment of a prognostic signature

Three phases were included to establish and validate the
recurrence-related prognostic signature. In the discovery
phase, 678 LUAD patients from the learning set were firstly
assigned to two groups according to their recurrent status.
Gene set enrichment analysis (GSEA) with the command
line version was applied to identify significant hallmark
gene sets between the two groups and h.all.v7.1.symbols
gene set was selected as the reference database.25,31 Per-
mutations were employed 1000 times for each analysis. A
maximum Q-value (FDR) of 0.25 was set as the significant
cutoff as recommended. Besides, the candidate genes that
appeared in the significant gene sets were further subject
to univariate Cox (UniCox) regression to estimate their
prognostic values for RFS, allowing the identification of RFS
prognostic genes (Wald test, P < 0.05).

In the training phase, we performed three steps for
feature selection on the predefined RFS prognostic genes.
First, we conducted the popular support vector machine
(SVM) -based algorithm -SVM recursive feature elimination
(SVM-RFE) to narrow down the candidate genes (e1071
package). Second, the least absolute shrinkage and selection
operator (LASSO) algorithm was taken 100 times to minimize
overfitting risk (glmnet package). Only those genes that
repeatedly occurred for more than 80 times were selected
for further analysis. For each time, the optimal lambda
parameter was calculated by ten-fold cross-validation, and
the corresponding lambda, knownas lambda.minwas used to
filter significant genes. At last, to make the model simpler
and more practical, a stepwise backward variable selection
was conducted by SPSS (version 23) with the default settings.

Based on the expression values of the selected prognostic
genes in the learning dataset, a linear combination of risk
signature was constructed to evaluate RFS or OS of LUAD
patients. The risk score of each patient was calculated with
the detailed formula: risk score Z S (regression
coefficient � expression value of each selected mRNA). All
patients of the learning dataset were then classified into two
groups according to the median risk score. KaplaneMeier
curves combined with a log-rank test were used to assess
the statistical significance between the two groups by the
survival package. Time-dependent receiver operating char-
acteristic (tROC) curve was plotted by timeROC package to
measure the performance of predictive power. Besides, the
validation datasetwas used to estimate the robustness of the
signature.

Additional bioinformatic and statistical analyses

The other detailed methods, including function enrichment
analysis and gene set variation analysis (GSVA), differential
analysis of checkpoint molecules and tumor infiltrating
immune cells, WGCNA and hub genes identification,
establishment of a proteineprotein interaction (PPI)
network with predicted transcription factors, construction
of a methylation score system and nomogram, therapeutic
response prediction in clinical treatment, and statistical
analysis are described in the supporting material (supple-
mentary materials and methods).

Results

Hallmark guided identification of prognostic genes
for RFS of LUAD

A series of gene expression datasets were collected from
the GEO database and TCGA, containing at least 52 LUAD
patients, with complete information of RFS status and RFS
time, ranging from TNM stage I to stage III (Table S1). To
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establish an RFS prognostic classifier for LUAD patients, and
to explore its underlying molecular mechanisms and clinical
application, we adopted a novel integrated approach based
on the hallmark gene sets using the GSEA algorithm (Fig. 1).
We firstly split the merged cohort into the learning and
validation datasets with the ratio of 2:1. Figure 2A and
Table S2 indicate the balanced distributions of clinical
characters for the two groups.

In the discovery phase, GSEA was preliminarily imple-
mented to screen the recurrence-related hallmark gene
sets. As a result, with the cutoff of FDR <0.25, GSEA iden-
tified seven hallmark gene sets that were significantly
altered in the recurrent group, including COMPLEMENT
(FDR Z 0.144, NES Z 2.768), ESTROGEN_RESPONSE_EARLY
(FDR Z 0.164, NES Z 2.520), INTERFERON_ALPHA_RES-
PONSE (FDR Z 0.169, NES Z 2.169), UV_RESPONSE_UP
(FDR Z 0.178, NES Z 2.780), INFLAMMATORY_RESPONSE
(FDR Z 0.190, NES Z 2.948), KRAS_SIGNALING_DN (FDR Z
0.178, NES Z 2.230), and MYC_TARGETS_V1 (FDR Z 0.202,
NES Z 2.237) (Fig. 2B and Table S3), implying that these
Figure 1 Schematic workflow of the study showing data collection
set enrichment analysis; GSVA, gene set variation analysis; LASSO
adenocarcinoma; RFS, recurrence-free survival; ROC, receiver ope
sive feature elimination; TCGA: The Cancer Genome Atlas; TF-
interaction network; UniCox: univariate Cox; WGCNA, weighted ge
hallmark pathways may play important roles during the
recurrence of LUAD. Next, we performed a univariate Cox
(UniCox) procedure to reduce the dimensionality of the 978
genes in the above pathways, and 249 geneswere found to be
significantly associated with the RFS of LUAD patients (Table
S4). KEGGenrichment indicated these 249 genesweremainly
involved in cell cycle, DNA replication, central carbon
metabolism in cancer and other pathways, and well-known
oncogenetic pathways including HIF-1 signaling pathway,
PI3K-Akt signaling pathway, and Jak-STAT signaling pathway
were also enriched (Fig. 2C).

Construction and validation of the RFS prognostic
signature

In the training phase, we performed three approaches to
narrow down candidate signature genes. Generally, we
adopted a learning vector quantization (LVQ) method and
obtained a ranking list of all the 249 prognostic genes by
their importance (Table S5), and then the recursive feature
and steps of analysis. DCA, decision curve analysis; GSEA, gene
, least absolute shrinkage and selection operator; LUAD, lung
rating characteristic; SVM-RFE, support vector machine recur-
PPI-network, transcription factor regulatory proteineprotein
ne co-expression network analysis.



