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Primary liver cancer, which is mainly composed of hepa-
tocellular carcinoma (HCC), is the sixth most common type
of cancer worldwide and the third most common cause of
cancer mortality." The total number of mutations present
in tumor specimens is called tumor mutation burden (TMB)
and it is an emerging biomarker of immunotherapy
response.” TMB can predict clinical responses to immuno-
therapy such as ICl (immune checkpoint inhibitor) treat-
ments and higher TMB is related to better survival.® TP53, a
gene encoding a tumor suppressor protein that triggers
apoptosis and cell cycle arrest, is one of the most preva-
lent mutations in 25%—30% of HCC patients.” Research
shows that TP53 mutations in HCC patients are associated
with advanced tumor grade and poor prognosis.’ To iden-
tify the TP53 mutation-related genes which can predict
HCC patients’ prognosis and explore the immune cell
infiltration, we constructed a risk model based on six TP53
mutation-related genes which can accurately predict pa-
tients’ prognosis. Besides, six immune cells with a similar
expression pattern were identified in The Cancer Genome
Atlas (TCGA) and International Cancer Genome Consortium
(ICGC) databases.

The main process of this study is shown in Figure S1.
Table S1 depicts the baseline characteristics of all patients
retrieved from TCGA and ICGC databases. We downloaded
the mutation data of 376 and 348 HCC samples from TCGA
and ICGC databases respectively. These samples were then
fused with corresponding clinical information according to
their sample ID. There was no significant difference be-
tween samples in the TCGA dataset and those in the ICGC
dataset.
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Figure S2A and B shows the top 30 gene mutations of HCC
according to the TCGA and ICGC databases respectively. In
both databases, the frequency of asynchronous mutation in
TP53 gene is the highest, which suggests that TP53 may play
a leading role in the mutagenic mechanism of HCC. Venn
diagram shows 14 genes with the highest mutation fre-
quency of the top 30 mutant genes in the two databases
(Fig. S3A). Then, we investigated the TMB differences in
these 14 genes between wild type and mutation type of
HCC samples, finding that the TMB of TP53 and the other 11
genes in mutation types were significantly higher than that
in wild type (Fig. S3B). Kaplan—Meier analysis was con-
ducted on these 14 genes with patients’ prognosis. Even-
tually, LPR1B and TP53 were screened out for further
research. Results showed LPR1B mutation was correlated
with a worse prognosis while no significant difference was
found between the overall survival of TP53 mutation type
and that of wild type (TP53, OS, P = 0.059; LPR1B, OS,
P = 0.027) (Fig. S4A, B). Subsequently, the results of uni-
variable Cox regression analysis suggested that TMB can
serve as an independent prognostic factor (P < 0.01)
whereas multivariate Cox regression showed that TMB
cannot independently predict the prognosis of HCC patients
(Fig. S4C, D). Besides, the prognostic independence of age,
gender, grade, stage, and LRP1B mutation were also
analyzed and only stage can independently predict the HCC
patients’ clinical outcomes (P < 0.01). KEGG (Kyoto Ency-
clopedia of Genes and Genomes) analysis showed that
LPR1B had six representative pathways and TP53 had eight
(Fig. S4E, F).

We compared HCC samples with TP53 mutation and
samples without it, using the edgeR package to find DEGs
(differentially expressed genes). The volcano plot shows
the DEGs in TP53 mutation-type samples (Fig. S5A). The
heatmap shows the genes whose expression was obviously
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Construction of the risk model based on six TP53 mutation-related genes. (A, B) The TP53 mutation-related risk model

was established via LASSO Cox regression. (C) The risk score distribution between the low-risk and high-risk groups of the training
group. (D) The survival status and survival time of patients in two risk groups of the training set. (E) The heatmap of the expression
of six genes in HCC patients’ samples. (F, H) The nomogram for predicting patients’ outcomes based on genes (SLC1A5, CDC20,
SBK3, CTSV, POU3F2, and MYBL2) in the TCGA and ICGC databases. (G, 1) The calibration curves for assessing the discrimination and
accuracy of the nomogram. (J, K) Uni- and multivariate Cox regression analyses of the risk score of the model.
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changed in TP53 mutation samples compared with that in
wild-type samples (Fig. S5B). We performed GO (Gene
Ontology) analysis and the results revealed that these DEGs
were mainly involved in the regulation of membrane po-
tential, synaptic membrane, and channel activity. KEGG
analysis indicated that these genes participated in neuro-
active ligand—receptor interaction and protein digestion
and absorption.

