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RAPID COMMUNICATION
Identification of gene classifier and
modules associated with SARS-CoV-2 ARI in
nasal swab
During a sudden viral pandemic, where the pathogenesis
and nature of the infection are unclear, early and accurate
identification of the patients infected with the pandemic-
causing pathogen is crucial to prevent excess mortality.
During the coronavirus disease 2019 (COVID-19) pandemic,
early diagnosis of severe acute respiratory syndrome virus-2
(SARS-CoV-2) is limited by the incidence of the symptoms
that are shared with acute respiratory illnesses (ARI) caused
by other pathogens, including bacteria and viruses.
Although pathogen-specific diagnosis methods like reverse
transcription-quantitative polymerase chain reaction (RT-
PCR) remain gold-standard for SARS-COV-2 diagnosis, they
also have several disadvantages, such as false negatives due
to low or fluctuating viral loads and long processing time
with the expertise needed for handling. The host immune
response to different pathogen infections can be utilized
for pathogen-specific diagnosis. This emerging approach
has been shown to differentiate between bacterial and
viral infections accurately. Identifying SARS-CoV-2 specific
host transcriptome gene classifiers that can differentiate
ARI caused by SARS-CoV-2 and other pathogens can aid in
the early diagnosis of COVID-19 patients.

In this study, we developed a machine learning-based
gene classifier and identified modules associated with SARS-
CoV-2 infection. The expressions of the genes present in the
classifier are validated in an independent dataset
comprising patients infected with SARS-CoV-2 variants of
concern (VOCs) (Fig. 1A). Three eligible RNA-seq datasets,
GSE188678, GSE179277, and GSE156063, were selected
from the gene expression omnibus (GEO) database (Table S1
and Fig. S1).1 Three individual datasets were merged into a
single dataset with 772 nasal swab ARI samples comprising
383 non-viral ARI (NVARI), 139 other respiratory viruses
associated ARI (ORVARI), and 250 SARS-COV-2 associated
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ARI (SC2ARI) samples. This dataset was utilized to build a
machine learning-based ARI gene classifier using the DaM-
iRseq pipeline.2 The direct integration of three different
datasets resulted in significant batch effects identified
through the principal component analysis (PCA) plot
(Fig. 1B). The batch-effect correction was performed to
remove the batch effects. The adjusted counts were visu-
alized through the PCA plot (Fig. 1C), and it was observed
that batch effects were diminished and three groups were
segregated, making the data suitable for further down-
stream analysis. Variance stabilizing transformation (vst)
normalization and data filtering removed the genes with
less expression and inconsistent samples. DaMiRseq pipe-
line identified 105 small, robust discriminatory features
(genes) through backward elimination with partial least-
square regression (Fig. S2 and Table S2; Supplementary
methods). 16 genes were identified to be eligible for con-
structing the gene classifier based on the sorted list using
the DaMir.Fselect function. The expression of these 16
genes across all the samples was visualized through a
cluster plot (Fig. 1D). Out of the 16 genes, IFI27, IFI6, IFI44,
OAS2, OAS1, IDO1, SERPING1, USP18, C1QB, IL1B, and CCL5
were the 10 well-known genes to be interferon-inducible
and play a role in interferon signaling pathway and the role
of genes such as SEC14L3 and WFDC6 is unclear. The
expression of these interferon-related genes increases
substantially in SC2ARI compared to all other ARI condi-
tions. The functional relevance of these genes was tabu-
lated in (Table S3). The classifier model performance was
evaluated using stringent 100 iterations and found
ensemble approaches of SVM and RF, SVM alone, and RF
alone have an accuracy of 83.7%, 84.6%, and 84.2%,
respectively. The accuracy across 100 iterations was visu-
alized through a violin plot (Fig. 1E).

Gene co-expression analysis was performed using the
CEMiTool R package with default parameters to construct
the co-expression network and modules co-expressed
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Figure 1 Construction of 16-gene ARI classifier and gene co-expression modules associated with ARI that also dysregulate be-
tween SARS-CoV-2 delta and previous SAR-CoV-2 VOCs. (A) Schematic representation of the overall approach implemented in the
study. ARI-associated nasal swab classifier and gene modules were identified through machine learning and gene co-expression
analysis, respectively. The significant gene modules associated with SARS-CoV-2 B.1 variants and highly contagious delta strain
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across each ARI group.3 A total of 4 significant gene modules
were identified with a soft threshold beta value of 6
(Fig. 1F; Fig. S3A, 4A, 4C and Table S4). Module 3 consists of
97 genes enriched for the interferon pathway, and its ac-
tivity is very high in SC2ARI, indicating enhanced antiviral
response in SC2ARI (Fig. 1G). Interestingly, most of the
genes in the 16-gene ARI classifier belong to this module.
Module 4 comprises 42 genes that do not significantly enrich
any pathways, and the activity of this module is high in
ORVARI and low in SC2ARI. Gene interaction data was used
to construct the network identifying hub genes in each
module. Module 3 is of high importance because of the
higher activity in SC2ARI patients (Fig. S3B), and most of
these genes were also found to discriminate between the
three types of ARIs significantly.