Figure 2 Establishment of a 16-mRNA risk signature for the prognostation of LUAD recurrence. (A) Unbiased division of the whole
combined cohort into the learning and validation datasets. (B) GSEA result showed seven significant gene sets with the cutoff of
FDR <0.25. (C) Top 20 KEGG pathways enriched by the 249 prognostic genes. The right panel shows the network of enriched
pathways clustered by Kappa-statistical similarities. Terms with a similarity score of >0.3 are labeled with the same color and
connected by an edge to form a cluster. The size of a node represents the number of genes that fall into the term. (D) A total of 47
candidate genes were filtered by SVM-RFE. (E) List of the 17 genes retained after LASSO Cox selection with forest plot presenting HR
and corresponding P values for RFS of each gene by univariate Cox. (F) Forest plot showed HR and corresponding P values of the 17
genes with multivariate cox model using backward stepwise selection. (Default setting: 0.1). 95% CI, confidence interval; HR,
hazard ratio; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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elimination procedure was taken with a random forest se-
lection function, which resulted in 47 candidate genes for
the following analysis (Fig. 2D and Table S5). Next, the
LASSO algorithm was applied to further reduce the features
by which 47 potential signature genes were shrunk to 17
(Fig. 2E), and 16 of them showed consistently significant in
the stepwise Cox regression analysis: IL10RA, CLTB, SNRPA,
OLFM1, PPIA, FOXC1, TRIM25, RPL14, HTR1B, UGCG, SP110,
PABPC1, CP, UPK3B, TOB1, and PDGFB (Fig. 2F). Subse-
quently, an RFS prognostic signature (HGGPS) was built
according to their expression values and the corresponding
coefficients with the following formula: risk score Z
(0.2245 � EXPSNRPA) þ (0.3624 � EXPPDGFB) � (0.33927 �
EXPIL10RA) þ (0.2958 � EXPSP110) þ (0.1884 � EXPPPIA) þ
(0.16785 � EXPFOXC1) þ (0.1993 � EXPHTR1B) þ (0.2187 �
EXPCP) � (0.2232 � EXPTRIM25) � (0.2001 � EXPOLFM1) þ
(0.1608 � EXPUGCG) þ (0.2210 � EXPRPL14) þ (0.1704 �
EXPPABPC1) � (0.1668 � EXPUPK3B) þ (0.1654 � EXPCLTB) �
(0.1831 � EXPTOB1). The risk scores for all patients in the
learning dataset were calculated with the formula. Using
the median value of 1.018223, patients were designated as
high- or low-risk (Fig. 3A). Figure 3B suggested that not only
the risk scores were significantly different between the
high- and low-risk groups (P < 0.0001), but also the



Figure 3 Prognostic value of the generated risk signature in the learning dataset. (A) Risk score, recurrence status, and gene
expression profile for each patient. (B) Violin plot presenting the significant difference between the high- and low-risk groups. (C)
Recurrence rates distribution between the high- and low-risk groups. (D) ROC curves at 1-, 3-, and 5-year of the signature for
prediction of recurrence. (E) KaplaneMeier plot of RFS in LUAD patients based on the risk score. (F) KaplaneMeier plot of OS in
LUAD patients based on the risk score. **** P < 0.0001.
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recurrence rate was significantly higher in the high-risk
group (Fig. 3C, P < 0.0001). The tROC showed good
discriminatory capacities for 3-, 4-, and 5-year recurrence
rates (Fig. 3D), with the area under the curve (AUC) of
0.735, 0.768, and 0.767, respectively. KaplaneMeier curves
of RFS or OS generated by risk score indicated a significant
difference between high- and low-risk groups with the log-
rank test (Fig. 3E, F; P < 0.0001 for both RFS and OS).
Interestingly, although the risk signature was capable of
classifying early stage (stage I and stage II) patients into
high- or low-risk subgroups based on their difference in RFS
or OS (P < 0.0001 for both RFS and OS), these trends were
not significant in stage III patients (Fig. S1).
In the validation dataset, patients were divided into
different risk groups (Fig. 4A) based on the same formula
and cutoff value (1.018223). Similarly, different risk scores
were observed in the two groups, as well as the recurrence
rate (Fig. 4B, C). KaplaneMeier survival analyses exhibited
a significantly better RFS or OS in the low-risk patients than
the high-risk patients (Fig. 4D, E; P Z 0.00047 for RFS and
P Z 0.0086 for OS, respectively). Additionally, while the
high-risk group had a significantly higher rate of recurrence
(Fig. 4F; P Z 0.00063) and mortality (Fig. S2; P Z 0.02)
than the low-risk group in the early stage, only a borderline
difference for RFS or OS was observed for stage III patients
(data not shown).



Figure 4 Verifying the robustness of the 16-mRNA risk signature using the validation dataset. (A) Risk score, recurrence status,
and gene expression profile for each patient. (B) Violin plot showing the significant difference between the high- and low-risk
groups. (C) Recurrence rate distribution between the high- and low-risk groups. (D) KaplaneMeier plot of RFS in LUAD patients
based on the risk score. (E) KaplaneMeier plot of OS in LUAD patients based on the risk score. (F) KaplaneMeier plot of RFS in early
stage LUAD patients (stage I and stage II) based on the risk score. **** P < 0.0001.
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HGGPS is an independent predictor for RFS or OS of
LUAD

Using the combined cohort of GSE31210 and TCGA-LUAD, we
compared the prognostic power of HGGPS with that of other
clinicopathological features for RFS. As a result, univariate
analysis found five variables including TNM stage (P< 0.001),
age (P Z 0.002), smoking status (P Z 0.001), and tumor
burden (P < 0.001) besides HGGPS (P < 0.001) were signifi-
cantly associated with RFS. Whereas, in multivariate anal-
ysis, only TNM stage (P Z 0.006), tumor burden (P < 0.001),
and HGGPS (P Z 0.003) were still significant for RFS,
indicating their independent values in RFS prediction in LUAD
patients (Fig. S3A).

