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Abstract Ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX), also
known as lysine (K)-specific demethylase 6A (KDM6A), functions as a tumor suppressor gene
or oncogene depending on the tumor type and context. However, its tumor-suppressive mech-
anisms remain largely unknown. Here, we investigated the clinical significance and biological
effects of UTX expression in pancreatic ductal adenocarcinoma (PDA) and determined the po-
tential mechanisms of its dysregulation. UTX expression and its association with clinicopatho-
logic characteristics of PDA patients were analyzed using immunohistochemistry. UTX mRNA
and protein expression and their regulation in PDA cell lines were measured using quantitative
polymerase chain reaction and Western blot analyses. The biological functions of UTX in PDA
cell growth, migration, and invasion were determined using gain- and loss-of-function assays
with both in vitro and in vivo animal models. UTX expression was reduced in human PDA cell
lines and specimens. Low UTX expression was associated with poor differentiation and
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prognosis in PDA. Forced UTX expression inhibited PDA proliferation, migration, and invasion in
vitro and PDA growth and metastasis in vivo, whereas knockdown of UTX expression did the
opposite. Mechanistically, UTX expression was trans-activated by GATA6 activation. GATA6-
mediated PDA progression could be blocked, at least partially, by silencing UTX expression.
In conclusion, loss of GATA6-mediated UTX expression was evident in human PDA and restored
UTX expression suppressed PDA growth and metastasis. Thus, UTX is a tumor suppressor in PDA
and may serve as a prognostic biomarker and therapeutic target.
ª 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co.,
Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
Introduction

Pancreatic ductal adenocarcinoma (PDA), generally known as
pancreatic cancer, is the seventh leading cause of cancer-
related deaths worldwide.1e3 In the United States, the inci-
dence of PDA is increasing, with an estimated 53,070 new
cases and 41,780 PDA-related deaths in 2016.2e5 Recently,
surgical resection, radiation therapy, chemotherapy, and
immunotherapy for PDA have improved, although its 5-year
survival rate remains less than 8%.3e8 Thus, further studies of
the molecular mechanisms of PDA development and pro-
gression and identification of new therapeutic targets for PDA
are urgently needed.9e13

Our knowledge of PDA development and progression has
advanced significantly because of a rapid increase in our un-
derstanding of PDA molecular biology and genetics.14e18

Existing data provide global insights into genetic alterations in
and molecular profiles of PDA.15e20 Established inherent and
acquired genetic and epigenetic alterations in PDA include
mutations of the oncogeneK-ras and inactivation of the tumor
suppressors TP53 and DPC4.15e19 Consequently, various
signaling pathways are deregulated in PDA cells (e.g., Wnt/b-
catenin, Krüppel-like factor 4, and Forkhead box M1 signaling
axes).18e22 Presumably, these alterations critically promote
cellular transformation and tumor initiation and pro-
gression.21e23 However, potential new driver pathways for
PDA progression remain to be discovered and elucidated as
potential targets for designing effective intervention
strategies.22e25

Recently, several groups identified ubiquitously tran-
scribed tetratricopeptide repeat on chromosome X (UTX ),
also known as KDM6A, as a novel histone demethylase that
catalyzes the removal of dimethyl and trimethyl groups from
histone H3 lysine 27, thereby promoting target gene activa-
tion.27,28 Researchers also recently demonstrated a histone
demethylation-independent role for UTX in normal and ma-
lignant T cells, mesoderm differentiation, and mouse em-
bryonic development.29e31 Investigators identified somatic
loss-of-function mutations of the UTX gene in a variety of
human tumors, including multiple myeloma, esophageal
cancer, and renal cancer.32 The identification of recurrent
inactivating UTX mutations in several leukemia and solid
tumor cases strongly supports that UTX acts as a tumor sup-
pressor for human cancers.33e35 However, the roles of UTX in
cancer development and progression appear to be more
complicated than initially expected.Two independent studies
demonstrated that UTX controls cell-cycle progression via the
retinoblastoma protein pathway.36,37 UTX also may function
as a bona fide tumor suppressor for T-cell acute lymphoblastic
leukemia.35 In renal cell carcinoma cases, low expression of
UTX is associated with reduced overall survival durations.38 In
contrast, in patients with breast cancer, high levels of UTX
expression are associated with poor prognosis, and UTX
knockdown results in significant decreases in the proliferation
and invasiveness of breast cancer cells in vitro and in vivo.39

The regulation of UTX expression remains unclear. Previ-
ous studies have shown estrogen receptors might be the up-
stream regulators of UTX.52 The importance of GATA6 in gene
expression and regulation has recently been reported inmany
human cancers, including lung cancer,59 gastric cancer,60 and
colorectal cancer,61 and the downstream targets have been
identified in a series of essential signaling pathways during
carcinogenesis. However,whetherGATA6 regulates UTX is not
known. Loss of GATA6 appears to have a critical role in
promoting tumorigenesis and epitheliale
mesenchymal transition (EMT)-dependent metastasis in
PDA.57,58 The role andmechanisms underlying the interaction
between GATA6 and UTX in PDA pathogenesis are unclear.

