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Gene expression profiles contribute to
robustly predicting prognosis in
hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is characterized by both
inter- and intra-tumor heterogeneity and has distinct clin-
ical outcomes.1 A promising clinical tool to perform patient
stratification, prognosis evaluation, and treatment recom-
mendations is indispensable. Here, we enrolled a total of
1595 tumor patients from 13 independent cohorts,
including seven cohorts with survival data, four cohorts
with immunotherapy information, and two cohorts with
transcatheter arterial chemoembolization (TACE) and Sor-
afenib information, respectively (Table S1). Using 96 algo-
rithms combinations derived from 10 popular machine-
learning approaches, a novel framework was constructed
and described in Figure S1. Firstly, a total of 26 stable
consensus prognostic genes were screened in seven cohorts
harboring complete survival information via univariate Cox
regression analysis (Fig. S2A). Then, these 26 genes were
further subjected to our integrative machine learning-
based framework to establish a consensus prognostic
signature (CPIS). For a prognostic signature, superior
generalization capability is a target leading research to be
pursued, which means the signature still retains robust
performance across different validation cohorts. Hence,
the C-index was measured in the other six validation co-
horts and the signature with the highest average C-index
(0.682) was regarded as the optimal one, which was derived
by the classical machine learning algorithm Ridge (Fig. 1A).

To further explore the clinical implications, patients
were classified into high- and low-risk groups by the optimal
cut-off value. The KaplaneMeier survival analysis suggested
that patients in the high-risk group presented conspicuous
poor overall survival (OS) compared to the low-risk group in
the TCGA-LIHC training cohort (n Z 363, P < 0.0001), and
similar results were produced in six validation cohorts as
well as GSE14520 (n Z 242, P < 0.0001), GSE54236 (n Z 81,
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P < 0.0001), GSE116174 (n Z 64, P Z 0.0014), GSE144269
(n Z 68, P Z 0.0131), E-TABM-36 (n Z 39, P Z 0.0037),
ICGC-LIRI (n Z 232, P < 0.0001), and Meta-Cohort
(n Z 1089, P < 0.0001) (Fig. 1BeI). In addition, TCGA-LIHC
and GSE14520 with complete recurrence-free survival (RFS)
were also exploited to elucidate prognostic significance.
Likewise, patients in the high-risk group had a superior
relapse rate relative to those in the low-risk group (TCGA-
LIHC, nZ 313, P < 0.0001; GSE14520, nZ 242, PZ 0.0002)
(Fig. 1J, K).

The time-dependent area under the ROC curves (AUCs)
of CPIS almost exceeded 0.7 at 1/2/3 years, which
demonstrated the favorable discriminative ability
(Fig. S2B). The calibration curves of CPIS also elucidated its
performance at accurately predicting prognosis across eight
cohorts (Fig. S2CeJ). The detailed AUCs of all cohorts were
as follows: TCGA-LIHC (0.762/0.737/0.717), GSE14520
(0.650/0.668/0.670), GSE54236 (0.801/0.705/0.738),
GSE116174 (0.781/0.724/0.693), GSE144269 (0.707/0.662/
0.651), E-TABM-36 (0.757/0.763/0.771), ICGC-LIRI (0.793/
0.793/0.817), and Meta-Cohort (0.741/0.712/0.689) (Fig.
S3AeH). Overall, the above results shed light on CPIS
generated from 96 algorithm combinations, which could
robustly predict the prognosis of HCC patients.

