
Genes & Diseases (2023) 10, 1157e1160
Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.keaipubl ishing.com/en/ journals /genes-diseases
RAPID COMMUNICATION
Human RNA Modifications Disease Database
(HRMDD): A web resource for the molecular
and clinical landscape of RNA modifications
in human diseases
Here, we developed a comprehensive web-searchable
database, designated as Human RNA Modifications Disease
Database (HRMDD, http://bio-bigdata.hrbmu.edu.cn/
HRMDD/home.jsp). RNA modification (RM) is an important
mechanism of epigenetic regulation. With the evolution of
both experimental technologies and computational
methods, major progress has been made in identifying the
genomic locations and distributions of various RM types
throughout the transcriptome.1 Additional breakthroughs
came from the identification and characterization of RM
regulators. RMs are generally regulated by three different
types of regulators, which are deposited, removed, and
recognized by proteins known as “writers”, “erasers” and
“readers”, respectively.2 Increasing evidence suggests that
dysregulation of RMs and their regulators is implicated in
various cancers, as well as other diseases.3,4 Despite these
advances in understanding RMs and their regulators, their
biological functions and mechanisms in human diseases
remain largely unknown.

In this work, we systematically collected experimen-
tally supported RM-disease associations. A total of 2082
experimentally supported associations, covering 35 types
of RMs, 92 RM regulators, 266 human diseases, 27 virus
species and 16 regulatory mechanisms, were manually
collected. We herein list the top 10 RM types, diseases, RM
regulators and regulatory mechanisms with the largest
number of RM-disease associations as hotspot data
(Fig. S1AeD). Given the critical functions of RM regulators
in cancer, we next assessed the molecular and clinical
landscape of RM regulators across 33 cancer types from
TCGA project (Fig. S2A, B).
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We first assessed the somatic mutations of RM regulators
across TCGA cancer types. The overall mutation frequency
of RM regulators ranged from 0.1% to 11.89% (Fig. S3).
Cancer types such as UCEC, COAD, and STAD, exhibited
higher mutation frequencies in RM regulators, whereas
PCPG, TGCT, and THYM exhibited lower mutation fre-
quencies (Fig. S2C). Certain regulators, such as ZC3H13,
EEF2, EIF3A, IGF2BP1, and YTHDC1/2 (all of which are m6A
regulators) showed higher mutation frequencies (Fig. 1A).
We found that readers exhibited relatively higher average
mutation frequencies across TCGA cancer types than the
writers and erasers (Fig. S2D).

We next assessed the copy number variation (CNV) fre-
quency of RM regulators across TCGA cancer types (Fig. 1B).
We found that CNV are prevalent in RM regulators. The RM
regulators with the highest (top 10%) and lowest (bottom
10%) CNV frequencies across 33 cancer types are shown in
Figure S4A and S4B. RM regulators such as ADAR (A-to-I
writer), ALYREF (m5C reader), IGF2BP2 (m6A reader), and
TRMT12 (yW writer) showed widespread CNV amplifications
across cancer types, while ADAT3 (A-to-I writer), RBM15
(m6A writer), EEF2 (m6A reader), ZC3H13 (m6A writer) and
HENMT1 (Nm writer) showed prevalent CNV deletions
across cancer types.

We explored the gene expression alterations of RM reg-
ulators across TCGA cancer types. We found that 89% (81/
91) of the known regulators were differentially expressed in
at least one cancer type, suggesting that the dysregulation
of RM regulator expression is prevalent in human cancers
(Fig. S5A). Intriguingly, although readers exhibited higher
mutation frequencies, writers tended to be dysregulated in
more cancer types. The distribution of dysregulated regu-
lators indicated that erasers showed global downregulation
across cancer types, whereas writers and readers showed
almost equally distributed expression patterns (up/
behalf of KeAi Communications Co., Ltd. This is an open access
censes/by-nc-nd/4.0/).
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Figure 1 The molecular and clinical relevance of RNA modification regulators across cancer types. (A) RM regulators with the
highest (top 10%) and lowest (bottom 10%) mutation frequencies across the 33 cancer types in TCGA. (B) The CNV alteration
frequency of RM regulators across these 33 cancer types. The Circos plot shows the CNV alteration frequency, with red representing
the amplification frequency and blue representing the deletion frequency. Each Circo represents one cancer type, which is shown
in the inner panel. (C) Box plots showing the expression distribution of IGF2BP2 across tumour (red) and normal samples (blue) in 10
cancer types. (D) Box plots showing the expression distribution of ZC3H13 across tumour (red) and normal samples (blue) in 7
cancer types. *, P < 0.05; **, P < 0.01; ***, P < 0.001. (E) A forest plot of the multivariate Cox regression analysis for PUS7 in KIRP.
(F) A nomogram composed of the expression, somatic mutation and CNV of PUS7 for predicting the 3-year and 5-year OS probability
in patients with KIRP. (G) A calibration plot evaluating the nomogram’s prediction of the 3-year and 5-year OS probability based on
the PUS7 status in patients with KIRP.
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downregulation) (Fig. S5B). When the distribution of
differentially expressed regulators was examined among
the different cancer types, we found that READ displayed
the largest number of differentially expressed regulators,
followed by CHOL, COAD, and LUSC (Fig. S5C).
We further evaluated whether the expression of RM
regulators was affected by genetic alterations. Notably,
certain RM regulators with relatively higher CNV amplifi-
cation frequencies were upregulated in tumour samples,
while certain RM regulators with relatively higher deletion
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frequencies were downregulated in tumour samples. For
example, IGF2BP2, with higher CNV amplification fre-
quencies in BLCA, HNSC, LUSC, LIHC, STAD, CHOL, GBM,
KIRP, ESCA and UCEC, was significantly upregulated in these
cancer types (Fig. 1C). In contrast, ZC3H13, which had
higher CNV deletion frequencies in BLCA, LUSC, LUAD,
PRAD, UCEC, GBM and CESC, was significantly down-
regulated in these cancer types (Fig. 1D). Taken together,
these observations suggest that the genetic alterations and
differential expression of RM regulators are not only het-
erogeneous in different cancer contexts, but also have
complex regulatory patterns.