Whole-genome sequencing and copy number-variation
analyses of 100 human PDA specimens indicated that UTX
was inactivated in 18% of patients.40 However, little is
known about the potential function of UTX in PDA devel-
opment and progression and the mechanisms underlying its
potentially dysregulated expression in this tumor. There-
fore, in the present study, we examined UTX expression in
human PDA cells and specimens, evaluated the impact of
altered expression of UTX on PDA development and pro-
gression, and explored the underlying mechanisms.

Materials and methods

Immunohistochemical analysis

Two human pancreatic tissue cohorts were used in this
study. The expression of UTX was analyzed in cohort #1 with
84 primary PDA, 84 adjacent pancreatic intraepithelial
neoplasia (PanIN), and normal pancreatic tissue specimens
(US Biomax). Correlation analysis of GATA6 and UTX protein
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expression was performed using cohort #2 with 60 PDA tis-
sues. Immunohistochemical analyses of these specimens
and xenografts were conducted with anti-GATA6 (R&D),
anti-UTX (Bethyl Laboratories), and anti-Ki67 (Santa Cruz
Biotechnology) antibodies as described previously.20e23

Cell lines

The human embryonic kidney cell line 293T, pancreatic
ductal cell line HPNE, and human PDA cell lines AsPC-1,
BxPC-3, CaPan-1, CaPan-2, Mia-PaCa-2, PANC-1, and
Patu8902 were purchased from the ATCC. The PDA cell lines
MDA28 and MDA48 were gifts from Dr. Paul J. Chiao (The
University of Texas MD Anderson Cancer Center). The
human PDA cell line FG was obtained from Dr. Michael P.
Vezeridis (The Warren Alpert Medical School of Brown
University).41 All these cell lines were maintained in plastic
flasks as adherent monolayers in Eagle’s minimal essential
medium supplemented with 10% FBS, sodium pyruvate,
nonessential amino acids, L-glutamine, and a vitamin solu-
tion (Flow Laboratories). The ATCC performs characteriza-
tion and authentication of the cell lines it provides using
short tandem repeat profiling, and the cell lines they pro-
vided were passaged in our laboratory for fewer than 6
months after reception.22e25

Immunofluorescent staining

PDA cells were seeded on chamber slides overnight prior to
experimentation. Cells were fixed with 4% para-
formaldehyde and permeabilized in 0.1% Triton X-100 in PBS
and sequentially blocked with 3% bovine serum albumin for
30 min. Following overnight incubation with primary anti-
bodies against UTX, hemagglutinin (HA), or tubulin, the
cells were further incubated with appropriate secondary
antibodies and subjected to staining.42

Plasmids and small interfering RNAs

The plasmid pCMV-HA-UTX was generated by Addgene.
Small interfering RNAs (siRNAs) synthesized by Invitrogen
were as follows: UTX siRNA (#1: 50-gcaaauguuccagu-
guauagguuua-3’; stealth#2: 50-ucaguuagcuuugguugacu-
guaau-30) and GATA SiRNA (#1:50-guggacucuacaugaaacutt-
3’; #2, 50-gcucugguaauagcaauaatt-30). Negative control
siRNA (Invitrogen) and control pCMV vectors were used.
Plasmids and siRNAs were transfected into PDA cells using
Lipofectamine 2000 CD transfection reagent (Invitrogen).
For transient transfection, cells were transfected with
plasmids or siRNA at different doses as indicated for 48 h
before functional assays.25,42,43

Western blot analysis

Standard Western blotting assays were carried out using
whole-cell protein lysates; primary antibodies against UTX
(Bethyl Laboratories), GATA6 (R&D), H3 (Cell Signaling Tech-
nology), HA (Thermo Fisher Scientific), matrix metal-
loproteinase 2 (MMP2; Santa Cruz Biotechnology), urokinase-
type plasminogen activator receptor (uPAR; Santa Cruz
Biotechnology), p21 (Santa Cruz Biotechnology), p27 (Santa
Cruz Biotechnology), cyclinB1 (Santa Cruz Biotechnology),
andcyclinD1 (Santa Cruz Biotechnology); and a secondary
antibody (anti-rabbit IgG or anti-mouse IgG; Santa Cruz
Biotechnology). Equal protein sample loading was monitored
using an anti-a-tubulin, anti-actin, or anti-GAPDH
antibody.24,25

Nuclear and cytoplasmic protein extraction

The NE-PER Nuclear and Cytoplasmic Extraction Reagents
(Thermo Fisher Scientific) were used to separate and pre-
pare cytoplasmic and nuclear extracts of 293T and PANC-
1 cells, and standard Western blotting was carried out to
analyze the protein lysates.43

Animals

Mice were purchased from the Hunan SJA Laboratory Ani-
mal CO., LTD (Changsha, Hunan, China). The animal ex-
periments were carried out in strict accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the South China University of Tech-
nology. The animal protocol was approved by the Commit-
tee on Ethics of Animal Experiments of the South China
University of Technology.22e25

Tumor growth and metastasis

Tumor PDA cells (1 � 106) in 0.1 mL of Hank’s balanced salt
solution were injected subcutaneously into the right scapular
regions of nude mice. The resulting tumors were measured
every week. Tumor-bearing mice were killed when they
became moribund or on day 28 after injection and their tu-
mors were removed and weighed.22e25 To measure liver
metastasis, 1 � 106 tumor cells were injected intravenously
into another group of mice via the ileocolic vein. The mice
were killed on day 28 and their liver surface metastases were
counted.