We also evaluated the prognostic value of HGGPS for OS
prediction. Results showed that after adjusting for TNM
stage, age, smoking status, EGFR mutation status, and
tumor burden, HGGPS remained significantly correlated
with the OS outcome (P < 0.001), revealing its effective-
ness and independence in prognosis (Fig. S3B).

Besides, the correlations between HGGPS and other
clinicopathological features were analyzed using the avail-
able patients in the combined cohort. As demonstrated in
Figure S3C and Table S6, the HGGPS risk group was positively



Figure 5 Distinctive mutation patterns and significant hallmark pathways in terms of the risk signature. (A, B) Waterfall plot
illustrating the mutation profile of the top 20 most frequently mutated genes in each risk group from the TCGA-LUAD dataset. The
middle columns indicate the mutation types of the individual patient. The bar plots in the upper and right panels represent the
mutation frequency of each sample and that of mutation type of genes. The stacked barplot (bottom part) shows the proportion of
transversion or transition in each sample. (C) Forest plot displaying the common driver genes mutating significantly differentially in
the high- and low-risk groups. (D) Co-occurrence and mutual exclusivity of mutations in the most frequently mutated genes of the
high- and low-risk groups. (E) Lollipop diagram visualizing the differential mutation site for TP53 between two risk groups. (F)

Mutation enrichment analysis for risk group. (G) Risk score was significantly increased in the KRAS mutant group versus the wild-
type group. (H) KaplaneMeier analysis to reveal the relevance between KRAS mutation and RFS of LUAD. (I) The comparison of TMB

1664 Y. Zhang et al.
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correlated with gender (P Z 0.038), smoking status
(P Z 0.011), TNM stage (P < 0.001), and tumor burden
(P< 0.001), while other clinicopathological variables did not
show significant association with our risk signature.

Next, we performed stratification analysis of HGGPS for
OS or RFS in subgroups of clinical characteristics, including
age (�60 and <60), gender (female and male), smoking
status (yes and no), race (white and others), anatomic
neoplasm subdivision (left and right), and location in lung
parenchyma (central and peripheral). Surprisingly, as the
RFS curves illustrated (Fig. S4), after subdivision by the
above clinical variables, HGGPS was remained to be a sig-
nificant prognostic factor in all subgroups. Notably, even
though age and smoking status had been proved to be prog-
nostic factors in UniCox analysis (Fig. S3A), HGGPS could still
stratify the patients into distinct risk groups. Hence, HGGPS
could exert additional prognostic value to existing risk
models. For the stratification analysis of OS, similar results
were achieved. In most subgroups, a significantly shorter OS
time was observed in the high-risk than the low-risk group
(Fig. S5), confirming the considerable power of HGGPS for
the prognosis prediction in LUAD.

Given that the EGFR was the most common mutant gene
in LUAD, we also evaluated the prognostic performance in
RFS and OS in LUAD patients with different EGFR mutation
statuses. The results suggested that in both the EGFR wild-
type (EGFR-WT) subgroup and the EGFR mutant (EGFR-
MUT) subgroup, the recurrence rate was significantly higher
in the high-risk group than the low-risk group, as well as the
OS result (Fig. S6).

Genomic alterations between different HGGPS risk
groups

To give a hint of HGGPS-related mechanisms for RFS classi-
fication of LUAD from genomic layer, available somatic mu-
tations of the TCGA-LUAD dataset were acquired, and the
distribution differences in the high- and low-risk groupswere
analyzed by the package “maftools”. The top 20 driver genes
that were most frequently mutant in each risk group were
shown in Figure 5A and B. Generally, TP53, TTN, and MUC16
occupied the top three most frequently mutated positions in
both groups. Nevertheless, the Fisher’s exact test by maf-
Compare function revealed that among commondriver genes
(at least 20 mutation events in each group), 10 of them
(KRAS, PRUNE2, ANKRD30A, CUBN, MYH1, MRC1, TTN,
NLRP14, DCDC1, and SMARCA4) exhibited higher mutation
frequencies in the high-risk group (Fig. 5C). Besides, signifi-
cant co-occurrence and mutual exclusivity for the 25 most
frequently mutated genes were investigated. Despite the
pervasive pattern of co-occurring mutations in both groups,
mutually exclusivemutationswere observed in a unique case
of TP53-KRAS in both groups and three cases of EGFR-KRAS,
EGFR-RYR2, and EGFR-LRP1B in the low-risk group (Fig. 5D),
between different risk groups. (J) The association of TMB level w
across the human genome for the high- (K) and low-risk (L) groups
group. (N) The relationship between copy number and mRNA expr
significantly different between two risk groups (P < 0.01, t > 2.5).
20 important pathways that significantly correlated with risk score (
burden.
implying their potentially redundant effect in the same
pathway, and the selective advantages to retainmore copies
of the mutations. The observation that most somatic muta-
tions in both the high- and low-risk groups were missense
mutations suggested the necessity of the classification of
mutation types. Figure 5E illustrates an example of different
mutation spots between different risk groups and Figure S7
summarized the mutation profiles (including the variant
type, standard normal variate (SNV) class, and so on) of
different risk groups. Moreover, the mutation enrichment
trends of different groups were manifested (Fig. 5F) and the
detailed list of significant genes was shown in Table S7.

