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RAPID COMMUNICATION
A color-based FHGC approach facilities
DNA-based clinical molecular diagnostics
The flow-through hybridization and gene chip (FHGC) was
developed to used in clinical molecular diagnostics for
thalassemia, human papillomavirus (HPV), and other dis-
eases. FHGC could improve hybridization efficiency and
reduce hands-on time, thus improving precision, repro-
ducibility, and traceability. Multiple genotypes can be
detected simultaneously without incurring high costs.1

During the experiment, the polymerase chain reaction
(PCR) product or buffer forced through the membrane
matrix, PCR products are apprehended by a probe attached
to the membrane, and molecular typing of the disease or
microorganism was determined after subsequent amplifi-
cation by the streptomycin avidin (the details are given in
the Supplementary File).2,3 However, the steps prior to
hybridization, such as DNA extraction, PCR amplification,
and sample loading into the hybridization wells, require a
significant amount of manual operation. Each batch in-
volves handling dozens of samples, and Eppendorf (EP)
tubes used to load the amplification mixture are typically
packed tightly together. Furthermore, the reagent is
colorless and transparent, making it difficult to determine
whether the sample was loaded into EP tube or not with a
very small sample size. Operator carelessness or distraction
will result in errors and unnecessary trouble.

To avoid the problems mentioned above, we attempted
to add special dyes to the double-distilled water (ddH2O)
that dissolves the DNA and help to track which reagent was
added to which well (Fig. 1A), and diagnostic reagent kits
designed to detect mutations of common thalassemia gene
were used in subsequent studies. The addition of dyes to
ddH2O that dissolves DNA provides some advantages for
manual or semi-automatic DNA extraction, as the final step
of collecting DNA requires careful inspection by the oper-
ator. If ddH2O for dissolving DNA is colored, it becomes easy
to observe DNA collection from the sample. The following
requirements must be met to screen the appropriate dyes
for FHGC: (1) Dyes color development in ddH2O for DNA
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dissolution; (2) PCR to amplify the samples that were not
affected by dyes; (3) The dyes did not stain the nitrocel-
lulose membrane used for hybridization; (4) The dyes could
not leave a distinct background on the nitrocellulose film to
avoid interference with the result interpretation.

Thirty-eight candidate dyes were selected to identify a
suitable dye (Table S1). First, all these candidate dyes were
added to DNA solution respectively to identify whether they
colored DNA solution or not. We set two-three different
concentrations for each dye to prevent the effect of dye
concentration on the experimental reaction in the above
conditions. We used an EP tube as a reference because
some dyes led to precipitate or did not produce any colour
when added to DNA solution. Typically, seven candidate
dyes, such as numbers 9 and 18, do not produce any color in
DNA solutions and are thus eliminated (Fig. 1B, C). The
colored DNA solution was then tested to identify if it
remained colored after mixing with PCR reagent. Some
dyes, such as 6 and 8, became light, even illegible or
transparent. We reserved the dyes with light colors for
subsequent screening to screening as many appropriate
dyes as possible, excluding completely transparent dyes
(Fig. 1B, D). The dyes and reagents capable of rendering
color in PCR mix were placed into PCR instrument for
amplification and hybridization. After hybridization, as
showed in Figure 1B, E, and Figure S1, some color reagents
inhibited nucleic acid amplification of PCR or hybridization
reaction, and some dyes stained the hybrid nitrocellulose
film. Because hybridization is the final presentation of the
experimental results, all dyes that do not meet the re-
quirements in this step, such as dyes 1, 19, and 33, are
excluded.

We chose dye number 26, methyl red sodium salt
(C15H14N3NaO2), from the dyes that meet the above criteria
for further investigation. To investigate the effects of
different concentrations of this dye on PCR amplification
and flow-through hybridization, we prepared a DNA solution
of methyl red sodium salt with concentrations ranging from
0.01% to 10%. Methyl red sodium salt produces color whether
added to DNA or a premixed PCR amplification solution.
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Figure 1 Screening suitable dyes. (A) Flow-through hybridization diagram. (B) Schematic diagram of dye screening (I: Thirty-
eight types of dyes. II: Screening candidate dyes added to DNA solution. III: Screening candidate dyes added to premix of PCR. IV:
Screening candidate dyes added to hybridization solution). (C) Color rendering of various dyes in DNA solution. (D) Color rendering
after adding PCR reaction solution. (E) Effects of different dyes on flow-through hybridization. The blue dots in each of the squares
are due to DNA binding to the probe and is colored by a cascade amplification system. The first and fifth columns are wild gene
sites, and each of the other squares represents a mutation type. (F) The upper graph shows the concentration gradient of pre-
fabricated PCR reaction solution; the under graph shows the membrane’s color rendering after flow-through hybridization. (G)

Reagent specificity analysis after dye addition [from left to right: (-dye þ DNA) � 1, (þdye þ DNA) � 4]. Each row contained the
same mutant sample, with mutation of -a3.7, –SEA, IVSII-654 and 17M, running from top to bottom.
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When the concentration of methyl red sodium salt in dis-
solved DNA was 0.01%, the dye could not color the hybridi-
zation well after diluting by the PCR amplification reagent
or hybridization reagent. However, high methyl red sodium
salt concentrations inhibited PCR amplification or hybridi-
zation. Following the comparison, we concluded that the
optimal methyl red sodium salt concentration for FHGC is
0.1%e0.025%, which did not interfere with PCR amplifica-
tion and flow-through hybridization (Fig. 1F; Fig. S2).

The modified reagent’s performance was scrutinized.
According to industry standards, the minimum nucleic acid
concentration for FHGC is 25 ng. A sample with an initial
concentration of about 100 ng/mL was diluted four times to
produce a sample with a concentration of 25 ng/mL. The
diluted DNA amplification for chip hybridization did not
affect the final gene chip color production, and the corre-
sponding gene squares showed clear blue dots (Fig. S3). The
colorful DNA solution was kept at 4 �C for one week for PCR
amplification and hybridization. The results revealed that
dye addition had no significant effect on the color of hy-
bridized gene chip. It demonstrated that the modified re-
agent is stable (Fig. S4). The specificity of modified reagent
was examined. Four different types of thalassemia muta-
tions were collected, two of which were a-thalassemia
mutations (-a3.7, –SEA) and two were b-thalassemia muta-
tions (IVSII-654, 17M). It was identified that the improved
reagent did not affect PCR amplification, flow-through hy-
bridization, and color rendering. There is no additional
background on the nitrocellulose film, and the interpreta-
tion of results does not interfere (Fig. 1G).
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A variety of dye-adding reagents have been developed
based on the different properties of reagents, some to
aid in the interpretation of results and others to simplify
the operation process.4,5 we tried to dissolve dyes
in water, which helped track the moving direction of
reagents and reduce the error of loading samples, Among
all the 38 dyes tested, few were matched with our
screening conditions, such as blue dye (Acid violet 17, No.
23) and red dye (Ponceau S, No. 32). Some dyes, such as
No. 23, 24, and 25, did not affect FHGC reaction in
our screening concentration range. However, for further
performance verification, we chose methyl red sodium
salt. According to internal discussions, using this modified
reagent will reduce our costs by about one-fifth, lower
the sampling error rate, and improve the operator’s
experience. We believe that this is a reagent worth
popularizing.
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