Tumor-cell migration/invasion assay

Both cell scratch-wound (horizontal migration) and modified
Boyden chamber (vertical invasion) assays were performed
to determine the migratory ability and invasiveness of PDA
cells with altered UTX expression as described previously.44

For the cell scratch-wound assay, cells were grown in six-
well plates until confluent. A wound was generated on the
surface of the resulting cell monolayer via scraping with the
10-mL tip of a pipette, the cells in the wounded monolayer
were photographed at different time points, and cell
migration was assessed by measuring gap sizes in multiple
fields. For the Boyden chamber assay, 24-well tissue culture
plates with 12 cell culture inserts (Millipore) were used. Each
insert contained an 8-mm-pore-size polycarbonate mem-
brane with a precoated thin layer of a basement membrane
matrix (ECMatrix; for the invasion assay) or without a coated
matrix (for the migration assay). Ten percent FBS-containing
medium was placed in the lower chambers to act as a che-
moattractant. Cells (5 � 105) in a 300-mL volume of serum-
free medium were placed in the upper chambers and incu-
bated at 37 �C for 48 h. Cells on the lower surface of the
polycarbonate membrane, which had invaded the ECMatrix
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and migrated through the membrane, were stained, coun-
ted, and photographed under a microscope.22,24,25
Polymerase chain reaction analysis

Polymerase chain reaction (PCR) analysis of genomic UTX
was performed using total genomic DNA obtained from
tumor cells. Total DNAs were purified using a QIAamp DNA
Mini Kit (QIAGEN). The PCR primer sequences were as fol-
lows: UTX exon18, 50-tacctcaggtggacaacaagg-3’ (forward)
and 50- gcagatctgttttcatgggg-3’ (reverse); UTX exon1, 50-
gttgtgaattcgctgcgttt-3’ (forward) and 50-tgccttaccttgcc-
cagtag-3’ (reverse); and actin, 50-cctgcagagttccaaaggag-3’
(forward) and 50-ggcatcctcaccctgaagta-3’ (reverse).25,42,43
Reverse transcription-PCR

Reverse transcription-PCR analysis of UTX mRNA expression
in tumor cells was performed using total RNA. Total RNAs
were purified using an RNeasy Plus Mini Kit (QIAGEN), and
cDNAs were synthesized using an iScript cDNA Synthesis Kit
(Bio-Rad). The PCR primer sequences were as follows: UTX
exon18, 50-taaccgcacaaacctgacca-3’ (forward) and 50-
tgccttgttgtccacctgag-3’ (reverse); UTX exon30, 50-tgtcaga-
cattgagggaagc-3’ (forward) and 50-cggatggtaatggaggagct-3’
(reverse); and GAPDH, 50-tgcaccaccaactgcttagc-3’ (for-
ward) and 50-ggcatggactgtggtcatgag-3’ (reverse).24,42
Bioinformatic analysis

The Ualcan (http://ualcan.path.uab.edu/) and Link-
edOmics database (http://www.linkedomics.org/) were
used as web-based platforms for analyzing TCGA cancer-
associated multi-dimensional datasets. Both these websites
allowed a flexible exploration of associations between the
molecular or clinical attributes of interest. GEO databases
(Accession Number GSE71729 and GSE6629) were used to
analyze gene expression in PDA. Putative binding sequences
of GATA6 in UTX promoter were obtained from JASPAR
(http://jaspar.genereg.net/) and The Animal Transcription
Factor Data Base (Animal TFDB) (http://bioinfo.life.hust.
edu.cn/AnimalTFDB/#!/).
Promoter reporter and dual luciferase assay

PDA cells plated in 96-well plates were transfected with
UTX promoter reporters, siRNAs, or specific gene expression
plasmids using Lipofectamine 2000 (Invitrogen). The UTX
promoter activity in these cells was normalized via co-
transfection of a b-actin/Renilla luciferase reporter con-
taining a full-length Renilla luciferase gene. The Dual-
luciferase reporter assay was performed 24 h after trans-
fection and quantified using a dual luciferase assay system
(Promega). The promoter mutants were generated using
the Q5� site-directed mutagenesis kit (NEB, Singapore)
according to the manufacturer’s instructions. These con-
structs of truncated or mutated PiHL promoter were sub-
sequently cloned into the pGL3 vector.
Chromatin immunoprecipitation assay

PDA cells (2 � 106) were prepared for a chromatin immu-
noprecipitation (ChIP) assay using a ChIP assay kit (Milli-
pore) according to the manufacturer’s protocol. The
resulting precipitated DNA specimens were analyzed using
PCR to amplify fractions of the UTX promoter. The PCR
products were resolved electrophoretically on a 2% agarose
gel and visualized using ethidium bromide staining.