Among the VOCs, the SARS-CoV-2 delta variant
(B.1.167) undoubtedly caused a severe pandemic wave,
causing an excessive death rate. Thus, we investigated
the GSE184610 dataset to identify the significant modules
and genes associated with the delta variant compared
with other SARS-CoV-2 B.1 variants.4 The raw counts were
vst-normalized and visualized through the PCA plot that
shows the segregation of both groups (Fig. 1H). The vst-
normalized data was used as input for CEMiTool with
default parameters that identified 6 significant modules
associated with each group (Fig. 1I; Fig. S5A and Table
S5). Out of the 6 modules identified, module 4 is of high
interest because it had 84 genes that are enriched for
interferon-associated genes whose activity was high in the
SARS-CoV-2 delta-infected patients. ORA analysis identi-
fied the RIG-I signaling pathway to be significantly
enriched (Fig. 1J). Gene interaction network analysis
identified interferon pathway-related genes such as MX1,
IFIT1, and IFIT2 as hub genes (Fig. S5B). Another module,
M1 enriched for the metabolism-associated pathway, was
also identified to be significant in ARI classification
(Fig. S6). Module 2 enriched for cytokine and chemokine
signaling, while Module 5 enriched for leukocyte trans-
were identified through the gene co-expression analysis. A compar
dataset was performed. (B) The raw counts of nasal swab transcr
merged into a single dataset of 772 samples and the batch effect d
through PCA plot. (C) After performing batch effect correction, the
Batch-adjusted counts were subjected to feature selection through
were selected to construct the gene classifier and visualized throu
across 100 iterations was visualized through the violin plot. (F) The
the gene co-expression analysis through the CEMiTool package w
modules and the gene set enrichment analysis of each identified
enriched for interferon associated pathway and over-representat
through a bar plot. (H) GSE184610 dataset derived from the nasa
variants was re-analyzed and vst-normalized counts were visualiz
groups. (I) Gene co-expression analysis was performed through the
expressed gene modules and the gene set enrichment analysis of e
Over-representation analysis of Module M4 identified interferon-re
The expression level of the 16 genes identified as the ARI classifier
other SARS-CoV-2 B1 variants infected patients.
endothelial migration and B-cell receptor pathway
(Fig. S7).

Since the module enrichment for the interferon-associ-
ated pathway was significantly identified in both ARI and
variants datasets, we cross-validated the expression of the
16 genes used to build the ARI classifier in the SARS-CoV-2
delta and B.1 variants of infected patients. Interferon-
associated genes were up-regulated in SARS-CoV-2 delta
variant infected patients, whereas the expression of
SEC14L3 and WFDC6 were down-regulated in SARS-COV-2
delta variant patients in comparison with patients infected
with SARS-COV-2 B.1 variants (Fig. 1K). Module 3 of the ARI
analysis and Module 4 of the VOC analysis share many
common genes. Similarly, other genes and the associated
modules were tabulated (Table S6). The observation of
higher induction of interferon-associated genes in SC2ARI
compared to other ARIs, and SARS-CoV-2 delta variants
compared to the previous B1 variants, reveals the modu-
lation of innate immune pathways employed by evolving
variants of SARS-CoV-2.

Our observation is in accordance with the study that
identified enhanced interferon-dependent gene expression
and hyper-inflammation in the mouse lungs intranasally
challenged with the SARS-CoV-2 delta variant compared to
other SARS-CoV-2 VOC alpha variants.5 Although SARS-CoV-2
VOCs were known to be resistant to interferon induction in
multiple studies, our observation of enhanced interferon-
dependent gene expression in SARS-CoV-2 delta infection
leads to an open question regarding the induction of
interferon responses by delta variant and how they use or
overcome this effect to establish infection.

Host response-based diagnosis can be a complementary
tool to existing methods to diagnose the SARS-CoV-2
infection early. Although host response-based diagnosis is
promising, clinical validation of the classifiers in a large
cohort of samples with metadata information only warrants
the real-world accuracy to be compared with gold standard
methods such as RT-PCR.
ison of ARI classifier gene expression in the SARS-CoV-2 variant
iptome datasets, GSE188678, GSE179277, and GSE156063 were
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the DaMiRseq pipeline that identified 105 genes and 16 genes
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