Univariable Cox regression analysis was conducted to
screen out the TP53 mutation-related genes (Table S2).
LASSO regression analysis found that six genes (SLC1A5,
CDC20, SBK3, CTSV, POU3F2, and MYBL2) (Table S3) were
closely related to the overall survival of HCC patients,
which were then used to construct our prognostic model
(Fig. 1A, B). The samples in the TCGA database were used
as a training set while those in the ICGC database were
used as a test set. In the training set, HCC samples were
further divided into high-risk and low-risk groups based on
LASSO results. Figure 1C showed the risk score distribution
between high- and low-risk groups. Besides, Figure 1D
indicated the survival time and survival status of HCC pa-
tients in the two groups. The heatmap described the
relative expression levels of six TP53 mutation-related
genes of each patient, showing that these genes were up-
regulated in the high-risk group than that in the low-risk
group (Fig. 1E). Survival analysis shows that the high-risk
group has poorer overall survival than the low-risk group
(P < 0.001) (Fig. 1F). In the training set, the area under the
curve (AUC) showed that the 1-year, 3-year, and 5-year
overall survival rates are all above 0.7, suggesting that this
model is accurate in predicting the prognoses of HCC pa-
tients (Fig. 1G). As for the test set, the Kaplan—Meier
survival analysis presented that the overall survival of
the high-risk group was significantly lower in relation to
that of the low-risk group (P < 0.05) (Fig. 1H). Moreover,
the AUC of the 1-year overall survival rate was 0.716,
which demonstrates that there was no remarkable
distinction in prognosis outcomes between the two sets
(Fig. 11). In addition, both the result of multivariate Cox
regression analysis and that of univariable Cox regression
analysis revealed that the risk score and stage were
significantly correlated with the prognosis of HCC patients
(Fig. 1J, K).

Pearson analysis demonstrated the co-expression pat-
terns between 24 types of immune cells in the TCGA
database (Fig. S6A). Additionally, the infiltration fraction of
these immune cells in high- and low-risk groups in the TCGA
database were compared, and a significant difference was
found in the infiltration fraction of cells including Tex
(exhausted T cells), nTreg (natural regulatory T cells), iTreg
(induced regulatory T cells), Th1, Th17, Tem (effector
memory T cells), etc. of the high-risk group compared with
those of the low-risk group (P < 0.05) (Fig. S6B). The six
model genes in the TCGA database were integrated into a
nomogram (Fig. S7A, B). Figure S7A showed that in the
TCGA database, the risk score of the model was correlated
with patients’ survival, with a higher score predicting

poorer clinical outcomes. Figure S7B showed our model
based on the TCGA database had excellent accuracy by
comparing it with the calibration curve. The risk score of
the nomogram model in the ICGC database is shown in
Figure S7C, presenting that the risk score was negatively
correlated with the survival of HCC patients. Figure S7D
compared the nomogram-predicted three-year survival
using the ICGC database with the actual three-year sur-
vival, elucidating the splendid accuracy of our prognostic
model. Figure S8A described the co-expression patterns
between 22 types of immune cells in the ICGC database.
Moreover, the infiltration fraction of 24 types of immune
cells was compared in the high-risk group and low-risk
group, with a significant difference in Tc (cytotoxic T cells),
Tr1 (T regulatory type 1 cells), nTreg, iTreg, Th17, Tfh (T
follicular helper cells), central memory T cells, effector
memory T cells, dendritic cells, B cells, and neutrophils
(Fig. S8B). Eventually, six common cell types with a similar
expression pattern were identified (Fig. S8C).

In conclusion, we established a prognostic model for HCC
patients based on six TP53 mutation-related genes which
can accurately evaluate patients’ prognoses and identified
six immune cells with the same expression pattern in the
TCGA and ICGC datasets, which may serve as biomarkers in
HCC.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.gendis.2023.03.020.
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