Statistical analysis

The two-tailed Pearson c2 test or Fisher exact test was used
to determine the significance of differences among cova-
riates. All in vitro experiments were performed in triplicate
and at least three times. Data were presented either as
means � standard deviation from one representative in-
dependent experiment of three with similar results or
means � standard error of the mean from three indepen-
dent experiments. The significance of the in vitro and in
vivo data was determined using the Student t-test (two-
tailed) or one-way analysis of variance. In all the tests, P
values less than 0.05 were considered statistically signifi-
cant. The SPSS software program (version 17.0; IBM Cor-
poration) was used for statistical analysis.

Results

Direct correlation of reduced UTX expression with
reduced survival durations in PDA patients

To determine the roles of UTX in PDA pathogenesis, we first
investigated UTX protein expression in the 84 primary PDA
specimens, 84 matched adjacent PanIN specimens, and
normal pancreatic tissue specimens in a TMA. The clinico-
pathologic characteristics of the patients from whom the 84
PDA specimens were obtained are listed in Table S1. We
observed decreased expression of UTX in PDA specimens
relative to the corresponding PanIN specimens (Fig. 1A).
TCGA data showed that UTX expression was higher in
pancreatic cancer tissues than that in the normal tissues
(Fig. S1A). A similar expression pattern was observed in the
colorectal cancer tissues from the TCGA cohort (Fig. S1B).
Our immunohistochemical analysis confirmed that UTX
protein expression was also attenuated in colorectal cancer
tissues relative to the adjacent normal tissues (Fig. S1C).
We analyzed the relationship between clinicopathologic
parameters and UTX expression in PDA specimens (Table
S1). UTX expression was negatively associated with worse
histologic differentiation (P Z 0.029) (Fig. 1B, C) but with
advanced T category with statistical significance at
borderline (P Z 0.071) (Fig. 1D). We then investigated the
relationship of UTX expression with age, sex, TNM category,
and distant metastasis and found no statistically significant
differences (P > 0.05). KaplaneMeier analyses demon-
strated that expression of UTX was strongly associated with
increased overall survival (Fig. 1E). We further examined
the UTX expression in the Pdx-Cremouse model of PDA with
KRAS mutant. Consistent with our previous finding, UTX
expression was higher in normal pancreatic tissue than in
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Figure 1 Reduced and lost UTX expression in human PDA specimens. PDA and PanIN specimens in TMAs were immunostained with
a specific anti-UTX antibody. (A) Representative images of UTX expression in PDA and PanIN specimens. (B, C) Positive association
of UTX expression with tumor differentiation in PDAs. (D) Graphs of the UTX expression in PDA specimens at different T categories.
(E) KaplaneMeier analysis of the overall survival times in high and low UTX-expressing PDA patients. (F) UTX expression in normal
pancreatic tissue (“N”) and PanIN (“P”) specimens obtained from a Pdx-Cre mouse with PDA.
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PanIN specimens (Fig. 1F). Collectively, UTX expression
gradually decreased from normal pancreatic tissue through
to pancreatic intraepithelial neoplasia and pancreatic
cancer, suggesting that UTX dysregulation is an early event
in the multistep progression of pancreatic carcinogenesis.

Subcellular location of UTX in PDA cells and tissues

To further determine the role of UTX in PDA development
and progression, we analyzed the UTX gene integrity in PDA
cell lines with a focus on exons and mRNA and protein
expression using both 293T and HPNE cells as controls. Ac-
cording to previous findings,26 we analyzed the UTX exon18
gene and mRNA expression and protein expression in 293T,
HPNE, and PDA cell lines. UTX was highly expressed in 293T,
CaPan-2, FG, MDA28, and Patu8902 cells but expressed at
relatively low levels in HPNE, AsPC-1, BxPC-3, CaPan-1,
MDA48, and PANC-1 cells. Importantly, we found expression
of the UTX gene, mRNA, and protein was not detectable in
Mia-PaCa-2 cells (Fig. S2AeC). To further examine the UTX
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expression in normal and malignant ductal cells, we pri-
marily cultured PDA cells and normal pancreatic duct
epithelial cells from PDA and adjacent normal tissues.
Western blot showed that UTX expression was reduced in
cancer cells relative to normal cells (data not shown). The
general reduction of UTX in PDA may owe to genetic and
epigenetic regulation, which may need further exploration.
To determine the location of UTX in PDA cells, we first
performed immunohistochemical staining of PDA and PanIN
specimens for UTX. We found that UTX was localized in
both the cytoplasm and nucleus (Fig. S3A). We confirmed
this using Western blot analysis of nuclear and cytoplasmic
protein extracts from PANC-1 (Fig. S3B) and 293T (Fig. S3C)
cells, using H3 and tubulin as nuclear and cytoplasmic
control proteins, respectively. Moreover, we confirmed the
subcellular localization of UTX using a cell immunofluores-
cence assay in PANC-1 (Fig. S3D, E) and 293T cells
(Fig. S3C).