Given that KRASmutation was the most enriched position
among the common variants in the high-risk group, a possible
correlation between risk score and KRASmutation status was
proposed, and the mutant group (KRAS-Mut) displayed sig-
nificant higher risk score than that of the wild group (KRAS-
WT) (Fig. 5G). Nonetheless, the specific distribution of risk
score between the two groups does not denote its prognostic
value in the whole dataset of TCGA-LUAD (Fig. 5H), but
rather the heterogeneity and complexity inherent in sub-
groups of LUAD patients.20,32 The TMB quantification results
demonstrated an elevated level in the high-risk group,
although in a non-significant mode (Fig. 5I), and patients
with a lower TMB score presented a better RFS survival
(Fig. 5J).

Next, we investigated the CNV features of the different
mRNA risk groups. Figure 5K, L exhibited the genomic land-
scape of CNV segments across all human chromosomes after
germline CNVs were eliminated, and typical oncogenes such
as CDK1, RET, CDK2, ALK, CDK4, KRAS, TOP2A, E2F2, EGFR,
and MYC were prevalently amplified in the high-risk group
compared with the low-risk group (Fig. 5M). Furthermore,
the expressions of KRAS and EGFR presented remarkably
positive correlations with their copy numbers (Fig. 5N).

Identification of related hallmark pathways by
GSVA

To investigate the underlying pathways involved in LUAD risk
stratification,GSVAenrichment scores of all 50 hallmark gene
sets from MSigDB were computed for each sample. Gene
expression profiling of GSE31210 was converted to a pathway
matrix using the GSVA package. Comparison of the high-risk
group versus the low-risk group of LUAD patients revealed 27
significantly changed pathways at a P-value cutoff of 0.01 (of
which 15 pathways showed significantly activated and 12
were inhibited) (Fig. 5O and Table S8), indicating the differ-
ence in pathway activities between the two risk groups.
Moreover, we conducted the Spearman correlation test to
evaluate the correlation between the risk score and each of
all 50 hallmark gene sets. As a result, 20 gene sets showed
significant association with risk score by a cutoff of P < 0.01
and correlation efficient >0.25 (Fig. 5P and Table S9). All of
ith RFS in LUAD patients. (K, L) Distribution of CNV segments
. (M) Typical oncogenes were widely amplified in the high-risk
ession for KRAS and EGFR. (O) 27 hallmark pathways exhibited
Enrichment scores were calculated by GSVA algorithm. (P) Top
P < 0.01 and correlation efficient >0.25). TMB, tumor mutation
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the 20 gene sets showed significantly activated or inhibited in
the high-risk group compared with the low-risk group
(Fig. 5O). Next, we selected the top six gene sets that had the
strongest correlations with risk score (P < 0.01 and correla-
tion coefficient >0.4) to perform unsupervised hierarchical
clustering, as presented in Figure S8. All samples were
grouped into twoclusters by these pathways.Wenoticed that
cluster 1 was mainly composed of samples from the low-risk
group, and cluster 2 was mainly composed of samples of the
high-risk group. Besides, considering its negative correlation
with the risk score, the expression level of the UV_RES-
PONSE_DNpathway in cluster 1was clearly higher than that in
cluster 2, while the other five pathways that had positive
associations with risk score were highly expressed in cluster 2
compared with that in cluster 1. These findings further
confirmed the important roles of the identified pathways
during the RFS risk determination by HGGPS. HGGPS was
tightly associated with the immune microenvironment.

Early efforts trying to identify candidate therapeutic
targets that function as determining factors in multiple
activities of various immune cells have revealed their crit-
ical and diverse roles during carcinogenesis and cancer
progression, and evading immune destruction has been
widely considered to be an immerging hallmark of cancer.3

Besides, increasing lines of evidence have suggested that
the immune system may possess great potential for the
development of clinical biomarkers.18,33e36 In the current
study, to better clarify the underlying mechanism of the
immune response concerning HGGPS, we analyzed the
contribution of immune phenotypes to RFS risk classifica-
tion in GSE31210. As shown in Figure 6A, five immune
checkpoint molecules including LAG3, CD86, B7-H3, and
VISTA exhibited significant dysregulation between the
different risk groups with a cutoff of P-value < 0.01. We
then utilized the ssGSEA algorithm to generate an estima-
tion of immune profiles for 24 types of tumor-infiltrating
immune cells. The interactive network of the tumor
microenvironment (TME) cells revealing the correlations
among the TME cell populations was depicted (Fig. 6B).
While the abundance of T helper 2 (Th2) cell presents a
markedly negative correlation with the RFS in LUAD pa-
tients, mast cells, CD8þ cells, regulatory T (Treg) cells,
dendritic cells (DC), and effector memory T (Tem) cells
were significantly associated with a better RFS. The
comprehensive network of TME cells interactions and
prognostic impact may reflect the reciprocal crosstalk
among infiltrating immune cells in the formation of distinct
risk groups of LUAD. Differential analysis suggested the
significantly aberrant infiltration of CD8þ cells, DC, Eosin-
ophils, immature DC (iDC), Mast cells, natural killer (NK)
CD56dim cells, central memory T cells (Tcm), Tem, T
follicular helper (TFH), and Th2 cells in the high-risk group
with a P-value cutoff of 0.01 (Fig. 6C).