Given the important associations of RM regulators with
cancer, we explored the clinical relevance of RM regulators
across cancer types. We first analysed the associations
between the expression of RM regulators and patient sur-
vival across the 33 cancer types using the univariate Cox
proportional hazards (PH) model. We found that each of the
RM regulators affected the patients’ overall survival (OS)
for at least one type of cancer (Fig. S6). We found that
some RM regulator genes were associated with worse sur-
vival for patients with several different cancer types. For
example, higher expression of PUS1 (a Psi writer) was
associated with worse survival across seven cancer types
(Fig. S7). These findings suggest that the RM regulators have
prognostic significance and may represent novel prognostic
biomarkers.

To improve the prognostic accuracy of the model, we
performed a multivariate Cox regression analysis to assess
the correlations between RM regulators and patient sur-
vival by integrating somatic mutation, CNV, and expres-
sion data (Fig. S8). Two regulator genes, PUS7 and
IGF2BP2, were found to be correlated with the prognosis
of patients in the largest number of cancer types (Fig. 1E;
Fig. S9, 10). We identified three additional regulator
genes, ZCCHC4 (m6A writer), CDK5RAP1 (ms2i6A writer),
and CDKAL1 (ms2t6A writer), that showed statistical sig-
nificance in specific cancer types (Fig. 1E; Fig. S11).
Taking PUS7 in KIRP as an example, the expression and
mutation of PUS7 were found to be risk factors for the OS,
whereas CNV was noted to be a protective factor (Fig. 1E).
We constructed a nomogram to predict the 3-year and 5-
year OS probability, as well as the median survival time by
including the mutation, CNV, and expression of PUS7 in
KIRP (Fig. 1F). The calibration plot showed that the pre-
dicted OS probability deviated very little from the actual
OS probability (Fig. 1G). These results suggest that RM
regulators may have potential applications for deter-
mining the prognosis of patients with certain cancers, or
may represent novel targets for cancer therapy.

To facilitate browsing, searching, downloading, and
visualizing data regarding the relationship between RM and
human diseases, we developed HRMDD (http://bio-bigdata.
hrbmu.edu.cn/HRMDD/home.jsp) (Fig. S12, S13). Regu-
lator-Tool was developed to characterize and visualize the
functions of RM regulator genes in cancers based on -omics
datasets from TCGA and other resources. Regulator-Tool
includes the following functions: (ⅰ) the Mutation function
enables users to obtain the mutation frequency and pro-
portion of mutation types in an individual regulator in a
specific cancer; (ⅱ) the CNV function allows users to obtain
the CNV alteration frequency of a regulator in a specific
cancer; (ⅲ) the Expression function makes it possible for
users to perform differential regulator expression analysis
on a specific RM regulator and to generate box plots for
cancer and normal groups; (ⅳ) the Correlation function
provides a correlation analysis based on regulator expres-
sion and scatter diagrams for two correlated genes in a
specific cancer; (ⅴ) the Survival function performs a Cox
regression analysis and produces KaplaneMeier survival
curves for a specific regulator in the selected cancer; (ⅵ)
the Network function provides visualization of a regulator-
protein network, as well as providing functional annota-
tion; and (ⅶ) the Protein-RNA function provides a list of
potential targets of RM regulators of interest.
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