Inhibition of PDA cell proliferation and apoptosis in
vitro and tumor growth in vivo by increased UTX
expression

To determine the effect of UTX on PDA cell proliferation, we
induced UTX overexpression via gene transfection and
knocked down UTX expression using siRNA (SiUTX#2 with best
targeting efficacy) in PANC-1, Patu8902, and MDA28 cells. We
found that overexpression of UTX led to decreased PDA cell
monolayer growth, whereas knockdown of UTX expression
resulted in increased cell growth (Fig. 2A, B). The results of
flow cytometric analysis revealed that PDA cells transfected
with UTX had an obvious cell cycle arrest in the G0eG1 phase
and the population of cells in the S phase was decreased
(Fig. S4A). Apoptosis assays revealed that the fraction of
apoptotic cells was significantly increased among the UTX-up-
regulated PDA cells relative to the control cells (Fig. S4B). In
our animal model of PDA, transfection with HA-UTX inhibited
the growth of PANC-1 and Patu8902 cells, whereas knockdown
of UTX expression promoted the growth of these cells in vivo
(Fig. 2CeE; Fig. S5AeC). Consistently, immunohistochemical
analyses demonstrated that overexpression of UTX led to
decreased Ki67 staining, whereas reduced expression of UTX
led to increased Ki67 staining (Fig. S5D). These results
demonstrated that UTX inhibited the tumor growth of PDA in
vitro and in vivo, supporting that UTX functions as a tumor
suppressor in PDA.

Inhibition of PDA cell migration and invasion in
vitro and tumor metastasis in vivo by increased
UTX expression

To determine the effect of UTX expression on PDA migration
and invasion, we transfected PANC-1, Patu8902, and
MDA28 cells with HA-UTX and UTX SiRNA, respectively, for
48 h. We wounded the monolayer of the transfected cells via
scratching andmaintained the cells for 6e72 h. These results
demonstrated that forced expression of UTX strongly
attenuated the flattening and spreading of PDA cells
(Fig. 3A), whereas down-regulation of UTX promoted the
flattening and spreading of the cells (Fig. 3B). Boyden
chamber assay of invasiveness showed consistent results
(Fig. 3C). In our animal model of PDA metastasis, liver sur-
face metastases of HA-UTX-transfected cells were much less
than those of control cells, whereas those of SiUTX-trans-
fected cells were markedly enhanced (Fig. S6A). We further
investigated several markers of cell growth and metastasis
with alerted UTX expression byWestern blot. Results showed
that overexpression of UTX in PANC-1, Patu8902, and
MDA28 cells led to decreased expression of MMP2, uPAR, and
cyclinD1 and increased expression of p27, whereas knock-
down of UTX expression markedly up-regulated that of
MMP2, uPAR, and cyclin D1 and decreased p27 in these cell
lines (Fig. S6B). UTX is known as a potent histone demethy-
lase. We further examined whether histone methylation
agents would impact UTX biofunctions in PDA cells. Treat-
ment of GSKJ4 HCI, a selective inhibitor of the H3K27 histone
demethylase, at least partially rescued the inhibitory effects
on the proliferative and invasive capability of PDA cells (data
not shown). These data further confirmed the tumor sup-
pressor role of UTX in PDA development and progression.
Direct correlation between GATA6 and UTX
expression in PDA cells

To identify the regulatory mechanism of UTX as a tumor
suppressor during pancreatic tumorigenesis, we made a pro-
moter analysis to find its transcription activators. By using
online tools JASPAR and Animal TFDB3.0, databases for the
prediction of transcription factor binding sites, we found
several potent transcription regulators, including GATA6
(Fig. S7A, B). Our unpublishedwork demonstrated that GATA6
is a crucial suppressor for the pro-tumor immune microenvi-
ronment. GATA6 mRNA expression in PDA tissues may not
accurately reflect clinical characteristics. However, its
expression in the ductal compartment seems to be correlated
with prolonged overall survival (data not shown). To test
whether UTX acted as a transcriptional target of GATA6, a
series of experiments were performed. First, by using TCGA
and GEO databases, we demonstrated that mRNA expression
of GATA6 and UTX in PDAwere closely correlated (Fig. 4AeC).
Next, we examined the protein expression of GATA6 and UTX
in another cohort with 30 PDA tissues by immunohistochem-
ical analysis. As shown in Figure 4D, UTX expression co-
localized with GATA6 expression in consecutive sections of
PDA tissues with different differentiation grades. Impor-
tantly, GATA6 expression in PDA specimens was highly posi-
tively correlated with UTX expression (Fig. 4E, F).
Furthermore, we examined the expression of UTX and UTX-
mediated tumor cell aggressiveness with alerted GATA6
expression. PANC-1 cells transfected with GATA6 showed
significantly elevated UTX protein and mRNA expression,
while cells treated with two GATA6 specific siRNA (#1 and #2)
did the opposite (Fig. 5A). Treatment in Patu8902 cells
showed consistent results (Fig. 5B). To further understand the
role of GATA6 in UTX-mediated PDA aggressiveness, we
induced UTX knockdown in PANC-1 and Patu8902 cells with
ectopic expression of GATA6 (Fig. 5C, D). Silenced UTX
expression partially inhibited the GATA6-induced inhibitory
effect on cell proliferation (Fig. 5E) and invasion (Fig. 5F) of
PDA cells. These results clearly indicated that GATA6 up-
regulated UTX expression and that UTX is an important
mediator of GATA6-induced PDA progression.