When conducting the correlation analysis, Th2 cells and
NK CD56dim cells showed a positive association with the
identified risk score, while Tcm, Mast cells, CD8þ T cells,
Eosinophils, Tem, DC, TFH, and T helper cells were nega-
tively related to our risk score (Table S10). These data
confirmed the distinct immune infiltration status in the TME
between different risk groups, which might partly cause the
different clinical outcomes of LUAD patients. Moreover, the
top six immune cell types that gave the largest absolute
values of the Pearson correlation coefficient (PCC) were
selected to perform the hierarchical clustering for all LUAD
patients, and all patients were divided into two groups with
different immune phenotypes (Fig. 6D). As displayed in
Figure 6D, the high-infiltration group (“hot tumor”) with
active immune cells corresponded to the low-risk score
group, while the low-infiltration group (“cold tumor”) with
inhibited immune cells corresponded to the high-risk score
group, which further demonstrated the potential contri-
bution of immune surveillance in the low-risk group of LUAD
patients. In agreement with the clustering result, the PCA
3D plot in Figure 6E also confirmed the divergence between
these immune groups. When contrasting the risk scores
between the two immune groups, a significantly higher risk
score level was observed in the low-infiltration group
(Fig. 6F), verifying the important mechanism of immune
regulation for RFS risk categorization. In addition,
KaplaneMeier survival curves generated by immune groups
for RFS or OS also suggested distinct clinical outcomes of
LUAD patients (Fig. 6G, H), which might support the
explanation that altered immune surveillance is responsible
for a poor RFS prognosis in LUAD.
Establishment of the gene co-expression network
via WGCNA

In order to further uncover the underlying biological function
of HGGPS, we used WGCNA to establish a scale-free gene co-
expression network based on the gene expression profile of
226 LUAD samples with 5000 filtered genes. As the first step,
GSM773616, GSM773601, GSM773559, and GSM773630 were
recognized as outliers and removed by hierarchical clus-
tering dendrogram of samples with average linkage method
(Fig. S9A). After carrying out the topological analysis (scale
independence and mean connectivity) for the network with
thresholding powers ranging from 1 to 20, we picked bZ 4 as
the optimal soft-threshold power to obtain a scale-free
fitting index (R2) of >0.85 (Fig. S9B). Next, a hierarchical
clustering tree of genes was constructed and eight modules
were screened out with a minimum size of 100 genes. Addi-
tionally, similar modules were merged using a minimum
height of 0.3 and six modules were eventually obtained
(Fig. 7A, B) with variable sizes ranging from 310 to 1795 (grey
module excluded). To determine the relevance between the
identified modules and clinicopathological characteristics,
such as age, gender, smoking status, immune group, TNM
stage, RFS time, RFS status, risk group, and so on, we
computed the Pearson correlation coefficients and corre-
sponding P values, and a module-trait heatmap was depic-
ted. As illustrated in Figure 7C, the blue module and the
black module were found to be the two most significant
modules with the highest absolute values of PCC for risk
level. It should be noted that the blue module also showed
the highest significantly positive correlation with TNM stage,
OS status, and RFS status, while it was most negatively
associated with the immune group, OS time, and RFS time.
For the black module, however, an opposite trend was
observeddit displayed the positive correlations with the
immune group, OS time, and RFS time,while revealing strong
negative correlations with TNM stage, OS status, and RFS
status. Function enrichment suggested these two modules



Figure 6 The mRNA risk signature tightly linked to tumor immune infiltration based on GSE31210. (A) Relationship of the risk
signature to immune checkpoint molecules. (B) Interactive network of TME cells with prognostic values. The size of each cell
represents the survival influence evaluated by the log-rank test, and the blue (red) lines represent the positive (negative) cor-
relation between cells. (C) Differential infiltration levels of estimated immune cell types. (D) Hierarchical clustering of all samples
with top-six immune cell types that most correlated with a risk score. (E) Principal component analysis of the six immune cell types
regarding the immune groups. (F) Comparison of risk scores between the high- and low-immune infiltration groups. (G, H)

KaplaneMeier curves of RFS (G) and OS (H) for two distinct immune groups. TME, tumor microenvironment.
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were mostly enriched in those GO terms linked to early
events of cancer metastasis, especially relevant to
epithelialemesenchymal transition (EMT), like extracellular
matrix organization, extracellular matrix, adherens junc-
tion, focal adhesion, and cell adhesion molecule binding
(Fig. S10A). For KEGG pathway analysis, it was found that the
selected modules were mainly involved in PI3K-Akt signaling
pathway, Focal adhesion, Hippo signaling pathway, TNF
signaling pathway, ECM-receptor interaction, and so on
(Fig. S10B, C).
Key hub gene identification and putative TF
regulatory PPI network construction

Following the prespecified cutoff criteria (|GS| > 0.4 and
|MM| > 0.8), a total of 26 genes were extracted and
deemed as candidate hub genes from the blue and black
modules (Fig. 7D, E), which were subsequently used to
generate a highly confident PPI network by STRING data-
base to identify key hub genes. After eliminating the
disconnected nodes, a tightly connected network cluster



Figure 7 Construction of a TF-PPIenetwork and correlation analysis using GSE3121. (A) Heatmap visualizing the co-expression
network with six gene modules, which was generated from the topological overlap matrix among all genes. (B) Hierarchical
clustering tree of genes using the dissimilarity (1-TOM). Each color signifies an individual gene module. (C) Module-trait heatmap
showing correlations between module eigengenes and clinicopathological traits. Each row represents a module eigengene and
columns indicate clinicopathological traits. Each cell contains PCC and corresponding P value. (D, E) Scatter plots selected
candidate hub genes in the blue and black modules. Dots in the right-up section were candidate hub genes (|GS| > 0.4 and |
MM| > 0.8). (F) The established TF-PPI-network contained eight key hub genes and seven upstream transcription factors. (G)