In addition, certain clinicopathological traits (such as
BCLC stage, TNM stage, and grade) and molecular features
(such as CTNNB1 mutation) are usually applied to the
prognostic evaluation and clinical management.2,3 An
interesting idea is to compare the CPIS with other clinical
and molecular variables to assess the performance of pre-
dicting prognosis. Notably, our CPIS displayed distinctly
superior accuracy than routine clinical traits encompassing
age, gender, BMI, HBV, HCV, HDV, TNM stage, grade,
cirrhosis, and CTNNB1 mutation, apart from the comparison
between CPIS and TNM stage in GSE14520 (Fig. S3IeO). In
these cohorts, the C-index [95% confidence interval] was
0.688 [0.663e0.714], 0.630 [0.600e0.660], 0.667
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Figure 1 A consensus prognostic signature was developed and validated via the integrative machine learning algorithm. (A) The
C-indexes of 96 kinds of prediction models across seven validation cohorts. (BeI) KaplaneMeier curves of OS according to the CPIS
in (B) TCGA-LIHC (n Z 363, P < 0.0001), (C) GSE14520 (n Z 242, P < 0.0001), (D) GSE54236 (n Z 81, P < 0.0001), (E) GSE116174
(n Z 64, P Z 0.0014), (F) GSE144269 (n Z 68, P Z 0.0131), (G) E-TABM-36 (n Z 39, P Z 0.0037), (H) ICGC-LIRI (n Z 232,
P < 0.0001), and (I) Meta-Cohort (n Z 1089, P < 0.0001). (J, K) KaplaneMeier curves of RFS according to the CPIS in (J) TCGA-LIHC
(n Z 313, P < 0.0001) and (K) GSE14520 (n Z 242, P Z 0.0002).
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[0.632e0.703], 0.678 [0.628e0.728], 0.641 [0.582e0.700],
0.695 [0.642e0.748], 0.783 [0.747e0.819], and 0.669
[0.655e0.683], respectively (Fig. S3P). Multivariate Cox
regression also suggested that CPIS performed statistically
significant (P < 0.05) for OS when adjusted for available
clinical and molecular traits, which indicated CPIS could be
regarded as an independent prognostic indicator for HCC
(Table S2). Therefore, our CPIS could be a promising tool for
prognostic evaluation and patient stratification in clinical
practice, further improving clinical management.

Currently, with advancements in sequencing techniques
and artificial intelligence, conspicuously increasing pre-
dictive gene expression signatures have been put forward
based on diverse machine learning algorithms.4 To compare
the performance of CPIS with previously published signa-
tures, we comprehensively enrolled 100 prognostic signa-
tures, including lncRNA and mRNA signatures while miRNA
signatures were excluded due to the lack of miRNA
expression information (Table S3). Impressively, Cox
regression analysis suggested only our CPIS exhibited
consistent significance in all datasets, proving its stability
(Fig. S4A). We further calculated the C-index of CPIS and
compared it with other published signatures. As illustrated
in Figure S4B, the CPIS presented a better performance in
most cohorts and ranked first or forefront, except for the
TCGA-LIHC cohort. We noticed that signatures performed
well and ranked first or second in TCGA-LIHC but performed
weakly in external datasets and even closed to the bottom
in GSE116174 (e.g., Zhou-FCDB), GSE144269 (e.g., Zhou-
BR). This may be explained owing to the poor generaliza-
tion ability caused by overfitting. All the results suggested
our CPIS boasted excellent robustness and possessed better
extrapolation potential.

Various molecular characteristics could map into distinct
clinical outcomes. Thus, we further decoded the landscape
of genomic variations and explored underlying biological
mechanisms for patients. Notably, patients with high CPIS
harbored dramatically superior CNA relative to patients
with low CPIS, such as amplification of 10p15.1 and deletion
of 4q21.3, 4q24, and 16q23.1 (Fig. S5A). Thus, patients with
high CPIS conveyed prominent genomic variations, hinting
at high genomic instability. Using the limma package, we
identified differentially expressed genes between two
groups (Fig. S6A). Based on gene sets from Hallmark, the
top 10 observably enriched pathways were displayed ac-
cording to normalized enrichment score (NES) respectively.
Intriguingly, patients with high CPIS enriched numerous
pathways associated with cell cycle and proliferation, such
as E2F targets and G2M checkpoint, while patients with low
CPIS presented dominantly related to biological metabo-
lisms, such as fatty acid metabolism and fatty acid meta-
bolism (Fig. S5B). Moreover, popular treatments in clinical
practice were also used to assess the predictive value of
CPIS for quantifying therapeutic benefits. Our results sug-
gested that patients with low CPIS were recommended to
take more consideration for TACE and Sorafenib (Fig. S6B,
C). Overall, all these characteristics of genomic variations
and biological functions might provide new insights into
feasible therapeutic targets for improving clinical
outcomes.