Figure 2 Increased UTX expression suppressed PDA cell proliferation in vitro and in vivo. PANC-1, Patu8902, and MDA28 cells
were transfected with HA-UTX (A) or SiUTX (B) and control vectors and siRNAs, respectively, for 48 h. The cell growth was assessed
using a Cell Counting Kit-8 (according to an optical density at 450 nm [OD450]) at the indicated time points. PANC-1 cells with UTX
overexpression or knockdown of UTX expression transfected with HA-UTX or SiUTX were injected subcutaneously into the right
scapular regions of nude mice (1 � 106 cells per mouse, four mice per group). Gross tumors in the mice (C), tumor growth curves
(D), and tumor weights (E) are shown. *P < 0.05; **P < 0.01.
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Transcriptional activation of UTX expression by
GATA6

To determine whether GATA6 transcriptionally activates
UTX expression, we first explored Cistrome Data Browser
(cistrome.org), an online data portal for ChIP-Seq data.
Prominent GATA6 peaks in UTX suggested strong binding
(Fig. 6A). Next, we analyzed the UTX promoter sequence
for the presence of potential GATA6 binding sites containing
(A/T) GATA (A/G) motif (Fig. 6B) and identified two puta-
tive GATA6-binding elements (referred to as GBE#1 and #2).
Accordingly, we constructed the deletion mutant reporters
p1799 (containing GBE#1 and #2), p899 (containing GBE#2),
and p262 (containing no GBE). We co-transfected the
deletion mutant reporters with or without GATA6 expres-
sion vectors into 293T cells. Luciferase reporter assay re-
sults demonstrated that deletion of the region covering
binding site#2 markedly decreased the promoter activity of
UTX activated by GATA6 (Fig. 6C). In addition, we deter-
mined the activity of wide-type promoter, instead of GBE#2
mutant one, got promoted with enforced GATA6 expression
(Fig. 6D). To further determine whether GATA6 regulates
UTX promoter transcriptional activity in PDA cells, we co-
transfected a full-length reporter with GATA6 expression

http://cistrome.org


Figure 3 Increased UTX expression suppressed PDA cell migration and invasion in vitro. PANC-1, Patu8902, and MDA28 cells were
transfected with HA-UTX (A) or SiUTX (B) and control vectors and siRNAs, respectively, for 48 h. (A) For a cell scratch-wound assay,
cells in each group were placed in six-well plates, wounded via scratching, and maintained at 37 �C for 12, 24, or 48 h. Cell cultures
were photographed, and cell migration was assessed by measuring the cell-free areas in multiple fields (the inset numbers are the
mean percentage gap areas � standard error of the mean from three independent experiments with similar results). (C) For an
invasion assay, PANC-1, Patu8902, and MDA28 cells were transfected with HA-UTX or SiUTX and control vectors and siRNAs,
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Figure 4 Co-expression of UTX and GATA6 in PDA tissues. (A) The correlation analysis between UTX and GATA6 mRNA level made
in pancreatic cancer from TCGA database (www.LinkedOmics.org). (B, C) Data from the GEO database (GSE71729 and GSE6629)
illustrated that GATA6 was positively correlated with UTX mRNA expression. (D) Immunohistochemical analysis of GATA6 and UTX
correlative expression in human PDA surgical samples (magnification,�200 and �400 in the inserts). (E) The distribution of
immunohistochemical results between GATA6 and UTX expression. (F) Statistical analysis of immunohistochemical results of GATA6
and UTX expression in human PDA surgical samples.
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vectors or siRNA into PDA cells. As shown in Figure 6E and F,
increased GATA6 expression in PANC-1 cells induced UTX
promoter activity, whereas knockdown of GATA6 expression
showed an inhibiting effect. A similar result was found in
Patu8902 cells (Fig. S8A, B). ChIP assay also confirmed
GATA6 directly bound GBE#2 in PDA cells (Fig. 6J; Fig. S8C).
Taken together, these results suggested that GATA6 can not
only directly bind to the UTX promoter but also influence
the biofunctions of UTX in PDA.
Discussion