Pearson correlation analysis between risk score and each node of the TF-PPI-network. The color depth represents the degree of
correlation, and “ � ” indicates no significant difference. (H) Correlation matrix of the 16 risk signature genes and each node in the
TF-PPI-network. * P < 0.05, ** P < 0.01. GS, gene significance; MM, module membership; PCC, Pearson correlation coefficient; TOM,
topological overlap matrix.
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was formed using the remaining eight genes (CASC5,
MAD2L1, CCNB2, RRM2, MELK, CEP55, UHRF1, and BUB1B),
which were considered as the key hub genes for further
analysis. We preliminary explored the expression levels
and the prognostic values of these genes with the GEPIA
database (http://gepia.cancer-pku.cn/),37 an interactive
online tool, to analyze RNA sequencing data from the
TCGA project. Notably, the expression levels of MAD2L1,
CCNB2, RRM2, MELK, CEP55, UHRF1, and BUB1B were
significantly elevated in tumor samples, compared with
adjacent normal lung tissues with a P-value cutoff of 0.01
(Fig. S11). CASC5 expression was also up-regulated in the

http://gepia.cancer-pku.cn/
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tumor, although the change was not statistically signifi-
cant. In addition, increased expressions of all the identi-
fied key hub genes were found to confer unfavorable OS
outcomes (Fig. S12A), and five of them (CASC5, CCNB2,
RRM2, MELK, and BUB1B) were demonstrated to be
significantly associated with worse RFS of LUAD patients
(Fig. S12B). We then predicted the putative upstream
transcription factors of these eight key hub genes by the
TRRUST database, and seven transcription factors (BRCA1,
E2F1, ETV6, POU2F1, RUNX1, TP53, and ZNF143) were
predicted to activate or repress the expression levels of
key hub genes and thus used to construct the TF tran-
scription factor regulatory PPI network (Fig. 7F). When
subjected to Pearson correlation analysis, all nodes in the
TF regulatory PPI network showed significant correlations
(P < 0.01) with the risk score derived from HGGPS, except
for RUNX1, POU2F1, and TP53 (Fig. 7G). Eventually, we
evaluate the correlations between the 16 identified risk
signature genes and each of the network nodes. As illus-
trated in Figure 7H, UGCG and HTR1B were significantly
positively correlated with most key hub genes and the
corresponding transcription factors, while TOB1, SP110,
SNRPA, IL10RA, FOXC1, and CP showed significant negative
associations with all the key hub genes. Collectively, these
findings disclosed that the key hub genes and the estab-
lished TF-PPI-network played pivotal roles in determining
the RFS risk of LUAD patients.
Building a multi-omic nomogram based on HGGPS

Evidence revealed that DNA methylation patterns could
predict prognosis and survival in common cancers including
LUAD. Thus, we anticipated that an integrated nomogram
with the multi-omic strategy would improve the prediction
accuracy tremendously. On the basis of previous work,38 we
retrieved the methylation profiles of 399 LUAD patients in
TCGA, and screened the reported 82 CpG markers identified
by LASSO and boosting. UniCox analysis with the “multi-
split” approach was implemented for dimensionality reduc-
tion. We introduced a methylation score for each patient
with a linear equation using the four resulting methylation
markers: cg05556202, cg00620629, cg23389061, and
cg19928450. All patients were subsequently assigned to two
risk groups by the median methylation score. The generated
KaplaneMeier curves revealed a longer median survival time
for RFS (P Z 0.016) or OS (P Z 0.041) in the low-risk group
(Fig. 8A, B), and a tSNE plot of the four methylation markers
showing all cases clustered by methylation score levels was
also depicted (Fig. 8C).

For the purpose of developing a clinically quantitative
tool to optimize prediction accuracy for LUAD recurrence,
significant prognostic risk characteristics including age,
TNM stage, smoking status, tumor burden, HGGPS, and
methylation score were combined to construct an inte-
grated nomogram based on the multivariate cox analysis for
RFS prediction (Fig. 8D). The calibration plots for the pos-
sibility of 3- and 5-year RFS were highly consistent with the
observed RFS rates, showing good performance for RFS
prediction (Fig. 8E). As expected, the C-index of the inte-
grated nomogram was higher than each of the single vari-
ables (Fig. 8F), strengthening its predictive capacity.
Furthermore, decision curve analysis (DCA) curves for 1-
and 3-year RFS indicated the integrated nomogram may be
more beneficial than clinicopathological characteristics
(Fig. 8G, H) for the complete range of threshold probabil-
ities. The results of the KaplaneMeier graph also demon-
strated a considerable value of the derived nomogram for
RFS or OS prognosis prediction (Fig. 8I, J). Notably, the
tROC analysis indicated that the integrated nomogram was
the best predictor for recurrence-free survival with the
estimates of the AUCs of 0.802, 0.860, and 0.919 for the 3-,
5-, and 10-year RFS, respectively (Fig. 8K). Taking together,
these findings suggested that the established multi-dimen-
sional nomogram may provide a powerful method for RFS
prediction in LUAD patients, which was helpful for clinical
administration.

HGGPS predicts therapy responses in patients with
LUAD

Conventional chemotherapy or targeted therapy are sys-
temic therapies that are prevalently applied after surgery to
eradicatemicrometastases and decrease the recurrence rate
in LUAD, so recognition of which specific subsets are more
sensitive to related compounds or drugs is fundamental to
prolong the median RFS time. The estimated 50% inhibiting
concentration (IC50) values of 138 drugs were inferred by the
pRRophetic algorithm to predict the treatment responses in
different risk groups derived from the HGGPS classifier. We
found the low-risk groupwasmore sensitive toMethotrexate,
Nilotinib, Lenalidomide,ATRA, etc.,while thehigh-risk group
was more sensitive to Docetaxel, Paclitaxel, RDEA119,
Dasatinib, Bortezomib, Elesclomol, etc. (Fig. S13A).