Accumulating evidence has revealed tumor microenvi-
ronment (TME) is implicated in immunotherapy responses
and clinical outcomes.5 To yield more detailed insights
into TME characteristics, the 28 immune cell infiltrations
were further estimated. Most immune cells displayed
more elevated infiltration in the low-risk group, such as
activated CD8 T cells and natural killer cells (Fig. S5C, 7A).
Correlation analysis also highlighted most immune cells
were significantly inverse links with CPIS (Fig. S7B).
Collectively, patients with low CPIS presented a superior
immune infiltration, indicating more backup resources for
immunotherapy. Moreover, we extended our exploration
to HLA molecules, co-stimulatory molecules, and co-
inhibitory molecules. The results elucidated that patients
in the low-risk group possessed higher expression of most
molecules, such as HLA-DPA1, CD226, and CD274, while
the expression of some molecules was elevated in the
high-risk group, such as CD58 and TNFSF4 (Fig. S7C, 7D,
6D). These discoveries might bring foundations for clinical
management, facilitating immunotherapy efficacy.
Therefore, four cohorts with immunotherapy, including 57
responders and 149 non-responders, were enrolled to
further evaluate the performance of CPIS at quantifying
clinical benefits. There was a conspicuous tendency that
patients in the low-risk group presented a high fraction of
response in GSE35640, GSE100797, GSE91061, and
Nathanson cohorts (Fig. S7EeH). Taken together, patients
with low CPIS tended to be sensitive to immunotherapy
and CPIS might be a favorable tool for immunotherapy
estimation.

In conclusion, to improve clinical outcomes and guide an
individualized approach, our study developed a robust and
promising consensus prognostic signature for patient
stratification, prognosis evaluation, and treatment recom-
mendations according to bioinformatics and machine
learning algorithms.
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4. Piñero F, Dirchwolf M, Pessôa MG. Biomarkers in hepatocellular
carcinoma: diagnosis, prognosis and treatment response
assessment. Cells. 2020;9(6):1370.

5. Liu Z, Zhang Y, Shi C, et al. A novel immune classification reveals
distinct immune escape mechanism and genomic alterations:
implications for immunotherapy in hepatocellular carcinoma. J
Transl Med. 2021;19(1):5.

Long Liua,1, Yuhui Wangb,1, Yuyuan Zhangc, Siyuan Wengc,
Hui Xuc, Zaoqu Liuc,d,e,**, Xinwei Hanc,d,e,*

aDepartment of Hepatobiliary and Pancreatic Surgery, The
First Affiliated Hospital of Zhengzhou University,

Zhengzhou, Henan 450052, China
1 These authors contributed equally to this work and shared the
first authorship.
b Prenatal Diagnosis Center, The Third Affiliated Hospital
of Zhengzhou University, Zhengzhou, Henan 450052, China

cDepartment of Interventional Radiology, The First
Affiliated Hospital of Zhengzhou University, Zhengzhou,

Henan 450052, China
d Interventional Institute of Zhengzhou University,

Zhengzhou, Henan 450052, China
e Interventional Treatment and Clinical Research Center of

Henan Province, Zhengzhou, Henan 450052, China

*Corresponding author. Department of Interventional
Radiology, The First Affiliated Hospital of Zhengzhou Uni-

versity, Zhengzhou, Henan 450052, China.

**Corresponding author. Department of Interventional
Radiology, The First Affiliated Hospital of Zhengzhou Uni-

versity, Zhengzhou, Henan 450052, China.
E-mail addresses: liuzaoqu@163.com (Z. Liu), fcchanxw@

zzu.edu.cn (X. Han)

13 November 2022
Available online 24 March 2023

http://refhub.elsevier.com/S2352-3042(23)00048-X/sref1
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref1
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref1
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref1
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref2
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref2
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref2
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref2
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref3
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref3
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref3
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref3
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref3
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref3
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref4
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref4
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref4
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref5
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref5
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref5
http://refhub.elsevier.com/S2352-3042(23)00048-X/sref5

	Gene expression profiles contribute to robustly predicting prognosis in hepatocellular carcinoma
	Author contributions
	Conflict of interests
	Funding
	Appendix A. Supplementary data
	References