In this study, we determined the role of UTX expression and
its regulatory mechanism during PDA development and
respectively, for 48 h. Invading cells were examined as desc
means � standard error of the mean from three independent exper
UTX- and SiUTX-treated groups with the control groups (Student
treated groups with the control groups (Student t-test).
progression. We found that UTX expression was drastically
reduced in human PDA cell lines and specimens. Low UTX
expression was associated with worse differentiation and
poor prognosis of PDA. Forced UTX expression inhibited PDA
proliferation, migration, and invasion in vitro and growth
and metastasis in vivo, whereas knockdown of UTX
expression did the opposite. UTX attenuated PDA cell
aggressiveness by serving as an important target of tran-
scriptional factor GATA6, as demonstrated in PDA cell lines,
the orthotopic mouse model, and human PDA specimens.
Mechanistically, GATA6 bound directly to the promoter re-
gion of UTX and activated its transcriptional activity. Our
clinical and mechanistic data has established that UTX is a
tumor suppressor in PDA and GATA6-UTX axis may serve as a
potential target for PDA therapy.
ribed in Materials and methods. The data represent the
iments with similar results. *P < 0.05 in comparisons of the HA-
t-test); **P < 0.01 in comparisons of the HA-UTX- and SiUTX-
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Figure 5 Promotion of UTX expression by GATA6 in PDA cells. PANC-1 and Patu8902 cells were transfected with GATA6 plasmid,
control vector, SiGATA6 (#1 and #2), or control siRNA for 48 h. (A, B) Total protein and mRNA lysates of PANC-1 (A) and Patu8902 (B)
were harvested, and the expression of STK33 and KLF4 in the lysates was determined using real-time Western blotting and PCR. (C,
D)Western blotting analysis of PANC-1 (C) and Patu8902 (D) cells co-transfected with SiUTX #2 (50 nmol/L) or GATA6 plasmid (2 mg).
(E, F) CCK8 (E) and Boyden chamber (F) analysis of PANC-1 and Patu8902 cells co-transfected with SiUTX #2 (50 nmol/L) or GATA6
plasmid (2 mg). The data are presented as the means � SEM from three independent experiments. *P < 0.05.
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The conflicting role of UTX in cancer gains increasing
attention recently. Low expression of UTX is associated
with reduced overall and disease-free survival durations in
clear cell renal cell carcinoma patients and appears to be
an independent prognostic factor.38 A similar result is
reported in glioblastoma.45 However, in a study of
estrogen receptor-positive breast cancer, no clinical pa-
rameters are significantly associated with UTX



Figure 6 Direct activation of UTX transcription by GATA6. (A) Representation of ChIP-Seq peaks on UTX promoters. The online
data portal for ChIP-Seq data, Cistrome Data Browser (cistrome.org), was used to test the possibility of GATA6 binding to the UTX
promoter. (B) Two GATA6-binding sites located at different sites in the UTX promoter sequence. (C) UTX promoter reporters p1977,
p899, and p262 were transfected into 239T cells in triplicate with GATA6 expression or control vectors for 24 h. The UTX promoter
activity was then examined using a dual luciferase assay kit. (D) Luciferase-based reporter assay showing the activity of UTX
promoter reporters in 293T cells co-transfected with GATA6 plasmid and empty vector or with vectors expressing either wild-type
or GATA6-binding site#2 mutated UTX promoter. (E) PANC-1 cells were co-transfected with p1799, GATA6 plasmid, or control
vector. (F) PANC-1 cells were co-transfected with p1799, SiGATA6 (#1 or #2), or a non-targeting siRNA. The promoter activities in
the cells determined using a dual luciferase assay are shown. (G) The results of the ChIP assay conducted using chromatins isolated
from PANC-1 cells. The immunoprecipitated DNA was analyzed by PCR followed by agarose gel electrophoresis. Genomic DNA input
was 1%. The experiments were performed three times independently. *P < 0.05.
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expression.46 These discrepancies suggest the complex
role of UTX in tumor progression, likely stage- and
context-dependent. In the present study, we delineated
the relationship between UTX expression in PanIN and PDA
and the patients’ clinicopathologic characteristics. We
found that reduced UTX expression was associated with
poor tumor differentiation. Decreased UTX expression was
directly associated with reduced overall survival time in
the PDA patients. Consistently, PDA mouse models pro-
duced similar results. Interestingly, UTX was localized in
both nuclei and cytoplasm of PDA cells. However, the
significance and potential mechanisms of the subcellular
localization of UTX protein and its translocation to the
cytoplasm and nucleus remain unclear, warranting further
study.
UTX is frequently mutated in myeloma cells, and overall
survival durations are shorter in myeloma patients with a
UTX mutation or deletion than in those without mutation.47

A recent study has shown that UTX is inactivated in 18% of
PDA patients (eight homozygous deletions, five structural
variants, four frame shifts, two missense mutations, and one
in-frame deletion).40 In most cases with inactivated UTX,
both alleles of UTX are affected. In the present study, we
determined the UTX expression pattern in nine PDA cell lines
and found that expression of UTX mRNA and protein was
substantially reduced, while a genetic loss of UTX occurred
only in one cell line, suggesting that down-regulation of UTX
gene is mostly through an epigenetic mechanism.