The above findings have established the correlations be-
tween HGGPS and the immune system activities, as well as
common immune checkpoints, which are emerging as new
promising targets in immune therapy. Thus, we speculated
that HGGPS may be used to predict the anti-PD-1/PDL1
immunotherapy. Based on the TCGA-LUAD dataset, a signif-
icantly higher immunophenoscore in the low-risk group was
observed, which indicated a more immunogenic tumor with
higher sensitivity to immunotherapy (Fig. S13B). We further
utilized tumor immune dysfunction and exclusion (TIDE)
score to evaluate the ICB responses. As shown in Figure S13C,
the TIDE scores was significantly decreased in the low-risk
group, suggesting more promise in response to ICB therapy.

Discussion

LUAD is a highly heterogeneous malignancy at the histologi-
cal and molecular level, posing a huge challenge for the ac-
curate prognostication of LUAD patients. We have previously
demonstrated the presence of solid subtypewas significantly
associated with poor overall survival of LUAD.39 In this study,
given the fact that universal postoperative recurrence or
metastasis takes responsibility for the majority of lung can-
cer deaths, and better recognition of LUAD cases likely to
relapse can guide standard disease management and maxi-
mize clinical benefit, it is crucial that we focus on the
development and validation of a useful and applicable gene
expression signature to predict cancer recurrence of LUAD
patients.



Figure 8 Methylation score system and nomogram construction based on the TCGA-LUAD dataset. (A, B) KaplaneMeier curves of
the methylation score system for RFS (A) and OS (B). (C) A tSNE plot of four methylation markers with methylation score levels. (D)
The established nomogram. The red arrow signifies an example to visualize the assessment of risk for 3-year RFS and 5-year RFS. (E)
Calibration curves for RFS prediction with the integrated nomogram showing the agreement between prediction and observation at
3 and 5 years. (F) C-indexes for the generated nomogram and single variables in predicting RFS of LUAD. (G, H) DCA plots for 1-year
(G) and 3-year (H) RFS indicating a better net benefit of the nomogram than TNM stage or tumor burden. (I, J) KaplaneMeier
analysis of the nomogram for RFS (I) and OS (J) in LUAD patients. (K) The tROC analysis of the nomogram. AUC, area under the
curve; tROC, time-dependent receiver operating characteristic.
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In the present study, we presume that GSEA is a powerful
tool to screen significant and meaningful pathways for LUAD
recurrence, and it is possible to develop a prognostic signa-
ture combining GSEA with multiple statistical algorithms.
With this goal, we retrospectively enrolled a pooled set of
1026 patients from five individual datasets of gene
expression profile and obtained the corresponding clinico-
pathological characters and survival information, which
allowed the following unbiased division of the learning and
validation datasets to minimize the risk of potential over-
fitting. After the multi-step process of feature selection, we
fitted an effective 16-mRNA risk signature e HGGPS e for
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LUAD RFS prediction with the learning dataset. Analysis with
the validation dataset found that it was a robust classifier for
RFS risk determination. Moreover, multivariate analysis
involving other significant clinicopathological covariates
(including TNM stage, age, smoking status, and EGFR muta-
tion) showed the signature remained an independent prog-
nostic indicator for both RFS and OS of LUAD patients.
Remarkably, stratification analysis based on subsets of
several clinical variables suggested that our signature can
impose additional prognostic value for RFS and OS predic-
tion, which reinforced its ability for risk classification.

Thanks to the rapid development of biological technology
and bioinformatics, a large number of cancer prognostic
biomarkers were identified and applied in clinical practice.
These biomarkers including protein, mRNA, miRNA and me-
tabolites, and their examination platforms are quantitative
PCR, microarray, next generation sequencing or mass spec-
trometry. The prognostic panel could be single biomarker or
a few biomarkers in combination.40e42 Recently, mounting
published studies have revealed that gene expression
signature may hold potential clinical utility in various solid
cancers,6e11,14e18,43e50 in line with our results in this article.
In comparison with previous efforts seeking to make prog-
nostic models, this study possesses at least four major ad-
vances. First, unlike previous research that mainly focused
on overall survival which is likely to be influenced by
competing risks (such as pre-existing comorbidities), we took
cancer recurrence as the primary endpoint with the aim of
exploring a gene expression classifier to discriminate in-
dividuals that are at risk of relapse and might achieve the
most benefit during adjuvant treatment. Second, we applied
the “pooled set” strategy to get a large sample size that
contained 1026 cases, which exceeds that of many studies
and yielded sufficient statistical power. Third, compared
with most studies that only used one or two approaches to
select variables, we adopted a multi-step process that in-
tegrated multiple algorithms for comprehensive feature se-
lection. Last but not least, most previous studies used
prefiltered dysregulated genes between tumors and adja-
cent normal tissues, or only a certain gene set (such as im-
mune-related genes,18,36,48 Tyrosine kinases,6 and WEE
Family Kinases49), our study used a gene set-based strategy
to prescreen significant gene sets that hold prognostic po-
tential to decrease the possibility of missing important
markers.

