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High glucose promotes macrophage M1 R
polarization through miR-32/Mef2d/cAMP

signaling pathway

Chronic inflammation is a crucial inducer of diabetes vascular
complications. One reason is that high glucose easily induces
macrophage activation.' Macrophages are the principal par-
ticipants in innate immunity and exist in all human tissues. In
pathological vascular, infiltrated macrophages secrete in-
flammatory factors leading to an increase in plaque stability.?
In macrophage polarization, autophagy plays an important
role. Enhancement of macrophage autophagy could induce
macrophage polarization from the M1 phenotype to M2
phenotype and inhibit inflammatory reactions.> Our previous
research found that high glucose condition promotes miR-32
expression and macrophage M1 polarization,* but the mech-
anism of miR-32 promoting macrophage M1 polarization is
unclear. In this study, we found that, under a high-glucose
condition, miR-32/Mef2d/cAMP signaling promoted M1
macrophage polarization via inhibited autophagy. These re-
sults provide a theoretical and experimental basis for the
prevention and treatment of T2D vascular inflammation.

In this study, because of the difference in glucose con-
centration between low-glucose DMEM and high-glucose
DMEM, mannitol was added to avoid the influence of os-
motic pressure on the macrophage. The results showed that
the change in osmotic pressure did not markedly affect the
expression of autophagy marker genes in macrophages
(Fig. S1). Thus, the macrophage was treated with high
glucose directly in the following experiments. High glucose
condition increased miR-32 expression and promoted
macrophage M1 polarization, and inhibited the expression
of autophagy marker genes, including sequestosome 1
(p62), autophagy-related 5 (Atg5), autophagy-related 16
like 1 (Atg16l1), and beclin 1 (Becn-1) (Fig. 1A—C; Fig. S2).
These results suggested that high glucose promotes
macrophage M1 polarization maybe through increased miR-
32 expression and inhibited autophagy.
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Then, RAW264.7 and BMDM were used to assess the in-
fluence of miR32 on macrophage M1 polarization. After
miR-32 mimics were transfected into RAW264.7, macro-
phage significantly polarized to the M1 subtype by flow
cytometry analysis (Fig. 1D, E). gqRT-PCR showed that the
marker genes of M1 macrophage were all significantly up-
regulated, including nitric oxide synthase 2 (iNOS) and
tumor necrosis factor alfa (TNFa), while autophagy marker
genes were all significantly down-regulated (Fig. 1F).
Western blotting also indicated that autophagy was inhibi-
ted in RAW264.7 (Fig. S3A, B). Especially, after WT or miR-
32~/~ BMDMs were transfected with miR-32 mimics, M1
macrophages marker genes were all significantly up-regu-
lated, while autophagy marker genes were all significantly
down-regulated (Fig. 1G; Fig. S3C). Importantly, Mef2d was
identified as a miR-32 target gene in macrophages (Fig. S3D,
E). These results suggested that the inhibition of Mef2d
expression and autophagy may be the important pathway
for miR-32 promoting macrophage M1 polarization.

Furthermore, to demonstrate Mef2d function in macro-
phage M1 polarization, RAW264.7 was respectively trans-
fected with si-Mef2d or Mef2d plasmid. After the
macrophage was transfected with si-Mef2d, the macro-
phage significantly polarized to the M1 subtype via flow
cytometry analysis (Fig. 1H, 1). gRT-PCR found that M1
macrophage marker genes were all significantly up-regu-
lated, while the expression of autophagy marker genes was
significantly inhibited (Fig. S4A). Western blotting also
indicated that autophagy marker genes were significantly
inhibited (Fig. S4B, C). Immunofluorescence found that p62
and Atg5 were all decreased (Fig. 1J; Fig. S4D). Impor-
tantly, after RAW264.7 was transfected with the plasmid of
pDoubleEx-EGFP-Mef2d or pcDNA3.1-Mef2d, those phe-
nomena were all reversed (Fig. 1K—M; Fig. S5). These
findings suggest that Mef2d involves macrophage M1 po-
larization through regulated autophagy.
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Figure 1 High glucose promoted macrophage M1 polarization via miR-32/Mef2d signaling inhibited autophagy. (A, B) Flow
cytometry analyzed the influence of high-glucose for macrophage polarization (A); statistical analysis (B). (C) Immunofluorescence
analyzed the expression of p62 in macrophages after high-glucose treatment. (D, E) Flow cytometry analyzed the influence of miR-
32 mimics for macrophage M1 polarization (D); statistical analysis (E). (F) gRT-PCR analyzed the marker-genes expression of M1
macrophage and autophagy after RAW264.7 transfected miR-32 mimics. (G) RT-PCR analyzed the expression of the marker genes of
M1 macrophage and autophagy after WT BMDM transfected miR-32 mimics. (H, 1) Flow cytometry analyzed RAW264.7 M1 polari-
zation after si-Mef2d transfected (H); statistical analysis (I). (J) Immunofluorescence analyzed the expression of p62 in macrophage
after si-Mef2d was transfected into RAW264.7. (K, L) Flow cytometry analyzed RAW264.7 M1 polarization after pcDNA3.1-Mef2d was
transfected into RAW264.7. (K); statistical analysis (L). (M) Immunofluorescence analyzed the expression of p62 in macrophage
after pcDNA3.1-Mef2d was transfected into RAW264.7. (N, O) Flow cytometry analyzed the influence of WT BMDM translation for
peripheral macrophage M1 polarization in T2D miR-32~/~ mice (N); statistical analysis (0). (P) gRT-PCR analyzed the influence of
WT BMDM translation for aorta inflammation in T2D miR-32~/~ mice. *P < 0.05, **P < 0.01. Each experiment was repeated more
than three times (n > 3). The animal experiments were approved by the Animal Welfare and Research Ethics Committee of the
Institute of the University of South China.
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In addition, after RAW264.7 cells were co-transfected
with the Mef2d plasmid (pDoubleEx-EGFP-Mef2d) and miR-
32 mimics, Mef2d and autophagy hallmark genes were all
obviously up-regulated at both the mRNA and protein levels
(Fig. S6). These findings suggest that Mef2d was the critical
gene that mediated the function of miR-32 in macrophage
autophagy.

The Mef2d-interacting proteins and autophagy-related
genes were searched by Cytoscape software and the GO
database, respectively. Between the search results, seven
common genes were screened (Fig. S7A). DAVID cluster
analysis showed that the Mef2d-interacting protein was
involved in 31 signaling pathways. Among them, cAMP, one
of the most important secondary messengers involved in
autophagy,® was the proper candidate signaling pathway,
which includes 3 autophagy genes (Fig. S7B). Furthermore,
qRT-PCR verified that the levels of E1A binding protein p300
(Ep300), protein kinase cAMP-dependent catalytic (Prkaca),
and mitogen-activated protein kinase 3 (Mapk3) were all
increased or decreased after si-Mef2d or Mef2d plasmid
transfection (Fig. S7D, E). Therefore, these results indi-
cated that the cAMP pathway was a critical signaling
pathway of Mef2d-regulated macrophage autophagy.

In vivo experiments were carried out to assess the in-
fluence of macrophages on vascular inflammation in miR-
327/~ T2D mice. Based on the T2D mouse model,* WT
BMDMs were injected into miR-327/~ T2D mice via the
caudal vein. Flow cytometer found that WT BMDM injection
promoted peripheral macrophage M1 polarization (Fig. 1N,
0). qRT-PCR found that the expression of proinflammatory
factors (TNFa, IL-1B, and IL-6) was significantly increased in
the aorta (Fig. 1P). These results suggested that miR-32
BMDM promoted T2D vascular inflammation.
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