UTX exhibits pro-tumor and anti-tumor activities.49e52

However, a systematic screen by using CRISPR/
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Cas9-mediated somatic gene knockout in a KrasG12D/þmouse
model has confirmed that loss of UTX significantly promotes
lung tumorigenesis.50 UTX mutant cells show an increased in
vitro and in vivo sensitivity to inhibition of EZH2, a histone
methyltransferase that generates H3K27me3.53 UTX defi-
ciency renders lymphoma sensitive to cytarabine treat-
ment.54 UTX could restrain KrasG12D-driven PDA and confers
its sensitivity to BET inhibitors.55 In our biologic studies,
knockdown of UTX expression markedly enhanced PDA tumor
growth andmetastasis in vitro and in vivo, whereas increased
UTX did the opposite. All these findings consistently and
strongly support that UTX functions as a tumor suppressor
gene.

UTX was identified as X chromosome-encoded histone
demethylase. Therefore, its roles in regulating methylation
and demethylation in tumor cells are widely investigated.
UTX could directly influence the methylation level or indi-
rectly through targeting other epigenetic regulators.
Knockout of UTX increases the EZH2 level, thus up-regu-
lating the H3K27me3 level. UTX could coordinate with
JHDM1D and CBP to direct the H3K27 methylatione
acetylation transition and to create a permissive chro-
matin state on ER targets in breast cancer.52 The most
significant network of genes bound by UTX is tied to cell-
cycle pathways centered on the tumor suppressor gene
retinoblastoma and retinoblastoma-binding proteins.36 A
similar finding is made in a genetic screen of Drosophila for
ectopic cell growth mutants.37 However, UTX appears to
play an oncogenic role in breast cancer and TAL1-driven T-
cell acute lymphoblastic leukemia.39,48 Estrogen receptor-
induced UTX could activate ER expression, forming a feed-
forward loop in the regulation of hormone response of
breast cancer cells.52 Despite the wide mechanism explo-
ration of UTX in other types of cancer, understanding the
role of UTX in PDA development and progression is limited.
UTX loss could deregulate the COMPASS-like complex and
aberrant activation of super-enhancers regulating DNp63,
MYC, and RUNX3 oncogenes selectively in female pa-
tients.55 However, the mechanism of aberrant loss of UTX
during pancreatic tumorigenesis is still unknown.

Recent studies have identified GATA6 as a transcriptional
factor and tumor suppressor in a variety of human cancers,
including PDA. GATA6 contributes to complete pancreatic
acinar differentiation and maintains its exocrine function.56

In vivo evidence from genetically engineered mouse models
shows that acinar GATA6 suppresses KrasG12V-driven
pancreatic tumorigenesis.57 GATA6 is also critical for ca-
nonical pancreatic epithelial differentiation. Loss of GATA6
promotes epithelialemesenchymal transition and metas-
tasis.58 Given the important role of GATA6 during pancreatic
differentiation and malignancy transition, key downstream
target genes and signaling pathways warrant further explo-
ration. In the current study, we provided several lines of
evidence that UTX is a direct target of GATA6 in PDA and
that GATA6-UTX signaling is critical in PDA progression.

In summary, UTX is a potential biomarker for PDA and
functions as a tumor suppressor gene, and inhibits PDA
growth and metastasis. Mechanistically, GATA6 activates
UTX expression by direct binding to its promoter region and
activating its transcription. Thus, the UTX-GATA6 signaling
axis offers a potentially novel therapeutic target for PDA
treatment.
Conflict of interests

The authors declare no conflict of interests.

Funding

This work was supported by the Jiangxi Science Fund for
Distinguished Young Scholars (China) (No.
20212ACB216012), the Funding Program for Academic and
Technical Leaders of Main Subjects in Jiangxi Province,
China (No. 20213BCJ22009 to H.Q. Zhang), and the National
Natural Science Foundation of China (No. 81460372 to H.Q.
Zhang, No. 81960528 to S. Zheng), the Hainan Province
Science and Technology special fund (China) (ZDYF2020132
to S. Zheng) , the Innovation Platform for Academicians of
Hainan Province (China) (YSPTZX202208 to S. Zheng), and
Hainan Province Clinical Medical Center (QWYH2021276),
the Cardiovascular Disease Research Science Innovation
Group of Hainan Medical University (China).

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.gendis.2023.01.019.

References

1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA A Cancer J Clin. 2021;71(3):
209e249.

2. Siegel R, Miller K, Fuchs HE, et al. Cancer statistics, 2022. CA A
Cancer J Clin. 2022;72(1):7e33.

3. Connor AA, Gallinger S. Pancreatic cancer evolution and het-
erogeneity: integrating omics and clinical data. Nat Rev Can-
cer. 2022;22(3):131e142.

4. Wood LD, Canto MI, Jaffee EM, et al. Pancreatic cancer:
pathogenesis, screening, diagnosis, and treatment. Gastroen-
terology. 2022;163(2):386e402.e1.
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