Strikingly, most of the 16 signature genes have been
linked to lung cancer. As an example, CLTb was found to be
specifically upregulated in non-small cell lung cancer
(NSCLC) and associated with poor prognosis, and upregula-
tion of CLTb, together with Dyn1 can regulate the activity of
clathrin-mediated endocytosis (CME) to selectively modu-
late EGFR recycling, resulting in elevatedmigration capacity
of NSCLC cell lines and increased invasion and metastatic
efficiency in vivo.51e53 OLFM1 was an immune-related gene
that significantly down-regulated in endometrial cancer,
colorectal cancer (CRC), and neuroblastoma,54e56 and
overexpression ofOLFM1 attenuated CRC cells’ proliferation
andmigration in vitro.55 On the other hand, however,OLFM1
protein showed an up-regulated level in LUAD than squamous
cell carcinoma and normal lung tissues, indicating its po-
tential utility as a diagnosticmarker.57 Besides, dysregulated
expressions or prognostic values of FOXC1,58 PPIA,59
PDGFB,59,60 TOB1,61 CP,62 HTR1B,63,64 TRIM25,65 and
PABPC166 in lung cancer were also observed previously.
Despite these concerns, the oncogenic roles of the remaining
signature genes (UPK3B, IL10RA, SP110, RPL14, SNRPA, and
UGCG) in LUAD have not been well investigated. For
example, SNRPA was only reported in gastric cancer67 to
promote tumor growth, and little was known about SP110 as
to its relationship with cancer, providing new insight into
cancer progression and candidate target identification,
especially for lung adenocarcinoma.

Genomic alterations and CNVs between different risk
groups were analyzed, and more aggressive molecular dis-
orders including somatic mutations such as KRAS, and the
amplification of widely known oncogenes in LUAD (KRAS,
ALK, EGFR, etc.) were identified. Through GSVA, we
discovered several important hallmark pathways involved in
the risk categorization by the defined gene signature.
Moreover, to determine the underlying mechanism of im-
mune regulations, we compared the expression levels of
common immune checkpoints between distinct risk groups
and found significant differences in LAG3, CD86, CD58, B7-
H3, and VISTA. A collection of immune cells was also indi-
cated to play critical roles during risk classification. The high-
risk group showed significantly lower proportions of CD8þ

cells, DC, Eosinophils, iDC, Mast cells, Tcm, Tem, and TFH,
denoting their decreased activities may have negative im-
pacts on LUAD patient’s survival. Interestingly, immune
groups clustered by the top six immune cells that mostly
correlated with the risk score also revealed significantly
associated with clinical outcome. These findings revealed a
tight linkage between the dynamic immune environment and
our gene signature in LUAD.

WGCNA is a popular method to identify cluster modules of
highly related genes or hub genes related to external sample
traits.68,69 In this study, we utilized WGCNA to discover two
important gene modules that highly correlated with the risk
score, which then proved to be mostly enriched in early
events of metastasis and well-known pathways that impli-
cated in tumor initiation or progression throughGOandKEGG
analysis. Based on WGCNA results, we also identified a TF-
PPI-network including eight key hub genes and seven closely
connected transcription factors, and a majority of nodes
were found to be significantly correlated with the risk score
and at least one of the 16 signature genes (except for PPIA).
The results give a hint that these genes may act as essential
regulators during tumorigenesis or tumor progression, and
future investigations along this line are required to elucidate
their oncogenic or anti-tumor roles.

It is worth noting that although some nomograms have
been constructed as to the outcome prediction of
NSCLC,70e72 little research has been published regarding
nomogram construction to predict LUAD recurrence, espe-
cially based on gene expression or DNAmethylation.We here
built a nomogram integrating significant clinicopathological
features including age, smoking status, TNM stage, tumor
burden, HGGPS, and methylation score to improve the pre-
dictive accuracy. Calibration curves, tROC plots, and deci-
sion curve analysis verified its ideal performance. Thus, the
nomogram may serve as a simple, reliable, and useful in-
strument in recurrence prediction for LUADpatients.We also
proved the advantage of the incorporation of multi-omic
data for clinical model development.
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The main cause for the current failure of postsurgical
treatment (chemotherapy, targeted therapy, or immuno-
therapy) lies in drug resistance induced by tumor heteroge-
neity. So it is critical to elucidate the sensitivity and efficacy
of these routine interventions in thepatient populationswith
heterogeneous risk of recurrence. At a significance level of
0.01, we found a total of 78 chemotherapeutic or targeted
drugs were responded differently between the high- and
low-risk groups. For instance, patients in the high-risk group
may be more sensitive to Docetaxel, Paclitaxel, Dasatinib,
Bortezomib, and Elesclomol, but resistant to Methotrexate,
Nilotinib, Lenalidomide, and ATRA. We also explored the
relationship of the risk signature and ICB therapy response
for the sake of recognizing the LUAD patients most likely to
benefit from immunotherapy. These results raise the possi-
bility that HGGPS might be used as candidate biomarkers to
predict therapeutic resistance and provide valuable cues for
optimizing regimens in clinical practice to aid personalized
medicine.

Two important limitations should be addressed. First,
due to the lack of an independent cohort in the current
study, the predictive capability of our risk signature and the
established nomogram should be assessed by adequate
external validation cohorts in the future, which is the
indispensable step to move molecular models to ultimate
clinical application. Second, since the biological functions
of certain candidate markers or key genes in the identified
TF-PPI-network are not well characterized, more in vitro
and in vivo experiments are expected to deepen our un-
derstanding of their relevance to carcinogenesis and cancer
development, which will be our main focus in the future
research.

In summary, we developed an effective 16-mRNA risk
signature to predict the RFS and therapeutic response of
stage IeIII LUAD patients, which might be correlated to the
distinct genomic alterations and pathways, and dynamic
tumor immune phenotype. A hub TF-PPI-network was
identified with regard to the risk signature. We also
established a nomogram based on the mRNA signature and
methylation score to provide an optimal and applicable
approach for the quantification of recurrence risk, which
would help clinicians to make personalized treatment de-
cisions for LUAD patients. The identified markers or key
genes may offer a firm basis for further studies concerning
tumorigenesis or progression in LUAD.
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